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Random walks with non-Gaussian step-size distributions and the folding
of random polymer chains

R. H. A. David Shaw* and J. A. Tuszyn´ski†

Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
~Received 29 August 2002; published 13 March 2003!

In this paper, we study a random walker whose step-size distribution is of non-Gaussian bimodal form due
to the addition of a quartic term in the exponential. By the central limit theorem, we know that in the limit of
a large number of steps, the probability distribution representing the distance the walker has traveled becomes
Gaussian. We investigate the nature of this convergence both numerically and analytically. We obtain a scaling
relation describing the number of steps required for convergence in terms of the width and separation of the
peaks of the step-size distribution. We assume in the concluding section that our model is well suited for the
application of the folding of a random polymer chain.
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I. INTRODUCTION

The random walk problem has a long and illustrious h
tory in statistical physics@1#. Applications of the random
walk concept include not only the diffusion of molecules in
gas @2# and colloidal suspensions@1# but also spin-12 para-
magnetism, light intensity due toN incoherent light sources
@2#, and even spatial distribution of stars@1#, to name but a
few. Recently, a resurgence of interest in random walks
been experienced as a result of applications to fractal m
and percolation phenomena@3#.

One remarkable feature of a large subset of random w
processes, predicted by the central limit theorem, is
given a sufficiently large number of steps, the probabi
distribution representing the location of a random walk
will become arbitrarily close to a Gaussian form@4#. It has
remained unclear, however, exactly how this converge
will occur over time for a general step-size distribution. I
deed, for step-size distributions with strongly bimodal ch
acteristics, how such convergence will occur is an intrigu
and nontrivial question.

In this paper, we intend to determine the nature of
convergence for a particular choice of step-s
distribution—a Gaussian with an anharmonic quartic term
the exponential. Both analytic and numerical methods of
lution will be employed; we will also introduce an approx
mation which is valid over a large range of parameter spa
Additionally, the limit as one approaches a binomial dist
bution will be examined.

The motivation to investigate the issue of a bimodal~but
not necessarily deltoidal! step-size distribution comes from
several areas. First, the probability distribution that we stu
here appears in the so-calleds4, one-dimensional, continu
ous Ising model@5#. Bimodal probability distributions have
also been discussed in connection with the Gaussian
semble as an interpolating ensemble in finite-size syst
exhibiting analogs of critical phenomena@6#. Indeed, in the

*Electronic address: dshaw@phys.ualberta.ca
†Electronic address: jtus@phys.ualberta.ca
1063-651X/2003/67~3!/031102~11!/$20.00 67 0311
-

s
ia

lk
at

r

e

-
g

e

n
-

e.
-

y

n-
s

context of criticality, the step-size distributionw(s) dis-
cussed later in the paper acquires a different meaning
that commonly associated with random walks. The stocha
variables may be interpreted as the size of a given domain
a thermodynamic phase in a multistable system. The is
one would like to address is the transition from a loc
double-peaked probability distribution to a global sing
peaked distribution as the number of steps~size of the sys-
tem! is increased to infinity.

It is interesting to note that there is a connection betwe
the random walk problem and the Fokker-Planck equat
for the probability distribution@1#. When the random walk
process takes place in the presence of a bistable quartic
tential of the typeV(x)52x2/21x4/4, then the Fokker-
Planck equation for the probability distributionP(x,t) takes
the form

]P

]t
52

]

]x
@~x2x3!P#1D

]2P

]x2
, ~1.1!

and its stationary solution is a double-peaked quartic n
Gaussian function@7#

Pst5C expF2
~x221!2

4D G , ~1.2!

which will play a central role in this paper. A similar problem
arose in connection with the threshold for laser action@8#.

Finally, it is worth mentioning that a practical reason f
studying a random walker with a ‘‘diffuse’’ step-size distr
bution may relate to the behavior of motor proteins@9,10#
such as myosin, dynein, and kinesin, which bind to and
bind from biopolymer filaments such as actin and micro
bules. The underlying periodicity of the substrate poten
for the motion of these Brownian motors may be associa
with a step size, which is not sharply defined.

