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Hopping in a supercooled Lennard-Jones liquid: Metabasins, waiting time distribution,
and diffusion
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We investigate the jump motion among potential energy minima of a Lennard-Jones model glass former by
extensive computer simulation. From the time series of minima energies, it becomes clear that the energy
landscape is organized in superstructures called metabasins. We show that diffusion can be pictured as a
random walk among metabasins, and that the whole temperature dependence resides in the distribution of
waiting times. The waiting time distribution exhibits algebraic decays’? for very short times and~* for
longer times, wherex~2 nearT.. We demonstrate that solely the waiting times in the very stable basins
account for the temperature dependence of the diffusion constant.
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The energy landscape picture that was proposed moreffectiveump widtha(T). The latter involvesi) the average
than thirty years ago by Goldstefithi] has turned out to be a jump distance(ii) correlations of jump widths with waiting
fruitful way of describing the complicated many-particle ef- times, and(iii) directional correlations of successive jumps.
fects in disordered systerfig]. Starting from the joint poten-  To our knowledge, this decomposition into spatial and tem-
tial energy landscap€PEL), V(x), of N particles as a func-  poral contributions has not been systematically implemented
tion of their configurationk={x,, . .. Xy}, one expects that jthin the PEL framework so fai priori it is not clear to
the properties of the system at sufficiently low temperaturegyhich degree the temperature dependence(d) is rel-
will be dominated by long residences near local minima ofgyant: see, e.g., Reff19,20. Some information about the
V(x) (inherent structureswith rare hopping events between \5iting time distribution(WTD) has already been gained

them([3]. Re_cently, it. beca_me clear for a model glass formerfrom the analysis of hopping processes of single particles in
that the strict hopping picture approximately holds fbr real space via computer simulatiofsl,22. In contrast, we

;Té (Iandslci:gpet-drzmir;atte%aeglj'mv%;@r, WCeLe-frCr iiithhe ; consider hopping in configuration space, with the advantage
ode-coupling temperaturigr]. FMowever, even for igner ¢ incorporating the full many-particle effecf&3].

ngge{gtl:rrzé';ggér,ﬁ;nsar:)); ?Kﬂgrn;:ft pégggﬂ%;g&i:;ger_e In_ this paper, we present detailed ir_1forr_nati0n about the
influenced regime[8-10]. Thus, in both temperature inter- spatial and tgmpgral aspects O.f hopping in a model glass
vals, an observable like the diffusion constar¢T) should former, and individually determina(T) and (r(T)). We
depend on the topography of inherent structit8sor, more ~ demonstrate that) only (7(T)) depends on temperaturé)
generally, of basinga basin of an inherent structure is de- NOPPINg among single basins is not a random walk, whereas
fined as the set of configurations that reach this minimum vid'0PPiNg among superstructures of minirfraetabasinsis

the steepest desceftl]). Such an understanding is indis- close to a random walkiii) (7(T)) is dominated by the long
pensable to grasp the underlying physics of the Adam-Gibb¥aiting times due to a slowapproximately algebrajdecay
relation[12,13). of WTDs.

A simplified picture of glassy dynamics has been ex- In the present work, we investigate a binary mixture of
pressed in phenomenological models in REfd.—16 based Lennard-Jones particlgBMLJ), as recently treated by two
on spatially uncorrelated hopping procesgsemdom wallk  groups[6,24]; see also Ref[25]. It is characterized by the
in configuration space. Then the whole temperature depernnteraction potentiald/ ,5(r) =4 €, (0u3/1) >~ (0 4p/1)°]
dence is contained in the average waiting tim€T)). The  with the parameter seN=N,+Ng=52+13=65, oap
true dynamics of glass forming systems, however, is ex=0.80,, 0gg=0.880ax, €ap=1.5€an, €gg=0.5¢a4, and
pected to be more complicated. For example, itis known thaf —1 g5, .. Linear functions were added to the potentials to
back and forth correlations cannot be neglected and that thg,sure continuous forces and energies at the cugofnits

