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Hopping in a supercooled Lennard-Jones liquid: Metabasins, waiting time distribution,
and diffusion
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~Received 14 May 2002; published 12 March 2003!

We investigate the jump motion among potential energy minima of a Lennard-Jones model glass former by
extensive computer simulation. From the time series of minima energies, it becomes clear that the energy
landscape is organized in superstructures called metabasins. We show that diffusion can be pictured as a
random walk among metabasins, and that the whole temperature dependence resides in the distribution of
waiting times. The waiting time distribution exhibits algebraic decays:t21/2 for very short times andt2a for
longer times, wherea'2 nearTc . We demonstrate that solely the waiting times in the very stable basins
account for the temperature dependence of the diffusion constant.
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The energy landscape picture that was proposed m
than thirty years ago by Goldstein@1# has turned out to be a
fruitful way of describing the complicated many-particle e
fects in disordered systems@2#. Starting from the joint poten-
tial energy landscape~PEL!, V(x), of N particles as a func-
tion of their configurationx5$x1 , . . . ,xN%, one expects tha
the properties of the system at sufficiently low temperatu
will be dominated by long residences near local minima
V(x) ~inherent structures! with rare hopping events betwee
them@3#. Recently, it became clear for a model glass form
that the strict hopping picture approximately holds forT
,Tc ~landscape-dominated regime! @4–6#, whereTc is the
mode-coupling temperature@7#. However, even for highe
temperaturesT,2Tc , many dynamic properties are still re
lated to the properties of inherent structures~landscape-
influenced regime! @8–10#. Thus, in both temperature inte
vals, an observable like the diffusion constantD(T) should
depend on the topography of inherent structures~IS! or, more
generally, of basins~a basin of an inherent structure is d
fined as the set of configurations that reach this minimum
the steepest descent@11#!. Such an understanding is indis
pensable to grasp the underlying physics of the Adam-Gi
relation @12,13#.

A simplified picture of glassy dynamics has been e
pressed in phenomenological models in Refs.@14–16# based
on spatially uncorrelated hopping processes~random walk!
in configuration space. Then the whole temperature dep
dence is contained in the average waiting time^t(T)&. The
true dynamics of glass forming systems, however, is
pected to be more complicated. For example, it is known
back and forth correlations cannot be neglected and tha
elementary jump distances depend on temperature@17,18#. In
general, in a hopping approach, the temperature depend
of the diffusion constant may be related to spatial and te
poral aspects as expressed by the relation

D~T!5
a2~T!

6N^t~T!&
. ~1!

With this ansatz, we anticipate the important role of the me
waiting time and collect the spatial details of hopping in
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effectivejump widtha(T). The latter involves~i! the average
jump distance,~ii ! correlations of jump widths with waiting
times, and~iii ! directional correlations of successive jump
To our knowledge, this decomposition into spatial and te
poral contributions has not been systematically implemen
within the PEL framework so far.A priori it is not clear to
which degree the temperature dependence ofa(T) is rel-
evant; see, e.g., Refs.@19,20#. Some information about the
waiting time distribution~WTD! has already been gaine
from the analysis of hopping processes of single particle
real space via computer simulations@21,22#. In contrast, we
consider hopping in configuration space, with the advant
of incorporating the full many-particle effects@23#.

In this paper, we present detailed information about
spatial and temporal aspects of hopping in a model g
former, and individually determinea(T) and ^t(T)&. We
demonstrate that~i! only ^t(T)& depends on temperature,~ii !
hopping among single basins is not a random walk, wher
hopping among superstructures of minima~metabasins! is
close to a random walk,~iii ! ^t(T)& is dominated by the long
waiting times due to a slow~approximately algebraic! decay
of WTDs.

