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Random walks with non-Gaussian step-size distributions and the folding
of random polymer chains

R. H. A. David Shaw and J. A. Tuszyski'
Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
(Received 29 August 2002; published 13 March 2003

In this paper, we study a random walker whose step-size distribution is of hon-Gaussian bimodal form due
to the addition of a quartic term in the exponential. By the central limit theorem, we know that in the limit of
a large number of steps, the probability distribution representing the distance the walker has traveled becomes
Gaussian. We investigate the nature of this convergence both numerically and analytically. We obtain a scaling
relation describing the number of steps required for convergence in terms of the width and separation of the
peaks of the step-size distribution. We assume in the concluding section that our model is well suited for the
application of the folding of a random polymer chain.
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[. INTRODUCTION context of criticality, the step-size distributiow(s) dis-
cussed later in the paper acquires a different meaning than
The random walk problem has a long and illustrious his-that commonly associated with random walks. The stochastic
tory in statistical physicg1]. Applications of the random variables may be interpreted as the size of a given domain of
walk concept include not only the diffusion of molecules in a@ thermodynamic phase in a multistable system. The issue
gas[2] and colloidal suspensiorid] but also spin} para- One would like to address is the transition from a local
magnetism, light intensity due # incoherent light sources double-peaked probability distribution to a global single-
[2], and even spatial distribution of stdrs], to name but a Peaked distribution as the number of stepize of the sys-
few. Recently, a resurgence of interest in random walks ha&™ IS increased to infinity. _ _
been experienced as a result of applications to fractal medizrl] It is interesting to note that there is a connection betwepn
and percolation phenomeal. the random walk problem and the Fokker-Planck equation

One remarkable feature of a large subset of random wal&Or the probability distributior{1]. When the random walk
Qrocess takes place in the presence of a bistable quartic po-

processes, predicted by the central limit theorem, is thatential of the typeV(x)=—x2/2+ x%/4, then the Fokker-

given a sufficiently large number of steps, the probability : PR
distribution representing the location of a random walkerPIaan equation for the probability distributigt(,t) takes

will become arbitrarily close to a Gaussian fofd. It has the form

remained unclear, however, exactly how this convergence JP 9 2P

will occur over time for a general step-size distribution. In- i &[(x—x3)P]+D—, (1.1
deed, for step-size distributions with strongly bimodal char- X

acteristics, how such convergence will occur is an intriguingand its stationary solution is a double-peaked quartic non-
and nontrivial question. Gaussian functiofi7]
In this paper, we intend to determine the nature of the

convergence for a particular choice of step-size (x>—1)?
distribution—a Gaussian with an anharmonic quartic term in Ps=C “Tap |’
the exponential. Both analytic and numerical methods of so-

lution will be employed; we will also introduce an approxi- which will play a central role in this paper. A similar problem
mation which is valid over a large range of parameter spacerose in connection with the threshold for laser acfiéh
Additionally, the limit as one approaches a binomial distri-  Finally, it is worth mentioning that a practical reason for
bution will be examined. studying a random walker with a “diffuse” step-size distri-
The motivation to investigate the issue of a b|m0€lﬂ]t bution may relate to the behavior of motor prote[@slo]

not necessarily deltoidabtep-size distribution comes from gsych as myosin, dynein, and kinesin, which bind to and un-
several areas. FirSt, the probablllty distribution that we Stud)bind from biopo'ymer filaments such as actin and microtu-
here appears in the so-callsti one-dimensional, continu- pyles. The underlying periodicity of the substrate potential

ous Ising mode[5]. Bimodal probability distributions have for the motion of these Brownian motors may be associated
also been discussed in connection with the Gaussian eRyjth a step size, which is not sharply defined.

semble as an interpolating ensemble in finite-size systems
exhibiting analogs of critical phenomef@]. Indeed, in the Il. RANDOM WALKS WITH A STEP-SIZE DISTRIBUTION