II. RANDOM WALKS WITH A STEP-SIZE DISTRIBUTION

The probabilityP(x) that afterN steps a random walke
has reached the locationx given a step-size distribution
w(s), which remains the same for each step, is expresse
©2003 The American Physical Society02-1
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terms of anN-dimensional integral@2#:

P~x!5E
2`

` E
2`

`

•••E
2`

`

w~s1!w~s2!•••w~sN!d

3S (
i 51

N

si2xD ds1ds2•••dsN . ~2.1!

The problem can be simplified somewhat by Fourier tra
forming to ‘‘momentum’’ space, allowing us to represent t
probability distribution as follows:

P~x!5
1

2pE2`

` E
2`

`

•••E
2`

`

expF ikS (
j 51

N

sj2xD G
3w~s1!w~s2!•••w~sN!dkds1ds2•••dsN .

~2.2!

We can now write the bulk of the integral as a product,

P~x!5
1

2pE2`

`

dke2 ikx)
j 51

N E
2`

`

eiksjw~sj !dsj , ~2.3!

which, with the definition ofQ(k) as the Fourier transform
of the step-size distributionw(s),

Q~k!5E
2`

`

eiksw~s!ds, ~2.4!

permits the further simplification of Eq.~2.3!, giving

P~x!5
1

2pE2`

`

e2 ikxQN~k!dk. ~2.5!

The expression in Eq.~2.5! is the most general form fo
P(x). However, as is readily seen from Eq.~2.1!, in the
special caseN52, it is possible to writeP(x) as a simple
convolution,

P~x!5E
2`

`

w~x2s!w~s!ds, ~2.6!

which, as will be seen later, leads to some interesting th
dimensional plots that are useful in illustrating the nature
the problem.

Using the central limit theorem@4#, it can be shown tha
for a wide range of step-size distributionsw(s), P(x) ap-
proaches a Gaussian form in the limit of largeN. A clear
illustration of this result can be found in Ref.@2#, based on
the assumptions that each step is statistically indepen
and thatuw(s)u→0 sufficiently fast asusu→`. For small
values ofk, expandingeiks in a Taylor series yields

Q~k!5 (
n50

`
~ ik !n

n! E
2`

`

snw~s!ds. ~2.7!

Recalling the definition of thenth moment ofs,

s̄n5E
2`

`

snw~s!ds, ~2.8!
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we write

Q~k!5 (
n50

`
~ ik !n

n!
s̄n. ~2.9!

Using the expansion in Eq.~2.9! above, we have

ln QN~k!5N lnF (
n50

`
~ ik !n

n!
s̄nG . ~2.10!

Now, using the Taylor expansion of the logarithm, we obta

ln QN~k!'N lnF i s̄k2
1

2
s̄2k22

1

2
~ i s̄k!2G ~2.11!

which, recalling the definition of the variance(Ds)25 s̄2

2 s̄2 gives us

ln QN~k!'N lnF i s̄k2
1

2
~Ds!2k2G . ~2.12!

Therefore, exponentiating the above and inserting into
~2.5! yields

FIG. 1. Step-size distributionw(s) for the caseb528 and
g52.

FIG. 2. Fourier transformQ(k) for the caseb528 and
g52.
2-2
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P~x!5
1

2pE2`

`

ei (Ns̄2x)k2(1/2)N(Ds)2k2
dk. ~2.13!

This integral can be easily performed, giving

P~x!5
1

A2pN~Ds!2
e2(x2Ns̄)

2
/2N(Ds)

2
, ~2.14!

which is exactly the form of a Gaussian distribution, wi
meanm, and variances2 given by

m5Ns̄; s25N~Ds!2. ~2.15!

We note, however, that in all of the above, it has not be
demonstrated how the convergence takes place. This i
mediate regime, betweenN51 andN large, is our area of
interest in this paper.

We wish to consider a Gaussian distribution modified
the addition of an anharmonic quartic term in the expon
tial. This corresponds to

w~s!5
1

w0
e2as22bs4

. ~2.16!

FIG. 3. Step-size distributionw(s) for the caseb52
1

32 and
g52.

