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Poincare cycle of a multibox Ehrenfest urn model with directed transport
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We propose a generalized Ehrenfest urn model of many urns arranged periodically along a circle. The
evolution of the urn model system is governed by a directed stochastic operation. Method for soMibglan
M-urn problem of this model is presented. The evolution of the system is studied in detail. We find that the
average number of balls in a certain urn oscillates several times before it reaches a stationary value. This
behavior seems to be a peculiar feature of this directed urn model. We also calculate the Riyicleariee.,
the average time interval required for the system to return to its initial configuration. The result indicates that
the fundamental assumption of statistical mechanics holds in this system.
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[. INTRODUCTION cycle. This model was then generalized by several authors to
mimic more complicated situations encountered in real
Physical laws governing the microscopic processes arphysical phenomena8—5]. An attractive feature of these urn
mostly reversible in time. In macroscopic world, however, model problems is that they are easy to formulate, but not
people often experience time-irreversible phenomena in the@lways easy to solve. The solutions obtained have, therefore,
daily life. To understand why the reversible microscopic pro-sometimes led to new mathematical techniques and insights
cesses lead to irreversible macroscopic manifestations olé—9. Recently, some new urn models were proposed and
refers to thePoincare theorem which states that a system Solved analytically or numerically. Their results provide very
having a finite energy and confined to a finite volume will, good descriptions on granular and glass systgtfis-14.
after a sufficient |Ong time—the so-calldebincare Cyc|e In this paper, we obtain the exact solution of a generalized
return to an arbitrarily small neighborhood of almost anyurn model. Hereafter, we call it as “periodic urn model.” In
given initial statg 1]. The key point is to note that the typical this model, one consided distinguishable balls that are
value of a Poincareycle for even a moderate-sized system isdistributed inM urns. TheseM urns are arranged along a
far beyond the meaningful time scale one can measure d@ircle and numbered one by one to form a cycle, that is, we

experience, thus the irreversiblity is realized. define the M +1)th urn as the first uriSee Fig. 1 To
Usua”y to describe a macroscopic system, one has tbegin with, the initial distribution of th&l balls in theM urns
know only a few parameters, such as volume, pressure, arié given by|m, o,m,,, . .., my g)=[my), wherem; 4 is the

temperature. However, to describe the same system in ternfgimber of balls in theth urn at the start. At each time step
of its microscopic constituents, one has to deal with a larg&ne ball is picked out of thl balls such that every ball has
number of parameters, such as the momenta and positions @ equal probability of being picked up. The ball is then
a huge amount of particles, which are impossible to calculate
in practice. Based on this reason together with the fact that 6 1
the macroscopic laws are insensitive to the microscopic de-
tails (of system history; it is natural for people to adopt the @
probability (ensemblg description in statistical mechanics, @ @
which deals with the equilibrium stat@ macroscopic state
that has stationary value of state parametefsa macro-
scopic system. In this kind of description the macroscopic
guantities are defined as the ensemble average of their mi-
croscopic correspondences. This definition connects the mi-
croscopic and macroscopic worlds.

To study how a system approaches its equilibrium state @
one also uses probability description, where the evolution of @
the system is treated as a stochastic process. One famous
model for simulating such a process was proposed by Ehren- 4 3
fest one century agi®], which is anN-ball, 2-urn problem. FIG. 1. Arrangement of the numbered urns and balls in our
In the beginningN numbered balls are distributed arbitrarily periodic urn model. The gray disks represent the urns and the white
in either urnA or urnB. At each time step one ball is picked disks represent the balls. Here we illustrate a configuration for a
out at random and then put into the other urn. This simpl&ystem with six urns and seven balls. The state vector for this con-
model can be exactly solved to give an explicit Poincarefiguration is|my=2,1,0,2,1,1.
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placed into the next numbered urn. The state thatttheirn .
contains m; balls is represented bym;,m,, ... ,my) (miys= >, my(m[PS[mo)
=|m), which we name it astate vectorHereafter we call a

distribution stringm (without knowing the numbering of the M omi(mi+1)

ballg a configurationof the system. Otherwise, if we also :2 E : l\]l

know the location of each numbered ball, we call such a {m} J=1

distribution amicrostateof the system. X (oo mpEim =1, .. P mo)

