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Crossover in diffusion equation: Anomalous and normal behaviors
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Ubiquitous phenomena exist in nature where, as time goes on, a crossover is observed between different
diffusion regimege.g., anomalous diffusion at early times which becomes normal diffusion at long times, or
the other way aroundIn order to focus on such situations we have analyzed particular relevant cases of the
generalized Fokker-Planck equatigialy’ 7(y')[ 7 p(x,t)1/at” = fdu'dv'D (', v")[ o [p(x,t)]" 1/ ox*,
where 7(y') andD(u',v") are kernels to be chosen; the choigey’)=4(y'—1) andD(u',v')=4(un’

—2)8(v' —1) recovers the normal diffusion equation. We discuss in detail the following casesmixture

of the porous medium equation, which is connected with nonextensive statistical mechanics, with the normal
diffusion equation;(ii) a mixture of the fractional time derivative and normal diffusion equatigiis; a

mixture of the fractional space derivative, which is related witlnyL#lights, and normal diffusion equations.

In all three cases a crossover is obtained between anomalous and normal diffusions. (i) eamk§i ), the

less diffusive regime occurs for short times, while at long times the more diffusive regime emerges. The
opposite occurs in cas@). The present results could be easily extended to more complex situéians
crossover between two, or even more, different anomalous regirmes are expected to be useful in the
analysis of phenomena where nonlinear and fractional diffusion equations play an important role. Such appears
to be the case for isolated long-ranged interaction Hamiltonians, which along time can exhibit a crossover from
a longstanding metastable anomalous state to the usual Boltzmann-Gibbs equilibrium one. Another illustration
of such crossover occurs in active intracellular transport.

DOI: 10.1103/PhysRevE.67.031104 PACS nuni$)er82.20.Db, 66.10.Cb, 05.66k

[. INTRODUCTION It has been applied to several physical situations such as
percolation of gases through porous medie=@) [8], thin
Anomalous diffusion has nowadays received a lot of at-saturated regions in porous media=(2) [9], a standard
tention. It is observed in several situations such as in CTABsolid-on-solid model for surface growth/€3), thin liquid
micelles dissolved in salted watgt], the analysis of heart- films spreading under gravityv&4) [10], among others
beat histograms in a healthy individy&], chaotic transport [11]. The escape time, or mean first passage time, has also
in laminar fluid flow of a water-glycerol mixture in a rapidly been studied by considering a nonlinear Fokker-Planck equa-
rotating annulus[3], subregion laser cooling4], particle tion, leading eventually to a generalization of the Arrhenius
chaotic dynamics along the stochastic web associated withlaw [12]. Also notice that Eq(2) has been investigated in
d=3 Hamiltonian flow with hexagonal symmetry in a plane connection with nonextensive statistids3].
[5], conservative motion in @=2 periodic potential6], Another example of generalization of Ed) is fractional
transport of fluid in porous mediésee Ref[7] and refer- diffusion equations, which also have been used to analyze
ences therein surface growt 7], and many other interest- anomalous diffusion and related phenomena. In this direc-
ing physical systems. tion, we consider a diffusion equation with time fractional
A common way to classify anomalous diffusion is through derivative[14]
the time dependence of the mean squared displacement,
which typically satisfieg(Ax)%)<t?. If o>1, 0<1, or o Fp  Pp
=1, we have superdiffusion, subdiffusion or “normal” dif- T o
. ; o . at?y  oax
fusion, respectively. Deviations from=1 may be obtained
by considering generalizations of the diffusion equation

©)

Another possibility is to investigate a diffusion equation with
spatial fractional derivativgl4], i.e.,
ap &zp
G 2’ @ ap M
X Pp_7P 4)
where the diffusion constard is set equal to unit ang
=p(x,t). One such extension is the nonlinear equation usuThese equations can be related, for instance, to continuous
ally referred to as the porous medium equaﬂ]@h time random walk models and generalized Langevin equa-
tions. In particular, Eq(4) describes anomalous diffusion of
the Levy type (superdiffusion; see Refl15] and references
(2)  therein. It has no finite second moment((Ax)?) diverges.