FIG. 4. Fourier transformQ(k) for the caseb52
1

32 and
g52.
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Functions of this form are of interest in a number of distin
areas of study in physics, in which the bimodality of th
system is an important characteristic—the Landau-Ginzb
model of phase transitions and the stochastic developme
a bifurcation @11# are two examples. It is more useful t
representw(s) as

w~s!5
1

w0
e2bg2s22ubus4

, ~2.17!

where bP(2`,`) and g represents the location of th
peaks in the caseb,0 ~see Figs. 1–8!. w0 is the normaliza-
tion factor, and is calculated to be

w055
pg

2
e2bg4/2F I 21/4S bg4

2 D1I 1/4S bg4

2 D G , b.0

g

A2
e2ubug4/2K1/4~ ubug4!, b,0.

~2.18!

The above result can be stated more succinctly using p
bolic cylinder functionsDn(x) of order 2 1

2 ~see Appendix
A!, but we use the more familiar modified Bessel functio
for ease of visualization@12#.

FIG. 5. Step-size distributionw(s) for the caseb5
1
4 and

g52.

FIG. 6. Fourier transformQ(k) for the caseb5
1
4 andg52.
2-3
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R. H. A. DAVID SHAW AND J. A. TUSZYŃSKI PHYSICAL REVIEW E 67, 031102 ~2003!
FindingQ(k) corresponds to computing the Fourier tran
form of our non-Gaussian step-size distributionw(s),

Q~k!5
1

w0
E

2`

`

eiks12bg2s22ubus4
ds. ~2.19!

To the best of our knowledge, a closed form analytic solut
for this integral does not exist. However, if one expandseiks

FIG. 7. Step-size distributionw(s) for the caseb54 and
g52.
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in a power series, one may expressQ(k) as an infinite series
of integrals as follows:

Q~k!5
1

w0
(
n50

`
~21!nk2n

~2n!! E
2`

`

s2ne2bg2s22ubus4
ds.

~2.20!

Each individual integral is expressible in closed form, a
leads to an infinite sum of hypergeometric functions@13#
~see Appendix B! as follows:

FIG. 8. Fourier transformQ(k) for the caseb54 andg52.
Q~k!5 (
n50

`
~21!nk2n

w0~2n!!

3H p

2
b21/42n/2FGS 1

4
1

n

2D 1F1S 1

4
1

n

2
,
1

2
,bg4D12Abg2GS 3

4
1

n

2D 1F1S 3

4
1

n

2
,
1

2
,bg4D G , b.0

1

2
ubu23/42n/2FAubuGS 1

4
1

n

2D 1F1S 1

4
1

n

2
,
1

2
,
ubug4

2 D12bg2GS 3

4
1

n

2D 1F1S 3

4
1

n

2
,
1

2
,
ubug4

2 D G , b,0.

~2.21!
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Unfortunately, these series are alternating, and, in gen
require about 50 to 100 terms to converge. Moreover,
magnitude of the first several terms is rather large~of the
order of a trillion or so!, which can introduce significan
roundoff errors if one attempts to sum the series direc
without taking appropriate precautions.

III. NUMERICAL INTEGRATION RESULTS

Ideally, one would like an analytic solution forP(x), to
allow one to study in detail the convergence to a Gauss
distribution. This requires, in turn, an analytic solution f
Q(k). While our series expansion forQ(k) in Eq. ~2.21! is
indeed analytic, it does not admit a simple closed form so
tion for P(x).

Numerical integration of the series representation
Q(k) is possible, but is a rather lengthy and difficult proc
dure. One must evaluate the sum of the first 100 terms of
al,
e

y

n

-

r
-
e

series at each point in the numerical integration algorith
keeping 20 digits precision to avoid the roundoff error not
in the preceding section. Such computations are very t
and resource intensive. Other numerical methods allow
faster computation ofQ(k), but at the same time, lead t
numerical difficulties in determiningP(x). Numerical inte-
gration of a numerically obtained function is a rather i
volved process. In particular, for the case whereb.0, Q(k)
is a rapidly oscillating function, further increasing the diffi
culty of computation. In the special caseN52, as we have
seen in Eq.~2.6!, P(x) can be expressed as a simple conv
lution. Although these integrals have, in general, no analy
solution, it is possible to evaluate them numerically. Unfo
tunately, attempts to solve cases for largerN by analogous
methods rapidly become too difficult to carry out nume
cally. Studies of behavior for largeN are, therefore, ruled
out. Almost all methods used to date result, at best, i
numerical solution forP(x). While this allows for visualiza-
2-4
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tion of the functional form, it unfortunately does not eas
admit study of the dependence of the convergence t
Gaussian form on the parametersN, b, or g. Without a
simpler analytic form forQ(k), we have little hope of ob-
taining an exact analytic form—and the corresponding
sight that would bring—forP(x).