(1.2

The probabilityP(x) that afterN steps a random walker
*Electronic address: dshaw@phys.ualberta.ca has reached the locatior given a step-size distribution
TElectronic address: jtus@phys.ualberta.ca w(s), which remains the same for each step, is expressed in
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terms of anN-dimensional integra2]: w(s)
P<x>=ff f f W(SW(S) - - - W(Sy) 8 .
x| > si—x)dsldsz. .- dsy. (2.2) 3
=1
The problem can be simplified somewhat by Fourier trans- 2/
forming to “momentum” space, allowing us to represent the
probability distribution as follows:
1 © 59 © N
P(x)=ﬁfwjx---fwex;{lk(;1 s]-—x) ]

-4 -2 2 4

XW(SPW(Sp)- - - W(Sy)dkdgdsy- - -dsy. FIG. 1. Step-size distributionv(s) for the casef=—8 and
(2.2) y=2.

We can now write the bulk of the integral as a product, e write

N
1 o X © n
- —ikx iks; ) . Ik)
P(x)= 277_Jimdke 11:[1 J:we iw(s)ds;, (2.3 Z (2.9
of the step-size distributiow(s),

“ n
s s
n=0

INQN(k)=N1n (2.10

Q(k)= f leiksw(s)ds, (2.4)

permits the further simplification of Eq2.3), giving Now, using the Taylor expansion of the logarithm, we obtain

o INQN(k)~NIn

xe"kXQN(k)dk. (2.5 (217

1 1
i 22 T 2
isk 25 k 2(|sk)

POO=27)_

The expression in Eq(2.5 is the most general form for which, recalling the definition of the variand@s)”= s’

2 .
P(x). However, as is readily seen from E.1), in the —S QIVes us
special casdN=2, it is possible to writeP(x) as a simple _ 1
convolution, INnQN(k)~N In| isk— E(As)zkz}. (2.12
P(X):J’ W(x—s)w(s)ds, (2.6)  Therefore, exponentiating the above and inserting into Eq.

o (2.5) yields
which, as will be seen later, leads to some interesting three- .
dimensional plots that are useful in illustrating the nature of Q(k)
the problem.

Using the central limit theorerf¥], it can be shown that

for a wide range of step-size distributiomgs), P(x) ap- 0.8]
proaches a Gaussian form in the limit of larbje A clear
illustration of this result can be found in Rg¢2], based on 0.6k
the assumptions that each step is statistically independer ’
and that|w(s)|—0 suff|C|entIy fast ags|—c. For small
values ofk, expandinge'®® in a Taylor series yields 0.4

(ik)" n [

Q(k)= E o s w(s)ds. (2.7 0.2
=0 . —
Recalling the definition of thath moment ofs, 1s 10 s s 10 15
= foc s"w(s)ds, (2.9 FIG. 2. Fourier transformQ(k) for the casef=-8 and
. y=2.
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w(s) w(s)

2 4 -4 2 4
FIG. 3. Step-size distributiom(s) for the casef=—= and FIG. 5. Step-size distributiow(s) for the casef=3 and
y=2. y=2.

1 (™ i Ne ke (NS Functions of this form are of interest in a number of distinct
P(X):EJ el (N (WAN@IW gk, (213 areas of study in physics, in which the bimodality of the
- system is an important characteristic—the Landau-Ginzburg
model of phase transitions and the stochastic development of
a bifurcation[11] are two examples. It is more useful to

1 ef(fog)Z/ZN(As)z' 214 representv(s) as

\/ 2 1
2mN(As) w(s)= W_e2/37252*|ﬁls4, (2.17)

0

This integral can be easily performed, giving

P(x)=

which is exactly the form of a Gaussian distribution, with

meang, and variancer? given by where Be (—,©) and vy represents the location of the
= o T peaks in the casg<0 (see Figs. 1-Bwj is the normaliza-
w=Ns; o°=N(As)". (219 {on factor, and is calculated to be
We note, however, that in all of the above, it has not been Ty a4 By By
demonstrated how the convergence takes place. This inter- — e l‘”“(T + 1y T” B>0
mediate regime, betwedd=1 andN large, is our area of Wae
interest in this paper. R Y g2 .
We wish to consider a Gaussian distribution modified by Ee Kyl By, B<0.