elementary jump distances depend on temper@fiftd §. In of length, mass, energy, and time asg,, M, exn, and
general, in a hopping approach, the temperature dependeng/em—gl— respectively. Eor convenience. thouah. we will
of the diffusion constant may be related to spatial and tem- TAN EAA; P Y- . ' an. .
poral aspects as expressed by the relation on_ut units here. Wg use ITangeV|n molegular dyznam|cs simu-

lations (MD) with fixed step size, \?=0.01%

a?(T) =2kgTAt/m{, equal particle massens, friction constantZ,

D(T)= m D and periodic boundary conditions at a densitypefl.2. The

friction constant=2/0.01% is chosen so thakt=1/T. Due

With this ansatz, we anticipate the important role of the mearto the different type of dynamics, thabsolutevalues of

waiting time and collect the spatial details of hopping in antimes and diffusion constants are different from those found
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within Newtonian dynamics simulations. The mode-coupling
temperature isT,=0.45+0.01 in this model systericom-
pare Ref[25]).

For the analysis of dynamics in configuration space, it is
essential to use small systems because otherwise many inter-
esting effects will be averaged o[it0]. The relevance of
small systems has been also pointed out by other groups; see,
e.g., Refs[23,26. On the other hand, the system should not
be too small in order to avoid major finite-size effed.
~60 turns out to be a very good compromise for binary
Lennard-Jones mixtures, wherebs<40 already displays
major finite-size effect$27]. Here, we choosé&l=65. To

back those findings,we have carried out an extensive study of [ H ]
finite-size effects for systems &f=65, 130, andN=1000 -290 '-‘c;(t)+ T=0.435 (b) ]
particles[28]. It turned out that thé\=65 system is nearly SRR .
identical to the bulk Ki=1000) aboveT.. Since well- 2921 i PR S £ B
equilibrated runs oN=130 are lacking below , finite-size 2945 i f +++§ éiz
effects cannot be excluded there at the present stage. How-  ~ Eo+d %wﬁ S gg ]
ever, this does not affect the main results of this paper. More -296§ B e ?i'f e %]
important is the question of a good equilibration at each i..ﬁ?m Iiﬁ B i e
[ £ + ]
temperature. Have the runs been long enough to sample the  _pggr -9y * o]
PEL sufficiently? AboveTl . this is uncritical, which can be [ . . . s
seen from the fact that each run comprised at least 850 496 498 500 502 504
a-relaxation times. A more detailed check, involving the life- t [108 MD steps]