For the purpose of illustration, in Figs. 1–8, we plot fo
cases of the step-size distributionw(s) and their correspond
ing Fourier transformsQ(k). These cases are typical of th
different types of behavior which one may encounter in
course of this problem.

Plotting the integrand of the convolution in Eq.~2.6! is
useful in visualizing how various aspects ofP(x) arise. Four
examples illustrating some characteristic behaviors of
‘‘structure function,’’p(x,s), are plotted in Figs. 9–12.

IV. USING A CONVENIENT APPROXIMATION

As it became clear in Sec. III, one must find some a
proximation forw(s) with a simpleQ(k) in order to be able
to proceed further with this problem. For the case, wh

FIG. 9. Structure functionp(x,s) for the caseb522 and
g52.

FIG. 10. Structure functionp(x,s) for the caseb52
1
2 and

g52.
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a

-

e

is

-

e

bg2>8, w(s) is very well approximated by two Gaussian
centred at6g, respectively. The appropriate functional for
is

w̃~s!5Abg2

p
@e24bg2(s2g)2

1e24bg2(s1g)2
#, ~4.1!

which has an easily computable Fourier transform, name

Q̃~k!5e2k2/16bg2
cos~kg!. ~4.2!

The exponentiation ofQ̃(k) is straightforward, yielding

Q̃N~k!5e2Nk2/16bg2
cosN~kg!. ~4.3!

Using Gradshteyn and Ryzhik@12#, we express powers o
cosine as a sum of cosine functions with multiple angle
guments

FIG. 11. Structure functionp(x,s) for the caseb5
1

32 and
g52.

FIG. 12. Structure functionp(x,s,b,g) for the caseb516 and
g52.
2-5



cosN~kg!5

1

2N S N

N

2
D 1

1

2N21 (
m50

N/221 S N

mD cos@Smkg#, N even

N21/2
~4.4!
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5 1

2N21 (
m50

S N

mD cos@Smkg#, N odd,

where we have definedSm5N22m. Hence, we have forQ̃N(k),

Q̃N~k!5e2Nk2/16bg25
1

2N S N

N

2
D 1

1

2N21 (
m50

N/221 S N

mD cos@Smkg#, N even

1

2N21 (
m50

N21/2 S N

mD cos@Smkg#, N odd.

~4.5!

We now recall a useful integral

1

2pE2`

`

e2 ikxe2ak2
cos~bk!dk5

1

A4ap
Fe2x21b2/4acoshS buxu

2a D G . ~4.6!

Hence, calculating via Eqs.~2.5! and ~4.5!, we obtain

PN~x!5
1

2N
A4bg2

Np
e24bg2x2/N5 S N

N

2
D 12 (

m50

N/221 S N

mD e24bSm
2 g4/NcoshF8Smg3uxu

N G N even

2 (
m50

N21/2 S N

mD e24bSm
2 g4/NcoshF8Smg3uxu

N G , N odd.

~4.7!
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The expression in Eq.~4.7! is a completely analytic solution
which provides insight into the asymptotic behavior
PN(x).

Let us first consider the limit asN→`. We immediately
note that the prefactor in Eq.~4.7! is exactly the Gaussian
form we expect, except for the factor of 1/2N. We therefore
wish to show that the term in the brackets—regardless
whetherN is even or odd—approaches 2N in the largeN
limit. We consider the exponential weighting of the comb
natorial factors

P05e24bSm
2 g4/N. ~4.8!