the addition of an anharmonic quartic term in the exponen-
! - (2.18
tial. This corresponds to
1 y 4 The above result can be stated more succinctly using para-
w(s)= VTe*“S —hs (2.16  bolic cylinder functionsD ,(x) of order —3 (see Appendix
A), but we use the more familiar modified Bessel functions
for ease of visualizatioh12].

(k)
1
0.75
0.
.2
TAN k
-15 -10 \f/ 10 15
: : : : — k
-15 -10 -5 5 10 15
FIG. 4. Fourier transformQ(k) for the case,B=—$ and
y=2. FIG. 6. Fourier transforn@(k) for the cas<38=4l andy=2.
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w(s) (k)
1

-4 -2 2 4
. o FIG. 8. Fourier transforn@(k) for the casgB=4 andy=2.
FIG. 7. Step-size distributiow(s) for the casef=4 and
y=2. in a power series, one may expré€3€k) as an infinite series

. ) i of integrals as follows:
FindingQ(k) corresponds to computing the Fourier trans- .

) . o .S . _1\NL2N o
form of our non-Gaussian step-size distributia(s), QK= i 2 (=D)"k f RN ERPEIN
1 o 29 2 WO n=0 (zn)'
Q)= | eler2sr ~lBls'ys, (2.19 (2.20
0

—o0

Each individual integral is expressible in closed form, and
To the best of our knowledge, a closed form analytic solutiorleads to an infinite sum of hypergeometric functidis]
for this integral does not exist. However, if one expaaﬂ% (see Appendix Bas follows:

* (_1)nk2n
K= ———
Q) nZO Wo(2n)!
o[ LD i, nl 4 (3.0 3.nl .
X .
1 1 n 1 n 1|8y n 3 n 1|8y
- —3/4—n/2| - _ - _ = 2 — _ — R
S R ) Sy R R LA PP N R N e e | .

Unfortunately, these series are alternating, and, in generaderies at each point in the numerical integration algorithm,
require about 50 to 100 terms to converge. Moreover, thé&eeping 20 digits precision to avoid the roundoff error noted
magnitude of the first several terms is rather lafgethe in the preceding section. Such computations are very time
order of a trillion or s9, which can introduce significant and resource intensive. Other numerical methods allow for
roundoff errors if one attempts to sum the series direCthaster Computation oQ(k), but at the same time, lead to
without taking appropriate precautions. numerical difficulties in determining(x). Numerical inte-
gration of a numerically obtained function is a rather in-
volved process. In particular, for the case whgre0, Q(k)
is a rapidly oscillating function, further increasing the diffi-
Ideally, one would like an analytic solution fé*(x), to  culty of computation. In the special cabe=2, as we have
allow one to study in detail the convergence to a Gaussiaseen in Eq(2.6), P(x) can be expressed as a simple convo-
distribution. This requires, in turn, an analytic solution for lution. Although these integrals have, in general, no analytic
Q(k). While our series expansion f@(k) in Eq.(2.21) is  solution, it is possible to evaluate them numerically. Unfor-
indeed analytic, it does not admit a simple closed form solutunately, attempts to solve cases for lar¢feby analogous
tion for P(x). methods rapidly become too difficult to carry out numeri-
Numerical integration of the series representation forcally. Studies of behavior for larghl are, therefore, ruled
Q(k) is possible, but is a rather lengthy and difficult proce-out. Almost all methods used to date result, at best, in a
dure. One must evaluate the sum of the first 100 terms of theumerical solution foP(x). While this allows for visualiza-

III. NUMERICAL INTEGRATION RESULTS
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11. Structure functiorp(x,s) for the caseB=

tion of the functional form, it unfortunately does not eaS”y 37228, W(S) is very well approximated by two Gaussians
admit study of the dependence of the convergence to gentred at- v, respectively. The appropriate functional form

Gaussian form on the parametexs B, or y. Without

a s

simpler analytic form forQ(k), we have little hope of ob-
taining an exact analytic form—and the corresponding in-

sight that would bring—foiP(x).
For the purpose of illustration, in Figs. 1-8, we plot

four

cases of the step-size distributiarfs) and their correspond-

ing Fourier transform®)(k). These cases are typical of the which has an

different types of behavior which one may encounter in the

course of this problem.