After s steps, the transition probability from stdta,) to

state[m) can be written agm|P%|m), whereP represents B M (Mimps—1 (M1 (Mp)s—1
the operation in one step. The set of state vectors is taken to = 2’1 N TN ojit N Sj+1i
be orthonormal. !
According to the above description, the transition prob- M omm). mi)e_ m_ Ve
abilities corresponding to thgth step and theg— 1)th step =_E m ,\Jl>s 1—< Ilzls 1, (M ,\1|>s !
satisfy the recursion relation
1 (Mi—1)s-1
< :(1_N)<mi>sl+ % 4
(mg,my, ... my|P%mo)
M m;,+1 .1 here we have used constraii2).
:;1 N (ooomitlmi =1, [P me), (1) Now we are ready to solv@n;)s. Recurrence relatiof¥)
can be written as

wherem,, . ;=m;, as has been mentioned before. In addition, Ms=PaeMs_1, 5

any state that does not satisfy the constraint
where M; is aM X 1 column vector defined by

m1+m2+"'+mM:N (2) <m1>5
_ <m2>s 6
is an unphysical state and has null contribution in the sum. s : ' ©)
Hereafter, we will use Eq) as the basis to derive all the
results we want to know. (Mu)s

This paper is organized as follows. In the following sec- . . ,
tion we calculate the average number of balls in an urn at an§"d Pave is @M XM matrix written as
time. In Sec. lll we introduce a generating function that has

N variables and solve the problem completely. In Sec. IV the 1— i 0 i
solution of the model will be applied to the calculation of the N N
Poincarecycle. Finally in Sec. V we give the summary of 1 1
this paper. h 1— = ... 0
Pae=| N N : @
Il. AVERAGE NUMBER OF BALLS IN AN URN 1
The first thing we want to know is how many balls on 0 0 1= N

average will appear in thigh urn after firsts steps. We study

; i . By means of recurrence relati¢a , M can be deduced,
the problem in the following four subsections. y @B, Ms

M=P3, Mo, (8)
A. Exact solution
. . where
We define the averagghe expectation valyeof a quan-
tity A [which depends on the state vectar) at each step, m
written asA(m)] after s steps as 10
Moz My o ©
0~ .
(A)s= 2 A(m)(m|Pe|mo), 3 :
M o

where{m} include all the configurations satisfying constraint represents the initial statd; . can be calculated if one
2. knows the eigenvaluek,, and eigenvector®),, of P,,e.
Let A(m)=m;, then from Eqs(1) and(3) we have They are given bysee Fig. 2
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R / FIG. 3. Average number of balls in the first ufm,)s as a
AN L7 function of times, assuming initially all the balls are in the first urn.
AN e Here we plot ‘“‘fraction”’=(m;)s/N for N=50 atM=2,5,10,25.

~ - As one can see, except for thé=2 case(which is the original
Ehrenfest urn modgl this mean value oscillates several times be-
fore it reaches a stationary value.

FIG. 2. Eigenvalue$\ ,,} of the matrixP,,. (represented by the
tiny circles. HereR=1 andr=1/N are the radii of two reference
circles, andO, and Og are their centers, respectively. The eigen-
values of P,,. are distributed uniformly on the small reference
circle centered aDg=(1—1/N,0).

where we have used the following properties/pf

R=R, (R™H=R'=(R)*, Rp=an=ai". (19

Now the average number of balls in ti#h urn afters

Um steps can be determined,
2
1 1 1| 9m M M
)\ :1__+_q*1 Q = . H (10) 1 i —
" N©NTET M| (M)s=17 121 kzl ;1 QNS (Mo,
Om
1 M M
where = 2 2 N my, (16)
M=z e
2mari
Am=exg —y— | m=12,... M. (1) where(m)o=m ¢ is the initial number of balls in théth
DenoteR as theM X M matrix of the eigenvector®,,, urn.
R=[Q:,Q,, ....Qul B. Numerical results
Let us now consider a simple example. Suppose initially
i G2 Au all the N balls are in the first urn, that is,
1| 9f a3 - dy
= Wl (12) My o=N, mMye=M3e=---=my =0, 17
gl oy ... oM then according to Eq.16), we have
M
and A as the diagonal matrix d?,,¢'s eigenvalues\,, N
g ave g m <ml>szm 21 )\J-S_ (18)
N, O -~ 0 :
0 A\, -~ O Figure 3 shows the results fof=50 at M =2,5,10,25.
A=l | (13) TheM=2 case is the original Ehrenfest model, in which the
) ) ' ) average number of balls in the first urn decays\t@ in a
0 O Am period of steps of ordeX. For anyM >2 case, however, we
_ observe that before the system arrives its true equilibrium
then we obtain (here we mean the value 0fn;)¢ for eachi does not change
< N st con anymore, (m, ) undergoes several oscillations, which seems
Pave= RA’RTT=RA’RI=RA°R*, (14 to be a unique feature of this model and have never been
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M=30 and hencém;)</N becomes a universal function sfN for
0.1 ' N a fixed M. Figure 5 shows the results fod=60 andM
--- N=15 =30,60,90. The local maxima of the¢m;)s/N curves are
oost « |- N=30 | located atM, 2M, 3M, ..., etc. We will explain this result
-------- N=60 in the following subsection by using an approximation of Eq.
(19).
50.06
g C. Two approximations
*-0.04 Starting from Eq(19), we now derive two useful approxi-
mations of(m,)s/N, which can help us understand the ob-
0.02 : servations in Figs. 4 and 5. First, define
s
0 : : . : T= (20)