In the present work, we investigate a binary mixture
Lennard-Jones particles~BMLJ!, as recently treated by two
groups@6,24#; see also Ref.@25#. It is characterized by the
interaction potentialsVab(r )54eab@(sab /r )122(sab /r )6#
with the parameter setN5NA1NB552113565, sAB

50.8sAA , sBB50.88sAA , eAB51.5eAA , eBB50.5eAA , and
r c51.8sAA . Linear functions were added to the potentials
ensure continuous forces and energies at the cutoffr c . Units
of length, mass, energy, and time aresAA , m, eAA , and
AmsAA

2 /eAA, respectively. For convenience, though, we w
omit units here. We use Langevin molecular dynamics sim
lations ~MD! with fixed step size, l250.0152

52kBTDt/mz, equal particle massesm, friction constantz,
and periodic boundary conditions at a density ofr51.2. The
friction constantz52/0.0152 is chosen so thatDt51/T. Due
to the different type of dynamics, theabsolutevalues of
times and diffusion constants are different from those fou
©2003 The American Physical Society01-1
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within Newtonian dynamics simulations. The mode-coupli
temperature isTc50.4560.01 in this model system~com-
pare Ref.@25#!.

For the analysis of dynamics in configuration space, i
essential to use small systems because otherwise many
esting effects will be averaged out@10#. The relevance of
small systems has been also pointed out by other groups;
e.g., Refs.@23,26#. On the other hand, the system should n
be too small in order to avoid major finite-size effects.N
'60 turns out to be a very good compromise for bina
Lennard-Jones mixtures, whereasN<40 already displays
major finite-size effects@27#. Here, we chooseN565. To
back those findings,we have carried out an extensive stud
finite-size effects for systems ofN565, 130, andN51000
particles@28#. It turned out that theN565 system is nearly
identical to the bulk (N51000) aboveTc . Since well-
equilibrated runs ofN>130 are lacking belowTc , finite-size
effects cannot be excluded there at the present stage. H
ever, this does not affect the main results of this paper. M
important is the question of a good equilibration at ea
temperature. Have the runs been long enough to sample
PEL sufficiently? AboveTc this is uncritical, which can be
seen from the fact that each run comprised at least
a-relaxation times. A more detailed check, involving the lif
times and distribution of metabasins, indicates that r
down to T50.435 are feasible with the available compu
power.

By regular quenching the MD trajectoryx(t) to the bot-
tom of the basins visited at timet, as proposed by Stillinge
and Weber, we obtain a discontinuous trajectoryj(t). In this
way, one discards the more or less complicated vibratio
part x(t)2j(t) of motion, only keeping the visited minim
as ‘‘milestones.’’ The one-particle diffusion constant can
also determined from the squared displacement of inhe
structures viaD5 limt→`^(j(t)2j(0))2&/6Nt.

How to resolve theelementaryhopping events? Sinc
computer time prohibits us to calculatej(t) for every time
step, we normally find ourselves in the situation of havi
equidistant quenched configurationsj(t i), with, say, t i 11
2t i;105 MD steps. If the same minimum is found for time
t i andt j , we need not care about transitions in the meant
because no relaxation has occurred there. If, in contr
j(t i)Þj(t i 11), we must not expectj(t i 11) to be the direct
successor ofj(t i), since many other minima could have be
visited betweent i andt i 11. Therefore, further minimizations
in this time interval are necessary. For reasons of efficien
we apply a straightforward interval bisection method, wh
locates all relevant transitions with an accuracy of 1 M
step. Although computationally demanding, this has pro
to be most efficient for resolving the relevant details of ho
ping on the PEL.