(9[) (92pv
at ax? Let us mention at this point that this divergent feature can be
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avoided by using coupled space-time memories as worked Before considering a general analysis of Ei).based on
out in Ref.[16]. We address here the case of uncoupled spaceumerical calculation, we perform an approximate analytical
and time memories as contained, for instance, in @). investigation. In order to identify the regimes exhibited by
This divergent behavior also occurs in Eg) for v suffi- the solution of Eq(6), we rewrite this equation as

ciently small. An unified discussion of E¢R2) and Eq.(4)

has been done in Refl7] by considering equatiodp/dt

=gk p¥l Ix*.

Each one of the above equations presents one diffusive
regime. In contrast, there are cases where more than orléws, if D, is sufficiently larger tharwD ,p =1 Eq. (7)
diffusion regime occurs. Examples of such situations ardeads, with good precision, to a diffusion like that corre-
Hamiltonian systems with long-range interactigris3,19,  sponding to Eq(1). For instance, the appropriate solution of
particle diffusion in a quasi-two-dimensional bacterial bathEq. (6) with »<<1 and subject to the initial condition
[20], and enhanced diffusion in active intracellular transportp(x,0)= 8(x) is, for time short enough, the Gaussian
[21]. Physical situations like these motivate us to investigate
processes involving distinct diffusive regimes, for instance,
cases which are characterized {§Ax)?)=t’1 for short time
and((Ax)?)=t“2 for long time. A way to incorporate a set of

Qiffusive regimes in _a_single_: eq“a“"r_‘ without emp_I(_)yin_g By short enough time we mean all times such titat
time dependent coefficients, is to consider a composition ing; vD,[p(0)]”" L. However, ag increasesp(0,t) decreases
14 1 . H )

v_olvmg nor_wlmgar gnd fractl_onal derivative dnffusmn €qua- and this inequality becomes gradually reversed.
tions. In this direction, a quite general frame is to focus at-

dp
+ L
[Dl VDVp ]&X

ﬁp_ﬁ

gt ax @)

e—x2/(4D1t)

p(x,t)= (8

(47D t)Y?

tention on the Fokker-Planck-like equation

de ' ,)(97/13
Y Ty 7
at”

M2 v J
:J d,u'f dv'D(u',v") —.
M1 41 ox
5

Y1

If D,<vD,p"" 1, Eq.(7) reduces to the porous medium
equation as presented in EQ). Therefore, for long time, the
solution of Eq.(6) with v<<1 may be approximated by tle
Gaussian

p(x,0) =exp[ — BOXA/Z(Y), ©)

In the present paper, we study some representative cas@iere

of this equation by mixing terms related to normal and

anomalous diffusions. In Sec. Il, we analyze Ef.with an
extra nonlinear derivative term. In Sec. lll, Ed.) with an

additional time fractional derivative is investigated. In this

same section, Eq1) with a space fractional derivative is
also analyzed. Finally, we conclude in Sec. IV.

II. NONLINEAR FOKKER-PLANCK EQUATION

In order to mix normal(based on linear equatiprand
anomalougbased on nonlinear equatiodiffusions, we start
our study by considering, in Eq5), 7(y')=46(y'—1) and
D(u',v')=[D16(v'—1)+D,8(v' —v)]8(n'—2). In this
case, we have the nonlinear equation

azpl/

o _ P
ax?

ot - lﬁxz + v (6)

Of course, we are using in E@5) integration limits that
comprisey’ =1, v'=1, v'=v, andu’=2. In the following
analysis, we use the initial condition(x,0)= &(x), hence
(x)=0 (Vt). Therefore, we focus ofx?), which coincides
with ((Ax)?). Notice also thati) D;>0 andD,=0 reduce

Eq. (6) to the usual diffusion equation, whose solution is a

Gaussian andx?)«t; (i) for D;=0 andD,>0, Eq. (6)
becomes the porous medium equation gmd)ot?(1"),
Next, we address the behavior of?) associated with the

solutions of Eq{(6) for short and long times by investigating

the possibilitiess>1 andv<1, D4, andvD, being positive
guantities.