0 50 100 150 200 250 N’
s/N

and expand the exponential functions in Efj9) as power

FIG. 4. Plot of fractior=(m,)s/N as a function of times/N, .
series ofr, we have

assuming initially all the balls are in the first urn. Hévie=30 and
N=5,15,30,60. Except for thel=5 case(this N is too smal), all

—; M
the curves merge and become one. The visible range of fraction has (My)s _ € 2 14 1, } 20-24
been tuned to give a better illustration. N M = 7q; 2 70;

. . M 72M
found in other kinds of urn models—to our knowledge. Fur- e 14 K N 21)
thermore, in Fig. 3 theVl=25 case shows that before the —¢ M! - (2M)!

appearance of the first peak @h,)s, there is a period dur-

ing which (m,) is almost zero. This phenomenon togetherin deriving Eq.(21), we have used the fact that

with the oscillations mentioned before seem to be typical

results when botiM andN are large. o |0 if KM=integer
Some res.ults for larg®l and largeN are shown in Figs. 4 12’1 g; :;1 a: = M if k/M=integer.

and 5. In Fig. 4 we plot thém;)s/N curves forM =30

(which is large enough in practic@nd N=5,15,30,60. As Note that the form of th¢th term (>0) appearing in the

one can see, except for the=5 case, th&my)s/N curves ot fine of Eq.(21) is the same as the probability ofsuc-
corresponding to differenil’s merge and become one uni- cessful trials in @oisson procesgls):

versal function ofs/N. To understand this let us note that in

the largeN limit Eq. (18) can be approximated by e
P(n)=

n! (23

N Y s(gr1-1)
el S e

=1

' (19 Heren=jM, andr=(n) is the expectation value of. This

is not an accident and can be easily understood. The quantity

N=60 (my)s/N represents not only the average number of balls in
the first urn divided byN, but also the probability of finding
a certain ball, say, ball 1, in the first urn. For example, if
(my)s=N, then the probability of finding ball 1 in the first
urn is 1. At each time step, ball 1 has the probabilitypof
=1/N being picked out and moved to the next urn. Now
sinceN is large,p is small. In this limit if we do the same
operations times (here we assumeis also large and define
7=ps=s/N), then the probability for ball 1 to be moved
steps forward from the first urn is given by E&3). Further-
more, since our system has a circulating property, the prob-
ability of finding ball 1 in the first urn aftes steps consists of
the following possibilities{i) ball 1 has never been selected
[the corresponding probability is [Ap)3~e P5=e~ 7], and
(i) it has been picked up times, and(iii) it has been
chosen 2 times, and so on. The summation of all these

FIG. 5. Plot of fractions(m;)s/N as a function of times/N, contributions gives us the expression of the last line of Eq.
assuming initially all the balls are in the first urn. Hete=60 and ~ (21).
M=30,60,90. The first peaks of these three curves are located at Applying the saddle-point methodnd the Stirling for-
s/N=230,60,90, respectively. mula[15] to eache™ "7M/(jM)! term, we have

Fraction

s/N
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M\ M (M) 22 D. Center of mass—the global consideration
_ . —(m=j j . _
e M ( e ) © e (rmim?2im Up to now we have been focusing our attention on only
YR MM — one single urn. Now we show that we can also understand
(IM) V2mjM (J—) 2miM the behaviors of the system in a global manner. First, define
€ (24) the “phase angle” of theékth urn (see Fig. 1 as
$=—(k=1)0. (30)
and thus
Also, we define the “center of masgCOM) of our N-ball,
(Ms)s e (TmM)Z2M o= (7-2M)%/am M-urn system as
~e "+ + +oeee
N V2mM VamM Mo
(29 > € m)s
X Ek:l :2 eWk% (32)
Equation(25) shows that(1) the (m,)s/N curve consists com =t N -

M
of an exponentially decaying tere1 ™ and a series of Gauss- kzl (Mi)s
ian terms of different heights. They give a good qualitative
description of the results observed in Figs. 4 and25.The
center of mass of thed¢ balls circulate through th# urns
with a periodAs=NM, consistent with the definition of the
model.(3) As time goes by, the distribution of thebEballs
becomes broader and broader, implying a diffusion effdgt.