Plotting the integrand of the convolution in E@.6) is

useful in visualizing how various aspectsPfx) arise. Four B
examples illustrating some characteristic behaviors of thi§he exponentiation of(k) is straightforward, yielding

“structure function,” p(x,s), are plotted in Figs. 9-12.

IV. USING A CONVENIENT APPROXIMATION

By

Bl e 47 (s- 0L e~ 487+ 0] (4.0)
a

w(s)=
easily computable Fourier transform, namely,

D(k)=e 187 cogky). 4.2

ON(k) =~ NK¥1687codl (k). 4.3

As it became clear in Sec. Ill, one must find some ap-Using Gradshteyn and Ryzhild2], we express powers of
proximation forw(s) with a simpleQ(k) in order to be able cosine as a sum of cosine functions with multiple angle ar-
to proceed further with this problem. For the case, whergguments
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1 N 1 N/2—1
N+ > (m)cos{Smky], N even
= m=0
cod'(ky) = 2 (4.9
1 N—-1/2 N
where we have definel,=N-2m. Hence, we have fo®"(k),
N _
1 1 N/2—1 N
| N o &, |/ codSnky], N even
QN(k):e—NkZ/leﬁyz 2 m= (4.5
1 N—-1/2 N
= mz,o | cog Sk, N odd.
We now recall a useful integral
1 (= 2, g2 Blx|
R |kx _ —X“+ Bl4a Lt aie s
5| e cos(,Bk)dk \/m e cos!’( 5w | | (4.6)

Hence, calculating via Eq$2.5 and(4.5), we obtain

N N/2—1
N 8Smy3|x
N|+2 > ( )e“‘ﬁsﬁﬂ“’“‘cosr{sm—ﬂq N even

4B'y a 2 9 — m=0 m N
PNOO= 5 \/ e N 2 4.7

N-1/2
N 8S.,y°
2> ( )e“‘ﬁsﬁww’\‘cosr{sm—yl)(' , N odd.
m=0 \M N
|
The expression in Ed4.7) is a completely analytic solution, ,6,7 )
which provides insight into the asymptotic behavior of Py(X)— — \/ 4By XN
Pu(X). N ©
Let us first consider the limit al— . We immediately N
note that the prefactor in Eq4.7) is exactly the Gaussian N2l N
form we expect, except for the factor of ¥/2We therefore N +2 20 N even
wish to show that the term in the brackets—regardless of % 2 m (4.9
whetherN is even or odd—approaches' 2n the largeN N-12
limit. We consider the exponential weighting of the combi- 2> ( ) N odd.
natorial factors
I Noting that binomial coefficients are symmetric under the

Po=e"*Sn7 N, (4.8 exchange ofn andN—m, we may rewrite Eq(4.9) as
This is independent of position—the only dependence is on Py (X)~ _‘ /4137 —48y?x2IN 2 ) (4.10
the parametem. For a fixednumerical value of S,, (the oN N7 © ' '

value ofmrequired will increase witiN), the contribution of

each term becomeless exponentially suppressed. In other The sum is simply equal to™2 so we therefore have for
words, asN becomes large, contributions of distant peakslargeN,

become more and more important at every location in the

space. Similarly, regardless of the valuexpffor fixed nu- [4By° —4ByX2IN
mericalvalues ofS,,, the argument of the cosh function will N(X)~ We =Pg(X),
tend towards zero. Therefore for lark both the exponen-

tial and cosh terms become arbitrarily close to one, allowingvhich is the Gaussian form, as expected from the central
us to rewrite Eq(4.7) as limit theorem.