This is independent of position—the only dependence is
the parameterm. For a fixednumerical value of Sm ~the
value ofm required will increase withN), the contribution of
each term becomesless exponentially suppressed. In oth
words, asN becomes large, contributions of distant pea
become more and more important at every location in
space. Similarly, regardless of the value ofx, for fixed nu-
mericalvalues ofSm , the argument of the cosh function wi
tend towards zero. Therefore for largeN, both the exponen-
tial and cosh terms become arbitrarily close to one, allow
us to rewrite Eq.~4.7! as
03110
f

n

s
e

g

PN~x!→ 1

2N
A4bg2

Np
e24bg2x2/N

35 S N

N

2
D 12 (

m50

N/221 S N

mD , N even

2 (
m50

N21/2 S N

mD , N odd.

~4.9!

Noting that binomial coefficients are symmetric under t
exchange ofm andN2m, we may rewrite Eq.~4.9! as

PN~x!;
1

2N
A4bg2

Np
e24bg2x2/N (

m50

N S N

mD . ~4.10!

The sum is simply equal to 2N, so we therefore have fo
largeN,

PN~x!;A4bg2

Np
e24bg2x2/N5PG~x!, ~4.11!

which is the Gaussian form, as expected from the cen
limit theorem.
2-6
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It is worth mentioning that the general case of conv
gence to a Gaussian probability distribution for a symme
random walk with a nonzero third moment for its jump pro
abilities was investigated a long time ago. The Berry-Ess´en
theorem@14# which applies to this case gives a criterion f
the number of stepsn required to achieve a desired level
convergence to the Gaussian and it states that

n*
25

4

^uxu3&2

^x2&3

1

e2
. ~4.12!

Recently, Montegna and Stanley@15# investigated the issue
of slow convergence to Gaussian behavior of the trunca
Lévy flight process, wherep(x)'1/x11a for uxu,L, a,2
and p(x)50 for uxu.L. They found that convergence
achieved typically aftern'104 steps as compared ton'10
for common distributions. Schlesinger@16# showed that this
number scales asn;La.

We have applied this criterion to our double-well step s
distribution and obtained the following general formula:

n*
25

4

1

e2

GS 1

2D FGS 1

2D G2

GS 3

2D 3

D21/2~j!D22
2~j!

D23/2
3~j!

, ~4.13!

wherej5a/A2b. In order to find a numerical estimate o
the minimum number of steps required we used two sepa
limiting cases depending on the form of the single-step pr
ability distribution. Fora small andb large (j!1), i.e., a
strongly non-Gaussian case, we use@17#

D2a21/2~j!;FAp22a/221/4

GS 3

4
1

a

2D Gexp~7Aaj!, ~4.14!

while in the opposite case, i.e.,a large andb small (j@1)
we approximate the parabolic cylindrical function by

D2a21/2~j!;expS 2
j2

4 D j2a21/2. ~4.15!

Consequently, the Berry-Esse´em criterion gives a numerica
prediction in terms of the number of steps required at a gi
confidence levele. First of all, it is readily seen that in bot
cases, to the first order of approximation, there is no sca
with respect toa or b. We find that

n;
1

e2 5
150

p2
3

G3~1.25!

G~20.75!
.12 for j!1

50

p
.16 for j@1.

~4.16!

Expecting, for example, that the difference between
double well and the Gaussian step distribution to be less
e.0.25, we present the required number of steps to ra
between 192 and 256 depending on whether we deal
03110
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strongly or weakly quartic cases. Below, we have attemp
to verify this prediction directly by assessing the separat
between neighboring peaks in the cummulative probabi
distribution.

The exponential formP0 in Eq. ~4.8! is also useful in this
regard since it allows us to derive an expression for a ‘‘cr
cal value’’ of N, at which adjacent peaks begin to contribu
significantly to each others amplitudes. Without loss of ge
erality, consider the case of the peak at the origin forN even.
Singling out the contributions of the adjacent peaks by s
ting Sm52, we solve for the value ofN at which the expo-
nent is 21/A2. At this point the exponential will be' 1

2 ,
such that the combined contribution of the two neighbor
peaks is of comparable magnitude to that of the peak at
origin itself. We obtain the following expression forNcrit :

Ncrit516A2bg4. ~4.17!