According to Eq.(31) Xcowm is in general a complex num-
ber, sayz=re'?. Herer =|z| satisfies 8<r<1, and¢ is the
phase angle of. Variation of ¢ with respect tor=s/N rep-
resents how fast on average théédalls circulate through
The “time difference” between two successive maxima isthe M urns, and the norm gives us the im_‘ormation of the

distribution of theN balls. For example, if every urn has

A7=M, whereas the standard deviation of ftile Gaussian . .

e . : N/M balls, thenr =0. Substitute Eq918) and(30) into Eq.
term is \jM, thus if j<M, we have\jM <A7, and the (31) and use Eqs(10) and (11) wquet q
overlap between two successive Gaussian terms can be ne- '

glected. g MM
If 7<M?2, then in the above expression we have to in- Xcom=+ 2 2 q(lj—l)(k—l)kS
clude the terms only up to the ordgf.~7M<M, and thus M =1 k=1 .
Eq. (25 gives not only a qualitative but also a good quanti- N
tative description of thém;)s/N curve. -
When 7 becomes too large that the overlap between two ~o T012gi0 (32)
successive Gaussian terms cannot be neglected, thé23tq. '
becomes useless. However, we can show thatbecomes aonce
larger thanM?/272, then another accurate approximation
can be obtained. Note that E(.9) can be rewritten as r=e 72 b=—16. (33)
<m1>s: £[1+2e‘ "(1-00301) cog 7 5N 6 Here we see'that the COM curve i's a_pproximately described
N M by a spiral circulating inside a unit circle. The angular fre-
— A{1-costy) ) quency of this circulating motion with respect te=s/N is
+2e 2cogTsingy)+---], (26 —0=—2x/M (clockwise, consistent with both the defini-
tion of our model and the oscillation behaviors of the
where we have defined (m;)s/N curve discussed before. Furthermore, when
>M?/27r2, we haver <e™ !, which indicates that now these
27y 2w N balls are distributed in a wide extent, also consistent with
0= =10 0= (27)  the result of the second approximation in the last subsection.

Some examples are illustrated in Figs. 6 and 7.
Remember thaM is a large number, so
Ill. STATE MATRIX AND GENERATING FUNCTION
2

6 Sl \__ " .
SinB~0, 1-cosO,~ = 28) Now we calculatg/m|PS|mg)—the transition probability

from |mg) to |m) after s steps. Once one knows the exact
solution of (m|PS|m,), any quantity can be calculated ex-
Thus for >M2/272 [i.e., 7(1—cosy)~7¢¥2>1] we have  Plicitly.
the approximation Define
=(m|P|m"}, (39
(my)s 1+2e 204 70) S = (m|PIm")
N M

(29) then we have
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FIG. 6. Plot of the trace of the center of mag&dOM) as a
function of time stefs, assuming initially all the balls are in the first
urn. Here the curves are plotted fesr=0 to s=2MN with M
=2,5,15,60. Each curve with large enoulgh(M =10) has circu-
lated the origin(the “x” symbol) of the complex plane twice after
evolving 2MN steps.

(m|P|mg) = (Ss)mmo- (39
HereSis aHN X HY matrix, we name it astate matrix and
|m) is aHN column vector, here

H,\NA:CN+M71_(N+M—1)!

M-l T NI(M=1) (36)

Like before,S® can be calculated by means of its eigenvalues

and eigenstates. According to E@), the matrixS has com-
ponents

M

m;+1
Smm’zz N
i=1
X é\ml,m’ é\mz,m’ T é\mi+1,mi’ é\miH—lmi’H o 5m,\,I My
37
@ M=2 (6) M=5

A R N

FIG. 7. These COM curves are plotted f@=0 to s
=M2N/7? with M=2,5,15,60. The norm of a COM in the com-
plex plane become® 2=0.1353 times smaller after evolving
M?2N/ 72 steps ifM is large enoughNI =10). Here the symbol%”
denotes the origin.