q=2-v. (10
Here, exp()=[1+(1-gx*"® if 1+(1-q)x=0 and
exp,(X)=0 otherwise. This is thg-exponential function that
naturally emerges in nonextensive statistical mechanics
[22,23. Note that Eq(9) reduces to a Gaussian in the limit
g—1 and has a longshor} tail behavior forg>1 (q<1).
Moreover,Z(t) and 8(t) are given[13] by

&) 1/2_
BO))

and B(t) ={2(3—a)[Z(0)(8(0))*?]% *»D t} ~ %9,

In general, for short time, the Gaussiag Gaussiah is
the solution of Eq(6) to be employed whegq>1 (q<1);
for long time, theq GaussiariGaussiajis the solution to be
used wherg>1 (q<1).

In this work, we are mainly interested on the mean square
displacement whenever it is finite. Thus, from Ef) and
(x?)=[7_.dxx°p, we verify that

Z(1)

70 (12)

2\ _ e I S v
(x*)=2D4t+2D, | dt dx p(x,t)]", (12
0 —

where we have employed the normalization condition,
JZ..dxp=1, have exchanged the integral and derivative or-
dering, as well as used Iixrgimxzap"/o?x=0 and

lim xp?l9x=0 (6=1, v). Therefore, forr<1, we ob-

X— F®

tain
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2Dt for smallt

(x3)(t)~ (13

m{2(3—q)[Z(O)(,B(O))1/2]q_1vD,,t}2/(3_(‘) for larget,

where the Gaussia(8) and theq Gaussian(9) are respec- interchanging théd; andD, values. Our main conclusions
tively employed in Eq.(12) for the cases with small and concerning Eq(6) can be summarized as follows:
larget. For v>1, the calculation is similar to that just dis- K1+ )
cussed forv<<l. In this case, as time increases, we first > t 7 for t<te
observe anomalousub diffusion and later on normal one. )V~ t for t>t, 17)
If necessary, the previous calculation can be improved by
considering corrections for E@8). In this direction, we can whenv>1 and
express Eq(6), with the initial conditionp(x,0)=&§(x), In

an integral form 2 t for t<t,
(x5 (1) [t2/(1+v) for t>t, (18)
e~ x2/(4D1)
p(x,t)= (4D t)1’2 Jdt whenv<1 for
© te=[(1(5-30))(2(3—q)
><JideK(X—X,t—t)[p(X,t)]V, (14) ><[Z(O)(B(0))1/2]q_1VDV)2/(3_q)](V_1)/(1+V)

[t. was obtained assuming that the limit case in ELB)
coincides at=t.]. We emphasize that the long tint&**")
result for thev<<1l case can be employed only if>1/3;

where

e~ (x—)Z/[4D(t-1)]

2
K(x— xt—t)— [ ] (15

[47D4(t—1)]*2

10°

We may recursively solve this equation in order to obtain
an approximate solution for short time. For instance, by con- 10
sideringv<<1 and the short time regime, the Fourier trans-
form of Eq.(14) can be approximated, up to the linear con-
tribution onD,, by 10

1

D, (4mD,) "2

Fp(x,t)}=e Pk~ T 10"—5
(112)(3- v) A
><efDltk2 S — “x 10% 4
(1-v)D,k? v
3 v 1— 14 3 1
R 2 107 3
XTI 5 o Dtk ), (16
where F{- - -}1=[”_dx€**. .. is the Fourier transform and 10*

1“(n,x)=f’(§dte‘tt”‘1 is the incompletd™ function.

A full investigation can be performed if, on top of the
previous results, we implement a numerical approach. In 10
fact, a careful numerical analysis confirms that the approxi-
mate analytical results are accurate. In particular, a simple

estimation of thecrossover time t may be obtained by im- 10 ey
posing the approximate equali(y(z)Dl,DV:0~<XZ)D1:OVDV. 10 10° 10° 10" 10°

In Fig. 1, we illustrate the crossover through numerical so- D, t

lutions. Indeed, we verify the presence of two regimes for

(x?). In contrast with Fig.(1) whereD;<D,, we present FIG. 1. Time evolution of (Ax)?) versust, wheret =D, for

the situation corresponding ©,>D, in Fig. 2. Note that the v=1/2 (superdiffusivé case, forD ,=0.5 and typical values of
the crossover times are transformed one into the other bp,.
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10" take into account the finite velocity of the diffusing particles.