(4.1)
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It is worth mentioning that the general case of conver- P(x)
gence to a Gaussian probability distribution for a symmetric
random walk with a nonzero third moment for its jump prob-
abilities was investigated a long time ago. The Berry-Ease
theorem[14] which applies to this case gives a criterion for
the number of steps required to achieve a desired level of 1.5
convergence to the Gaussian and it states that

3\2
_ B 412

=4 (x2)3 &

Recently, Montegna and Stanlg¥5] investigated the issue
of slow convergence to Gaussian behavior of the truncatec |
Lévy flight process, wher@(x)~1/x"< for |x|<L, a<2 -30 -20 -10 10 20 30
and p(x)=0 for |x|>L. They found that convergence is
achieved typically aften~10* steps as compared to~10
for common distributions. Schlesinggt6] showed that this

numberz scales ?sg Lhcf' o doubl I . strongly or weakly quartic cases. Below, we have attempted
_We have applied this criterion to our double-well step size, yerify this prediction directly by assessing the separation
distribution and obtained the following general formula: between neighboring peaks in the cummulative probability

1 112 distribution.
25 F(E) F(z)

1 The exponential forniP, in Eq. (4.8) is also useful in this
> —
: €2 F(3)3 D_3,3(&) cal value” of N, at which adjacent peaks begin to contribute

FIG. 13. Probability distributionP(x) for finding a random
walker at locatiorx after N=2 steps =8, y=1).

2 . . . . ..
D_1£)D_27() 4.13 regard since it allows us to derive an expression for a “criti-
= , (4.
2 significantly to each others amplitudes. Without loss of gen-
erality, consider the case of the peak at the originN@ven.
where é= /2. In order to find a numerical estimate of Singling out the contributions of the adjacent peaks by set-
the minimum number of steps required we used two separafé'd Sn=2, we solve for the value dfl at which the expo-

limiting cases depending on the form of the single-step probrent is —1/y2. At this point the exponential will be-3,
ability distribution. Fora small andB large (¢<1), i.e., a such that the combined contribution of the two neighboring

strongly non-Gaussian case, we (i%&] peaks is of comparable magnitude to that of the peak at the
origin itself. We obtain the following expression fbl,;; :
\/;2—61/2— 1/4
Do)~ | — 53— | XM FVad), (414 Neric=16v287". (4.17)
-+ L )
4 2 This critical value forN can be expressed in two other useful

o ) ) forms. In terms of the original parametessand 8 of Eq.
while in the opposite case, i.ey, large andB small (£>1) (2.16), we can write

we approximate the parabolic cylindrical function by

2

: 4\/§a2
D_a_1/2(§)~ex;(—z ,

é;*afl/z' (415) crit = ﬂ

P(x)
Consequently, the Berry-Essm criterion gives a numerical 1.4
prediction in terms of the number of steps required at a given
confidence levek. First of all, it is readily seen that in both 1ar
cases, to the first order of approximation, there is no scaling
with respect toa or 8. We find that

(4.18

1t

150><—F3(1'25) 12 for ¢<1
1| 72 T(-075 9

N~ — (4.16
—~16 for &> 1.

v

Expecting, for example, that the difference between the ‘ x
double well and the Gaussian step distribution to be less than™° w20 e 1 20 30
€=0.25, we present the required number of steps to range FIG. 14. Probability distributionP(x) for finding a random
between 192 and 256 depending on whether we deal witlvalker at locatiorx after N=3 steps =8, y=1).
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P(x) P(x)
0.5
0.4
o
0JR
i
HLL X
-30 -20 -10 10 20 30 -30 -20 -10 10 20 30 *
FIG. 15. Probability distributiorP(x) for finding a random FIG. 17. Probability distributionP(x) for finding a random
walker at locatiorx after N=10 steps =8, y=1). walker at locationx after N=120 steps =8, y=1).
while in terms of the widtho and the separatiod of the  combination of analytical, approximate, and numerical meth-
peaks, we may rewrite E¢4.17) as ods.
Any attempt to obtain an exact analytic result #¢x)
A2 requires a simple closed form solution@{k). Finding such
Nerie=—=—- (4.19  asolution is difficult(see Appendix B although we know it
V20 must be even ik, and a function(or combination of func-