PHYSICAL REVIEW E 67, 031101 (2003

wheremy, . ;=m,; have been assumed. The eigenvalue equa-
tion can be written as

E Sim' @m' =Y Pm. (39
{m’}
or more explicitly
M m;+1
;1 N my,my, ... | m+1m 1 —1,... My
= 7¢m1,m2 ..... MM, my (39

As in Eq.(1), ¢,=0 for any unphysicain [anm that does
not satisfy Eq.(2)].

It is not an easy task to diagonali&directly. Thus we
adopt another strategy. We first construct a generating func-
tion for Gmymy, ... my and then transform the matrix eigen-
value equatior{398) to its differential equation form. We find
that the differential equation can be solved analytically.

By introducing variables,x,, ... Xy, the generating
function can be defined as

f(X1. %, - .. ,xM>E{2m} By, . X1 Xp 2 X
(40)
Hereafter, we also use the following expression:
FX)=2 ¢mX™, (41)
{m}
whereX and X™ are defined by
X1
— X2 m_,M1,,M2 v 2
X= v X=X G2 (42
XM

To proceed further, note th&{X) satisfies the following
two relations:

a0 =2

{m

=

(43)

as can be easily checked. Multiplyird" on both sides of
Eq. (39), summing over afm}, and using the results of Eq.
(43), we get

Xi+1

M
2N

05 F(X)=£(X), (44)

or equivalently
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<

2, Xis1d In[F(X)]=Ny, (45)

which is the desired differential equation form of eigenvalue

equation(39). Define

xqj:xlqj+x2qj2+ A xua)’ (46)
we find
M
> Xi1dyIn(xq) =0 *=qf (47)

This implies that the complete solution of[ ffX)] can be
written as

M
In[fn(X)]=]Zl nyin(xq), (48)
which gives us
M
fa(X) =11 xgi=X3. (49)
j=1 i

Heref,(X)(a homogeneoullth power function and the ei-

genvaluey, are characterized bg=[n,,n,, ... ,ny] and
g=[0;,0z, - . . ,0m], satisfying
M 1 M %
N=2 nj. yo=ry 2 na} = (50)
j=1 =1

Denoting thenth eigenvector oSas ¢(n), Egs.(38) and
(41) now become

> Som b (M= Yadm(n) (51)
{m'}

and

fa(X)=2 dm(MXT=X]. (52)

{m}
To diagonalizeswe first define an orthogonal transforma-
tion matrix U,

Unmn= ¢m(N), (53

where ¢,(n) according to Eq(52) is the coefficient ofX™
that appears in the expansion fo{ X) = Xn

We now are ready to solve the matrllk‘1 Multiplying
XM=xT1x72- - -xyM on both sides of

2 (MU =2 U= (54)
{n} {n}

and summing over all possiblen}, we get
E fa(X)U E XqUm = (55)

PHYSICAL REVIEW B57, 031101 (2003

Furthermore, define two vectol and X, as

Y1 i Q2 Om X1
Ya q; dm || %
=l |= . . . ., (56)
Ym 9y Y | L Xwm
and
qu
X
Xe=| |, (57)
qu|
we have
Y =\MRX. (58)

Using the same notation and remember Rat=R*, we
find

X=\/%R*Y=$Yq*. (59)
These results further lead to
1 1
xmzm(vq*)mzmvg‘ —f=(Y),

= % br(MY"=— % bn(M)X;

=S (. (60)
MN 1n}

Comparing Eq(60) with Eq. (55), we get
L1
Unm—m%(m), (61)
where we have used the relations:

@ YV Ve e
R R
B
=YD= fa(Y), (62

and definedn as
M=[My_1,My_2.My_3, . ...My,My]. (63

Finally we obtain the desired solution @fin|P3|m,),

031101-7
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<m| PS| m0> = (Ss)mmoa

:(Ursuil)mmov

1 -
=W§ Yo dm(M' ) pr(Mg),  (64)

whereI is the eigenvalue matrix o, which has compo-

nentsl” ;m' = YmSmm' -

IV. THE POINCARE CYCLE

In this section, we study the Poincargcle of our peri-

odic urn model. For simplicity we first consider the situation

that initially all theN balls are stayed in the last urn, i.e.,
my=[0,0,0 ... ,N]J.
From Egs.(65) and(63) we have

mo = ﬁ‘]o . (65)

Now we want to know how many time steps on averag

are required for all of th&\ balls to return to the last urfthe
initial state. We thus have to calculate

PHYSICAL REVIEW E 67, 031101 (2003

s—1

P(s)=Q(s)+ gl Q(k)P(s—k), (72)

and henceQ(s) can be calculated frorfP(s). To ease the

calculation we now use again the generating function

method. We first define two generating functions:

h(z)zgl P(s)2, g(z)zgl Qs)Z",

(72)
and then we find from Eq.71) that
h(z)
9(2)= hZ+1° (73
These two generating functions also lead to
- dg) h’
s9Q(s)=| == , "= , 74
2 sQs) (dz IO e (74)

eWhich can determine the Poincargcle.