] In the more general form appearing in Ef9), it emerged in
a discussion of continuous time random wg].

As in the preceding section, we are interested in the time
behavior of the mean square displacement. With this aim, we
use Eq.(19) as well as the assumptions immediately de-
scribed below Eq(12) and obtain

d(x?) d”(x?)
n dt +T7 dt”

From now on we shall explicitly refer to Caputo’s fractional
derivative[25], defined as follows:

fW(u) if y=neN

df(u) _ 1 .0y

du? Tn=y) o(u—v)7+1_”dv if n—1<y<n,
(21

with f(M(u)=d"f(u)/du".
o~ Note that the conservation ¢f° . dxp enables us to con-
sider [© . .dxp=1 for arbitrary time and consequently
(dkdt*)f“_dxp=0 for k=1. The last condition can be ac-
~— T ————rr —— complished if the initial conditions*p(x,0)/at“=0 for k
¥ 10° =1 is employed. This condition angl(x,0)= &(x) lead to
(x?)(0)=0 andd*(x?)(0)/dtk=0 for k=1. We remark that
D, 1 our assumptions concerning the initial conditions are com-
pletely compatible with{x?)=t” with ¢>0. These initial
conditions for(x?) are particularly useful when solving Eq.
(19 via Laplace transform, since we can use the Caputo’s
formula

FIG. 2. Time evolution of (Ax)?) versust, wheret=D,t, for
the v=2 (subdiffusive case, forD,=1 and typical values oD;.

indeed,(x?) diverges forv<1/3. For the range<1/3, we
can employ the procedure used in the second part of Sec. Il a7 (u) n-1
i.e., to analyze 1p(0,t)]? instead of(x?). In this v region, E[ } =s7L{f(u)l— > s7 1 kiW(0t), (22)
the short time behavior is governed by Gaussian regime, du” k=0

whereas an anomalous, \nelike, superdiffusive regime

dominates the long time region. where £{---}=[{dte ' .. is the Laplace transform and
n—1<y=<n. Within the previous initial conditions, the
IIl. FRACTIONAL FOKKER-PLANCK EQUATION Laplace transform of Eq20) yields

We will now focus on the other two particular situations 5 5 2D,
of Eq. (5) where, instead of nonlinearity, we shall introduce TSL{X) 7,87 LX)} = s (23
fractional derivatives. We first address time fractional deriva-
tives, and then space fractional derivatives. In both cases we To solve Eq.(23) it is convenient to fix they range. We
mix normal diffusion with this type of anomalous one, andinitially set 1< y<2. In this case, the mean square displace-
verify once again the existence of a crossover. ment can be written in terms of an inverse Laplace trans-
form:
A. Time fractional derivative
2D, 1

1 1-
7,87 " 14+ 78 T,

We consider the particular case of H), wherer(vy') (x2>(t)=£l{

=10y —1)+ 7,0y — ) and D(u',v')=D8(v’

—1)8(n' —2). Thus, the generalized Fokker-Planck equa-

tion (5) reduces to To calculate this inverse Laplace transform we employ the
convolution theorem with

| e

ap J"p p
TIE—’—T}/E_Dly' (19 E[ 1 ]: tY

S'Y+l F(’y+ l) (25)

The y=2 particular case precisely is the so called Cattaneo’s
equation[26], who introduced the terma®p/dt? in order to  and
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k ¢n(y-1)-1

Iin(y=1)1

1

(26)

T

1
E _— )=
1+ 7'181_7/7'), k=0 y

Thus, the exact solution of E¢R0) with 1<y<2, and sub-
ject to the initial conditions(x?)(0)=0 and d({x?)(0)/dt
=0, is

2y 2P1 S (—E)k;
COO= " F o+ 2, 7yl Tk(y=1)]

t .
xf dt(t—t)7tk(r-1-1
0

=2D1£EH,M< - Tlt“), @7
Ty Ty
where

Es0= 2 kT ) 29

is the generalized Mittag-Leffler functidr24].