This critical value forN can be expressed in two other usef
forms. In terms of the original parametersa and b of Eq.
~2.16!, we can write

Ncrit5
4A2a2

b
, ~4.18!

FIG. 13. Probability distributionP(x) for finding a random
walker at locationx after N52 steps (b58, g51).

FIG. 14. Probability distributionP(x) for finding a random
walker at locationx after N53 steps (b58, g51).
2-7
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while in terms of the widths and the separationD of the
peaks, we may rewrite Eq.~4.17! as

Ncrit5
D2

A2s2
. ~4.19!

This critical value should correspond roughly to the num
of steps which our walker must take before the probabi
distribution becomes relatively close to a Gaussian form.
shall examine this hypothesis below.

As a typical example, we consider a set of plots ofP(x)
for the caseb58, g51. By Eq. ~4.17!, we expectP(x) to
be approximately Gaussian after about 181 steps. This
vergence is explored graphically in Figs. 13–19 below. T
lies within the range of our estimated number of steps
the case choosen here as an example corresponds toj54.

V. CONCLUSIONS

In this paper, we have examined the issue of the asym
totic convergence of a random walk process with a doub
peak distributed step size to its Gaussian limit. We use

FIG. 15. Probability distributionP(x) for finding a random
walker at locationx after N510 steps (b58, g51).

FIG. 16. Probability distributionP(x) for finding a random
walker at locationx after N540 steps (b58, g51).
03110
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combination of analytical, approximate, and numerical me
ods.

Any attempt to obtain an exact analytic result forP(x)
requires a simple closed form solution ofQ(k). Finding such
a solution is difficult~see Appendix B!, although we know it
must be even ink, and a function~or combination of func-
tions! of the form 1F1„a,b, f (k)…. At present, the only exac
analytic solution we have is an infinite series of hyperge
metric functions. Without a simple form of an exact solutio
of Q(k), attempts to examineP(x) numerically have proven
very challenging.

However, we do have an approximate form~4.1! of w(s),
consisting of two narrowly peaked Gaussians at6g, which
is valid over a wide range of parameters. Through this
proximation, we are able to study the asymptotic behavio
the system. We are able to see both how we retrieve
binomial distribution in the limitb→`, and how we obtain
a Gaussian form in the largeN limit. We have shown how
our asymptotic results are consistant with the predictio
made in the general case by the Berry-Esse´en theorem.

The ideal extension of the work in this paper would be
find a simple exact form forQ(k) to allow one to solve
exactly for P(x). However, in the eventuality that such

FIG. 17. Probability distributionP(x) for finding a random
walker at locationx after N5120 steps (b58, g51).

FIG. 18. Probability distributionP(x) for finding a random
walker at locationx after N5181 steps (b58, g51).
2-8
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solution is not possible, further progress can be made w
the approximation of Eq.~4.1!. One line of attack would be
to improve the approximation to take into account the asy
metry of the peaks. The asymmetry appears to be of a sim
form to the first derivative of a Gaussian; however, at
time of writing, no particular improvement on the approx
mation given in Eq.~4.1! has been found. Another possibilit
would be to find another approximation for the range wh
b,0, which would hopefully cover another wide swath
the parameter space, allowing for study of the asympt
behavior of the single peak case.

It has recently emerged that a practical application of t
type of process might be to the protein folding problem
more directly to the problem of calculating the radius
gyration of a peptide composed of identical monomers. T
case of a random chain is often analyzed using the Gaus
radial probability distribution in three-dimensional space
@18#

P~r !54pr 2~2ps2!23/2expS 2r 2

2s2 D , ~5.1!

wheres25Na2/3. Here,N is the number of monomer unit
within the chain,a the unit length. Then, using well-know
formulas in Gaussian statistics one finds that the aver
end-to-end distancêr ee& scales as

^r ee&5A 8

3p
aN1/2, ~5.2!

while the variance of this variable is given by

^r ee
2 &5Na2. ~5.3!

However, in general, the mean square end-to-end dista
^r ee

2 & is known to satisfy the more complicated relationsh

^r ee
2 &5ANn, ~5.4!

where 1<n<2 depending of the case@19,20#. Using the
non-Gaussian probability distribution instead of Eq.~5.1!