As demonstrated in Ref.@10#, the time series of potentia
energiese(t)5V„j(t)… reflects well the character of dynam
ics in the supercooled state. ForT50.435,e(t) is shown in
Fig. 1, from which we note a remarkable structure ine(t).
The system is trapped in some stable configurations for l
times, during which a small number of minima are visit
over and over again. Obviously, these minima form sup
structures, which, following Ref.@3#, we denotemetabasins
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~MBs!. One may imagine that minima of the long-lived MB
are organized in funnel-like structures so that the system
stuck there for a long time. It has been argued that the
currence ofb relaxation at low temperatures is due to su
substructure of the PEL@3#. This is supported by the real
space signature of MBs as reported by Middleton and Wa
@29#. Formally, there is no unique way to define MBs for
given PEL due to the lack of a strict time scale separati
Here, we take the pragmatic view and let the system dec
by its MD run. The intuitive notion of MBs from Fig. 1 can
be cast into an algorithm in a straightforward way, see R
@10,36#. One major advantage of analyzing MBs rather th
basins is that the charming simplistic picture of a rand
walk in configuration space will be better fulfilled since d
rect back and forth correlations are already taken into
count. It turns out~see Fig. 1! that long-lived stable MBs are
separated by bursts of rapid transitions among higher min
which look like fountains. They cannot be detected witho
interval bisection. The waiting times of the MBs range fro
a few MD steps to many millions of them. Moreover, com
paring Figs. 1~a! and 1~b!, we find a certain self-similarity in
e(t) when inspected on different time scales. The distrib
tion of MB lifetimes t will be denotedw(t,T), its first mo-
ment ^t(T)& being a key quantity for the following consid
erations.

Our goal is to find an expression for the effective jum
width a(T) of Eq. ~1!. To this end, as a generalization o
j(t), we define the MB inherent structurejMB(t) as the

FIG. 1. The time series of minima energies measured for
BMLJ system ofN565 particles,T50.435. The distance betwee
minimizations before interval bisection is 105 MD steps. The length
of the total run is 23109 MD steps.~a! Time window covering a
quarter of the total run~b! magnification by a factor of 50.
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mean ofj(t) over the MB lifetime. The key idea now is t
introduce the squared distance^R2(n)& after n jumps @30#,
averaged over different realizations. This quantity is pur
spatial since it does not involve any time scale. In the limit
large n, one obtains due to the central limit theore
limn→`^R2(n)&/^jMB

2 (n^t&)&51, where^jMB
2 (n^t&)& is the

average squared displacement after timen^t&. Thus,

D~T!5 lim
n→`

^jMB
2 ~n^t&!&
6Nn^t&

5F lim
n→`

^R2~n!&
6n G 1

N^t&
,

where the first factor may be identified asa2(T)/6. Note that
both factors are independent of system size because IS
sitions are localized@^R2(1)&5O(1)# and mean waiting
times decrease with system size@^t&5O(1/N)#. We may
now calculatea(T) from the simulations, results are show
in Fig. 2. The most important observation is thata(T) is
temperature independent forT,1. Interestingly, this is not
affected by the variation of the elementary jump wid
^R2(1)&, which increases with temperature, a fact that w
recently observed by Schulzet al. @18#. A possible explana-
tion for this might be found in the increasing population
higher-order stationary points@5#, which are known to be
more distant to neighboring minima, but also provoke ma
‘‘bookkeeping’’ IS transitions, thus resulting in larger bac
ward correlations@23#.

In any event, the constancy ofa(T) in the landscape-
influenced regimeT,1 implies that the temperature depe
dence of D(T) follows alone from ^t(T)&, i.e., D(T)
}1/̂ t(T)&. This simple picture breaks down forT.1,
where the explored regions of configuration space proba
have a completely different structure. It has to be noted
the constancy ofa(T) for low T relies heavily on our reso
lution of all elementary IS transitions leading to relaxatio

A further insight from Fig. 2 is that the dynamics on th
level of MBs is basically a random walk except for min