From an analysis of this function, we verify that the mean
square displacement presents two characteristic regimes gov-
erned by two power laws, one for smaland the other for

larget. They are given by

[2Dy/(7, [ (y+1))]t” forsmall t

<X2>(t)~{[2D1/rl]t for large t. 29

A similar calculation can be performed for the case 9

PHYSICAL REVIEW E 67, 031104 (2003

—u)]. For the space fractional derivative, we use the Riesz
operatof 14], hence, by employing the Fourier transform, we
obtain,

AN Aoy 32
axt |
analysis of the times. Thus, from E(1), we obtain
dHp(x,
AP - (DD, Apx) (@

and consequently F{p(x,t)}=F{p(x,0)}exp(—Dkt)exp
(—D,Jk*). Furthemore, by using the convolution theorem
and the initial conditionp(x,0)= 8(x), we verify that an
exact solution for Eq(31) is given by

o _a (x0%@D1)

5 L,.(|x

dx——m—— 34
—=  (4wDt)Y (34

p(X,t)=

D),
where

=dk
L(x,H)= fo d?cos(kx)e""wt (35)

is the Levy distribution[28]. Note that Eq(34) reduces to a
Gaussiar(Lévy) distribution if D, =0 (D;=0).

To characterize the anomalous diffusion described by Eq.
(3) or alternatively by Eq(34), we cannot employ(Ax)?)
since it diverges. To overcome this difficulty we employ
1M p(01)]?% instead of (Ax)2). We notice that this approach

<1, where we only need to specify the initial condition to investigate Eq(31) is close to analyzing the time depen-

(x?)(0). Theresult is

[2D, /7]t for smallt

<X2>(t)”[[zol/(77r(y+ )]t 30

for larget.

We pay attention onto the fact that the present results, E
(29 and EQ.(30), are in agreement with those obtained in

Ref.[27]. Note also that the power law&9) and (30) can,

alternatively, be obtained by considering only the appropriat
terms in Eq.(19). For instance, when< y<2, we neglect
the term7,9%p/at” for short time, whereas we neglect the

term 7,dp/dt for long time.

B. Space fractional derivative

We consider now the fractional diffusion equation

tp

I _p
Hoxm’

o D, PV (3D

e

dence of((Ax)?) since in the usual caseD(,=0) p(0t)
essentially contains the same information displayedxsy.

In fact, we havep(0;t)<1/\(x?)=1/\t whenD,=0 and
p(x,0)=46(x). Thus, in the following discussion, we use
[1/p(0,t)]? instead of(x?) in order to analyze, in a unified
way, both cases with finite or divergent second moment.

g Before giving the analysis fgs(x,t) with arbitrary ., we

focus attention on the simplest case, the Lorentzian @ne (
=1). This choice enables us to illustrate our results in a
simple way since Eq.34) can be written in terms of the error
function Erf(x). Indeed, we have

—X2/(4D4t) 1 1

0,t=J dx =
pOD=] (47D )2 D7t 14 (x/(D ,t)?

1/2 2\ 1/2
=;e(oit)/(4ol){ 1— Erf t_(&) ] ,
JamDyt 21Dy

(36)

where D; and D, being the diffusion coefficients and 0 leading top(0,t) ~ 1/t for shortt andp(0,t)~ 1t for longt.

<u<2 (if u=2, the usual diffusion is recovergdThis
equation is obtained from Ed5) if we take 7(y')=48(y’
—1) and D(u',v)=8(v'—1)[D18(pn'—2)+D, ('

In the general caseu<2), we employ the power series
expansion for cog§) in Eq. (35 and perform the integra-

tions inx andk in Eq. (34) to obtain
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10° 3

(@)

o
Q. Q
L S
- ~
e T | T ) )
10" 10° 10' FIG. 3. Time evolution of

[1/p(01)]? and of its short and
long time asymptotic regimes, for
typical values ofu for D,;=D,,
=1: (@ u=1/2, and(b) u=3/2.