We now calculatén(z). From Eqgs.(69) and(82) we ob-
tain

° = : 0 ho=— " 2 (Ym2)®
(mg|P |m0>:W§‘ Ynbmy(M) bim(Mo).  (66) 52 | ) 2 ),
Recall that¢,,(n) is nothing but the coefficient oK™ :i > (N>( YmZ ) -
=x;* - -xyM appearing in the expansion dff,(X) =Xq MN S \m/\1-9,z

=x"...x™
Xay, " Xy From Eqs.(52) and (65), we have Since we know from Eq(50) that Yme= 1, thus whenz
b (M)=1 (67) —17, h(z) becomes singular,
0 L
~ N! N lim h(z)= Lz +regular function (76)
= = N1— '
$m(Mp) Mol -l \m) (68) 1 MN1-z
and hence In this limit, we obtain
(molPme) = S (N) Ya=P(s). (69 im g/~ m — =", (77
MN S \m/ ™ b1 ,1-(1+h)
HereP(s) represents the transition probability for the systemwhich gives us the desired Poincargcle P:
to return to the initial state aftersteps. It does not preclude .
the possibility that the initial state has already been rearrived N
before. P= 520 sQ(s)=M". (78)

Since the Poincareycle is defined as the time interval

required for the eyent of first return to happen, so we have to 1¢ ynderstand the meaning of this result, we refer to the
do more calculations to extract what we really want. Weergodic theorenj1], which says that if one waits for a suf-
define a functionQ(s) as the probability for the event of first ficiently long time, the locus of the representative point of a
return to happen at theth step. The Poincareycle can thus  system will cover the entire accessible phase space. For our
be defined as periodic urn model, the “representative point” corresponds
to the microstate of the arrangement of balls, the “accessible
phase space” is the set of totsN microstates, and the “lo-
cus” means the evolution history of the systésee Fig. L

The result that the Poincaoycle equals the total number of
microstates of the system is a strong indication that the fun-

P= 520 sQ(s). (70)

By definition Q(s) relates toP(s) via the relation
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damental assumption of statistical mechaniequal prob-
ability of occurrence for each microstatieolds in this sys-

tem.
What will be the Poincareycle if initially theseN balls
are not in a single urn? Let us denote the initial statelpy
|[d)=[dy,dz, ... dw). (79

Now we have

1 -
PO =(dPd)=—5 {Em} Yada(M) dm(d) (80

and

AmZ
1-\n2Z

(81)

1 -
h(2)=—5 {Em} bg(mM) d(d)

In general, it is difficult to calculateby(m) and ¢,(d).

PHYSICAL REVIEW BE7, 031101 (2003

This result can be easily understood by considering the defi-
nitions of configurationand microstate(See Sec.)l There is
only one microstate that correspondgna,), whereas there
are

N N!
(d Tyl dy! (85

microstates that correspond|). Thus, on average the first
return time for|d)—|d) becomes })~* times of that of
|mg)—|mg). Here we find conclusive evidence that the fun-
damental assumption of statistical mechanics on equal prob-
ability of occurrence for each microstate holds in this sys-
tem.

However, we do not need to calculate them all. Remember
that to determine the Poincaogcle the knowledge of the
asymptotic form ofh(z) nearz=1 is enough. This is given

V. SUMMARY

by

_ Ba(Mo) b (4) 2
lim h(z)= N =

- +regular function.
z—1

(82)
Substituting

N ~
¢d(mo)=< d)’ ¢m,(d)=1 (83

into (82), we find

h
P= lim = . (84)

In this work we propose a generalized Ehrenfest urn
model of many urns arranged periodically along a circle. We
solve anN-ball, M-urn problem explicitly. The evolution of
the system is studied, and the average number of balls in a
certain urn at any time step is calculated. We find that this
mean value oscillates several times before it arrives the sta-
tionary value. We also obtained the Poincayele for two
situations. The results indicate that the fundamental assump-
tion of statistical mechanics holds in this system.
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