FIG. 2. Squared displacement^R2(n)& aftern MB jumps for the
temperaturesT50.435, 0.466, 0.5, 0.6, 0.8, and 2.0. Also show
are three curves (T50.5, 0.6, and 0.8) for jumps among sing
basins~lower curves!. The latter data have been obtained by e
tremely frequent minimizations, which resolve nearly all IS tran
tions. We have included lines of slope 1.
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back correlations forn<5. As seen from the figure, thes
correlations are present betweensingle basins, the conse
quence being a significant deviation from the relati
^R2(n)&}n. Also note the oscillations in the single bas
^R2(n)& at small n, which result from the back-and-forth
motion within MBs. More importantly, the single basi
curves do not have the same large-n limit so that the effec-
tive jump length on the level of single-basins would be te
peraturedependent. It remains unclear why for a very sma
LJ system (N532), correlations among adjacent basins a
irrelevant for T'Tc @23#, and why intra-basin rather tha
interbasin dynamics is deemed to be the key to the un
standing of diffusion@31#.

We can check the relationD}1/̂ t& within our simula-
tions. Figure 3 shows that it is indeed well fulfilled forT
,1 while for T52, we find the expected deviations.

In the remaining part of the paper, we discuss the prop
ties of the WTDsw(t,T), see Fig. 4. For shortt, all curves

-
-

FIG. 3. Arrhenius plot of the inverse one-particle diffusion co
stant 1/D(T) and the mean waiting timêt(T)& multiplied by a
constant (a251.0). Error bars are of the order of the symbol siz

FIG. 4. Distributions of waiting times,w(t,T), for T51.0, 0.8,
0.6, 0.5, and 0.435~from left to right!. Curves have been shifted t
overlap for smallt. Lines corresponding to algebraic decays w
exponents 0.5 and 2 are shown as guides to the eye. The ar
mark t* (T), i.e., the waiting time with the property
*t* (T)

` dtw(t)t50.9̂ t&. Inset: Power-law exponenta(T) from fits
to the long-time decay. Within the possible accuracy,a(T)'T/Tc

11.
1-3



y

s
l

b

-
a

ng

e
ia
a

or
is

d-

EL
fu-
nce

of
xt

MB

s

.P.
R.
the

RAPID COMMUNICATIONS

B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 030501~R! ~2003!
exhibit a power-law behavior with exponent21/2, similar to
Ref. @32#. At t'1032104, a crossover to the faster deca
w(t,T)}t2a(T) can be observed. ForT'0.45, one findsa
'2.0, for which the expectation valuêt& would diverge.
However, the behaviorw(t)}t2a cannot extend to infinity.
Due to the finite number of MBs in the system, there exist
maximum effective barrierEmax giving rise to an exponentia
cutoff at some minimum rategmin .

The slow decay of the WTDs leads to the important o
servation that the mean waiting time^t& is dominated by the
contributions from larget ~see arrows in Fig. 4!. For ex-
ample, atT50.435, 90% of̂ t& are formed by the 6% long
est waiting times, which are basins of lifetimes greater th
0.53106 MD steps. This may come as a surprise because~i!
the short-lived MBs are much more numerous than the lo
lived and ~ii ! one might intuitively think that the diffusion
constant and, thus,^t& is dominated by the fast particles. Th
result is in qualitative agreement with the approach of X
and Wolynes who regard the relaxation of long-lived loc
structures as the time-determining step@33#.
m

F

nd

E
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Interestingly, the algebraic decay of the WTDs follows f
some theoretical models of diffusion with builtin traps. Th
is the case for Bouchaud’s trap model@16# and the trapping
diffusion model of Odagakiet al. @15#. A recent comparison
of WTDs in the Lennard-Jones system with that of trap mo
els can be found in Ref.@34#.

In conclusion, the detailed analysis of hopping on the P
has provided different insights into the mechanism of dif
sion in supercooled liquids. As we have seen, the emerge
of long-lived MBs is the reason for the slowing down
molecular motion in our supercooled model liquid. As a ne
step, the waiting time should be related to the respective
energies to establish a connection between energy~thermo-
dynamics! and dynamics in the spirit of the Adam-Gibb
relation ~see the subsequent paper@35#!.
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