tions) of the form ;F(«,B,f(k)). At present, the only exact

This critical value should correspond roughly to the numbem@nalytic solution we have is an infinite series of hypergeo-
of steps which our walker must take before the probabilitymetric functions. Without a simple form of an exact solution
distribution becomes relatively close to a Gaussian form. Wef Q(k), attempts to examinB(x) numerically have proven
shall examine this hypothesis below. very challenging.

As a typical example, we consider a set of plotsPgk) However, we do have an approximate fof#nl) of w(s),
for the case8=8, y=1. By Eq.(4.17, we expectP(x) to  consisting of two narrowly peaked Gaussianstag, which
be approximately Gaussian after about 181 steps. This cons valid over a wide range of parameters. Through this ap-
vergence is explored graphically in Figs. 13—19 below. Thigoroximation, we are able to study the asymptotic behavior of
lies within the range of our estimated number of steps andhe system. We are able to see both how we retrieve the
the case choosen here as an example corresponts4o binomial distribution in the limit8— <, and how we obtain
a Gaussian form in the largd limit. We have shown how
our asymptotic results are consistant with the predictions
made in the general case by the Berry-Esstheorem.

In this paper, we have examined the issue of the asymmp- The ideal extension of the work in this paper would be to
totic convergence of a random walk process with a doublefind @ simple exact form foQ(k) to allow one to solve
peak distributed step size to its Gaussian limit. We used gxactly for P(x). However, in the eventuality that such a

V. CONCLUSIONS

P(x) P(x)

-30 -20 -10 10 20 30 * -30 -20 -1 10 20 30 *
FIG. 16. Probability distributionP(x) for finding a random FIG. 18. Probability distributionP(x) for finding a random
walker at locatiorx after N=40 steps =8, y=1). walker at locationx after N=181 steps =8, y=1).
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P(x)

(78]
(=]

N
8 W

Energy (kcal/mol)
>

10}
5 L
00 50 100 150 200 250 300 350
x Angle of Rotation (deg)
-30 -20 -10 10 20 30
FIG. 19. Probability distributionP(x) for finding a random 7

walker at locatiorx after N=250 steps 8=8, y=1).

=)

solution is not possible, further progress can be made with

the approximation of Eq4.1). One line of attack would be 3T
to improve the approximation to take into account the asym- 54 I
metry of the peaks. The asymmetry appears to be of a similar £
form to the first derivative of a Gaussian; however, at the 53-
time of writing, no particular improvement on the approxi- )
mation given in Eq(4.1) has been found. Another possibility M 2}

would be to find another approximation for the range where
B<0, which would hopefully cover another wide swath of
the parameter space, allowing for study of the asymptotic 0
behavior of the single peak case. 0 50 100 150 200 250 300 350

It has recently emerged that a practical application of this Angle of Rotation (deg)
type of process might be to the protein folding problem or £, 20. The approximate energy changes associated with rota-
more directly to the problem of calculating the radius oftion about the(a) N—C (¢) and (b) C,~C (¢) bonds in a G-G
gyration of a peptide composed of identical monomers. Thejipeptide.
case of a random chain is often analyzed using the Gaussian

radial probability distribution in three-dimensional space isleads to a range of exponents with the Gaussian value being
[18] only one limiting casg21]. Furthermore, this assumption is
) fully justified by the local energy dependance on the rotation
s o _32 - angle for the common peptide nitrogen—carbon and carbon-
P(r)=4mrs(2mo”) exp( 202)’ (5.9 carbon bondgsee Fig. 20 Finally, recent advances in the
protein folding problem indicate that the potential landscape
wherea?=Na?/3. Here,N is the number of monomer units POssesses a heirachy of barrier heights and, so far, has been
within the chain,a the unit length. Then, using well-known emulated by the so-called spin-glass md@a,23. We show
formulas in Gaussian statistics one finds that the average