10 ™ T T ™ T
10® 10" 10° 10' 10°
t
F( 1 N 2 ) . 1 N 2
o —+ —N n o —+—N n
1 T D 1 [T D,
Xt)=——— —-1)" ot)=————— 1"
1 NG x = (@) (38)

A detailed analysis of this expression for small and large
times leads to the result we are looking for, namely,
where 1F4(a,b;x) is the Kummer confluent hypergeometric

function[24]. 5
By taking the particular case=0 in Eq.(37), we verify ( 1 ) |t forsmall t (39)
that p(01) t?»  forlarge t.
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These results from Eq34) can be interpreted as follows. time one. Moreover, the same conclusion is obtained when
For smallt, the normal diffusion is dominant, i.ep(x,t) is  the mean square displacement is not finite.
approximately governed byp/dt=D,9°p/9x? [Eq. (31) This feature is also verified for the space fractional diffu-
with D,=0]. For larget, p(x,t) approximately obeys sion equation, in fact related to g flights. More specifi-
lL L ) . . -
dpl3t=D ,d"plax* [Eq. (31) with D,=0], i.e., the anoma- cally, a normal decay is obtained fp(0Ot) for short time,
lous diffusion is fully developed. Alternatively, from the so- @hd a Ley one for long time.

lutions of these equations, resul@9) are imediately recov- This scenario is inverted in the case of time fractional
ered since derivatives. Indeed, the long time regime diffuses slower

than the short time one.
sk - _ Summarizing, in our investigatior,(Ax)?) reduces to
p(O,t)~L;(O,D;t)=f —e M"Dul—g t~Y«, (400  (x?) and its relevant time behavior is essentially the same as
o7 that of[ 1/p(0,t)]?. Indeed, the asymptotic solutions for short
- — i — . and long times behave gs(x,t)~21/®(t)P(x/®(t)) and
wherea, =T'(1+1/u)(D,,)~¥#/m, =2 for small time and consequentlyx?)= 1] p(01t)]%. Notice, however, that(0,t)
w=u for large time. A set of typical crossover situations is always defined, which is not necessarily the casgxXey.
=1/2 and 3/2 are illustrated in Fig. 3. Note also from Fig. 3Thus, our conclusions can be put in a general scheme as
that an estimative of the characteristic crossover tigjmaay  follows:
be obtained by imposinga,t; *?=a,t; ", ie. ft
= (azlaﬂ)(zfﬂ)/(zﬂ).

p(Ot)

IV. SUMMARY AND CONCLUSIONS where(i) oy<o, for diffusion equation including a nonlin-

We have analyzed diffusion equations that deviate fronfar termllike Eq. (6)] or a space fractional derivative term
the usual one through the addition of extra terms, specificalﬁ'ke Eq.(31)], and(ii) o> or, for diffusion equation includ-
either a nonlinear contribution or timepace fractional de- N9 @ time fractional derivative terifike Eq. (19)]. We hope
rivatives. We focused on the mean square displacemeﬁ'i‘at the analysis prgsenteq here can be us.efull n thg discus-
[{(Ax)2)] when it is finite. On the other hand, whéfi x)2) sion of phenomena mvolvmg anomglous diffusion ywth two

is not finite, the diffusion field at the origifp(0)] was O More regimes, mainly when nonlinear and fractional dif-
investigated. For the nonlinear diffusion equation, whichfUSIOn equations may play an important role.

contains the usual diffusion and the porous medium one as
limiting cases, two regimes were identified. One of them is
related to the usual diffusion and the other to the anomalous We thank CNPg, PRONEX, and FAPERBrazilian agen-
one. The dynamics imposed by the nonlinear equation isies for partial financial support. We are also indebted to C.
such that the long time regime diffuses faster than the shonteneado for useful discussions.

1 \2 (t°t forsmallt
( ) [ 1)

Ttz for larget,
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