FIG. 19. Probability distributionP(x) for finding a random
walker at locationx after N5250 steps (b58, g51).
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leads to a range of exponents with the Gaussian value b
only one limiting case@21#. Furthermore, this assumption
fully justified by the local energy dependance on the rotat
angle for the common peptide nitrogen–carbon and carb
carbon bonds~see Fig. 20!. Finally, recent advances in th
protein folding problem indicate that the potential landsca
possesses a heirachy of barrier heights and, so far, has
emulated by the so-called spin-glass model@22,23#. We show

FIG. 20. The approximate energy changes associated with r
tion about the~a! N–C (f) and ~b! Ca –C (c) bonds in a G–G
dipeptide.

FIG. 21. A plot of2 ln P(x) after 11 steps forw(s) given by Eq.
~2.16! whena5216 andb58 (g51).
2-9
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in Fig. 21 that the effective potential stemming from t
non-Gaussian distributed random walks shows some res
blence to it. The actual protein energy landscapes sho
self-similar hierarchical structure that is absent from Fig.
However, one can envisage random walk process on m
than a single length scale with large, medium, and sm
structural elements of a protein making choices about t
orientation in space. We intend to purse this analogy furt
in a future publication.
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APPENDIX A: INTEGRALS LEADING TO PARABOLIC
CYLINDER FUNCTIONS

Following general results published for non-Gauss
models of thermodynamic fluctuations@24,25# and using the
integral

E
0

`

x2kn21exp~2ax4k2bx2k!dx

5~2k!21~2a!2n/2G~n!expS b2

2aDD2nS b

A2a
D , ~A1!

where D2n(x) is the parabolic cylinder function@17#, we
find that the probability distribution given by

P~x!5C exp@2l2~x2 x̄!22l4~x2 x̄!4# ~A2!

is characterized by the normalization factor

C215~2l4!21/4GS 1

2DexpS l2
2

8l4
DD21/2S l2

A2l4
D ~A3!

and itsnth momentMn,

Mn[C21E
2`

`

~x2 x̄!nP~x!dx

5~2l4!2n/2

GS n11

2 D
GS 1

2D
D2n11/2S l2

A2l4
D

D21/2S l2

A2l4
D . ~A4!
s
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APPENDIX B: HYPERGEOMETRIC FUNCTIONS

As we have seen in Sec. II, our form forQ(k) is an
infinite series of hypergeometric functions. Let us, therefo
recall some of the properties of functions of this type.
generalized hypergeometric function of order (n,d) is de-
fined as

nFd~a1 , . . . ,an ,b1 , . . . ,bd ,x!

5 (
m50

`
~a1!m•••~an!m

~b1!m•••~bd!m

xm

m!
, ~B1!

where the Pochammer symbol (a)m is defined as

~a!m5 )
j 50

m21

~a1 j !. ~B2!

Almost all special functions of mathematical physics a
merely special cases of hypergeometric functions. In part
lar, the exponential function relates as

ef (x)50F0„f ~x!…. ~B3!

It is a general and useful fact that calculus operations o
hypergeometric function of order (n,d) increase the order to
(n11,d11). Therefore, we may expect ourQ(k) to be ex-
pressable in terms of functions of the form1F1„a,b, f (k)….
At present, we have identified 17 different choicesf (k)
which do not solve the problem. However, a possible le
comes from one of the many addition theorems@13# which
exist for hypergeometric functions of order (1,1), namely

1F1~a,b,x1y!5S x

x1yD a

(
n50

`
~a!nyn

n! ~x1y!n 1F1~a1n,b,x!.

~B4!

Our solution forQ(k) given in Eq.~2.21! above can be re-
written as a sum of four terms of the form~neglecting mul-
tiplicative factors!

(
n50

`
k4n

4n!
b2nGS 1

4
1nD 1F1S 1

4
1n,

1

2
,bg4D , ~B5!

which differs only in the factor of (4n)! in the denominator.
This suggests that we can expect a functionf (k) of a form
similar to

f ~k!'
b2g4

b2k4
~B6!

in a representation ofQ(k) in terms of a finite number of
hypergeometric functions.
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