[

end-to-end distancé .o scales as - InPy; ()
14
(red="\ = anw (5.2 12
€ 37 ' '
. . . . . . 10
while the variance of this variable is given by o
(r2y=Na?. (5.3 6
However, in general, the mean square end-to-end distance 4
<r§e§ is known to satisfy the more complicated relationship
(réo=AN", (5.4 10 -5 5 T
where I=sv<2 depending of the casgl9,20. Using the FIG. 21. A plot of—In P(x) after 11 steps fow(s) given by Eq.

non-Gaussian probability distribution instead of E§.1) (2.16 whena=—16 andB=8 (y=1).
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in Fig. 21 that the effective potential stemming from the APPENDIX B: HYPERGEOMETRIC FUNCTIONS
non-Gaussian distributed random walks shows some resem- As we have seen in Sec. II, our form f@(K) is an
blence to it. The actual protein energy landscapes show a S

self-similar hierarchical structure that is absent from Fig. 21.Infinite series of hypergeometric functions. Let us, therefore,

However, one can envisage random walk process on morreecall some of the proper.ties of _functions of thi? type. A
than a single length scale with large, medium, and Smalﬁenerallzed hypergeometric function of order,d) is de-

structural elements of a protein making choices about thei ned as

orientation in space. We intend to purse this analogy further

in a future publication.
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APPENDIX A: INTEGRALS LEADING TO PARABOLIC
CYLINDER FUNCTIONS

Following general results published for non-Gaussian

models of thermodynamic fluctuatiofid4,25 and using the
integral

f x2*~lexp — ax*—bx?¢)dx
0

2

=(2k)1(2a)”2r(v)exp(%

J2a

where D_,(x) is the parabolic cylinder functiopl7], we
find that the probability distribution given by

D . (A1)

-V

P(x)=Cexf —Aa(x=X)2=Na(x=x)*]  (A2)
is characterized by the normalization factor
Cl=(2n )”‘T(1 exp(Lg)D Rl (A3)
4 2 8\, —-1/2 ,—2)\4
and itsnth momentM,,,
MnEC’lf (X—X)"P(x)dx
(n+l b ( A2 )
——| Dontwal /—
V2N
=(2N,) "2 Y (g

Lt

:mE:O (ﬁl)m"'(ﬂd)mﬁy (Bl)
m—1
(@)n= ,Ho (a+t]). (B2)

Almost all special functions of mathematical physics are
merely special cases of hypergeometric functions. In particu-
lar, the exponential function relates as

e’ ™= Fo(f(x)). (B3)

It is a general and useful fact that calculus operations on a
hypergeometric function of orden(d) increase the order to
(n+1,d+1). Therefore, we may expect oQ@(k) to be ex-
pressable in terms of functions of the faim («,B,f(k)).

At present, we have identified 17 different choicEg)
which do not solve the problem. However, a possible lead
comes from one of the many addition theoreh8] which
exist for hypergeometric functions of order (1,1), namely,

“ o (a)nyn
n=0 nl(x+y)"

1F1(a+ n,B,X).

(B4)

1F1(a,,8,x+y)=

X+y

Our solution forQ(k) given in Eqg.(2.21) above can be re-
written as a sum of four terms of the fortneglecting mul-
tiplicative factors

> k4n
. p—n
2 4n! BT

n=0

1 S R
Z"‘“ Z+n'§'ﬂy , (BY

lFl

which differs only in the factor of (4)! in the denominator.
This suggests that we can expect a functi¢k) of a form
similar to

BZy*
B—k*

f(k)~ (B6)

in a representation oR(k) in terms of a finite number of
hypergeometric functions.
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