times and distribution of metabasins, indicates that runs
down to T=0.435 are feasible with the available computer FIG. 1. The time series of minima energies measured for the
power. BMLJ system ofN=65 particles,T=0.435. The distance between
By regular quenching the MD trajectory(t) to the bot- minimizations b(_efore interval bisection is_ﬁMD_steps. The I(_ength
tom of the basins visited at tirrte as proposed by Stillinger ©f the total run is 210° MD steps.(a) Time window covering a
and Weber, we obtain a discontinuous traject(t). In this quarter of the total rurib) magnification by a factor of 50.
way, one discards the more or less complicated vibrational
part x(t) — &(t) of motion, only keeping the visited minima (MBs). One may imagine that minima of the long-lived MBs
as “milestones.” The one-particle diffusion constant can beare organized in funnel-like structures so that the system is
also determined from the squared displacement of inhererstuck there for a long time. It has been argued that the oc-
structures vieD =lim_,..{ (£(t) — £(0))?)/6Nt. currence off relaxation at low temperatures is due to such
How to resolve theelementaryhopping events? Since substructure of the PE[3]. This is supported by the real-
computer time prohibits us to calculaf¢t) for every time  space signature of MBs as reported by Middleton and Wales
step, we normally find ourselves in the situation of having[29]. Formally, there is no unique way to define MBs for a
equidistant quenched configuratiogét;), with, say,t;;;  given PEL due to the lack of a strict time scale separation.
—t;~10°> MD steps. If the same minimum is found for times Here, we take the pragmatic view and let the system decide
t; andt;, we need not care about transitions in the meantiméy its MD run. The intuitive notion of MBs from Fig. 1 can
because no relaxation has occurred there. If, in contrashe cast into an algorithm in a straightforward way, see Refs.
E(t) # £(t 1), we must not expecf(t;.;) to be the direct [10,36. One major advantage of analyzing MBs rather than
successor of(t;), since many other minima could have beenbasins is that the charming simplistic picture of a random
visited between; andt; ;. Therefore, further minimizations walk in configuration space will be better fulfilled since di-
in this time interval are necessary. For reasons of efficiencyiect back and forth correlations are already taken into ac-
we apply a straightforward interval bisection method, whichcount. It turns outsee Fig. ] that long-lived stable MBs are
locates all relevant transitions with an accuracy of 1 MDseparated by bursts of rapid transitions among higher minima
step. Although computationally demanding, this has provenvhich look like fountains. They cannot be detected without
to be most efficient for resolving the relevant details of hop-interval bisection. The waiting times of the MBs range from
ping on the PEL. a few MD steps to many millions of them. Moreover, com-
As demonstrated in Ref10], the time series of potential paring Figs. 1a) and Xb), we find a certain self-similarity in
energiese(t) =V(&(t)) reflects well the character of dynam- €(t) when inspected on different time scales. The distribu-
ics in the supercooled state. FBe=0.435, e(t) is shown in  tion of MB lifetimes 7 will be denotede(7,T), its first mo-
Fig. 1, from which we note a remarkable structuree(i). ment{7(T)) being a key quantity for the following consid-
The system is trapped in some stable configurations for longrations.
times, during which a small number of minima are visited Our goal is to find an expression for the effective jump
over and over again. Obviously, these minima form superwidth a(T) of Eq. (1). To this end, as a generalization of
structures, which, following Ref3], we denotemetabasins £(t), we define the MB inherent structur&,sz(t) as the
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FIG. 2. Squared displacemeR?(n)) aftern MB jumps for the FIG. 3. Arrhenius plot of the inverse one-particle diffusion con-

temperaturesT = 0.435, 0.466, 0.5, 0.6, 0.8, and 2.0. Also shown Stant 1D(T) and the mean waiting timer(T)) multiplied by a
are three curvesT(=0.5, 0.6, and 0.8) for jumps among single constant 4°=1.0). Error bars are of the order of the symbol size.
basins(lower curve$. The latter data have been obtained by ex-
tremely frequent minimizations, which resolve nearly all IS transi-
tions. We have included lines of slope 1.

back correlations fon<5. As seen from the figure, these
correlations are present betwesimgle basins, the conse-
quence being a significant deviation from the relation

I . : (R%(n))«n. Also note the oscillations in the single basin
mean of&(t) over the MB lifetime. The key idea now is to (Rz(n)) at smalln, which result from the back-and-forth

e o ent et T s 2, molon wilin VS, Wore mporinty, the sigle bas
S atia?since it does not involve an fime scgle In }[/he Iirr)nit O¥curves do not have the same largdimit so that the effec-
P y : tive jJump length on the level of single-basins would be tem-

large n, one obtains due to the central limit theorem .

) 2 2 . peraturedependentlt remains unclear why for a very small

“me(Rz(n»/(gME?(n(T>)>:1’ where(&yg(n(7))) is the system N=32), correlations among adjacent basins are

average squared displacement after tiie). Thus, irrelevant for T~T, [23], and why intra-basin rather than
interbasin dynamics is deemed to be the key to the under-

(R(n))] 1 standing of diffusior[31].

6n [N(7)’ We can check the relatioB o1/ 7) within our simula-

tions. Figure 3 shows that it is indeed well fulfilled fdr

where the first factor may be identified @4 T)/6. Note that <1 while for T.:.Z’ we find the expected d¢V|at|ons.

both factors are independent of system size because IS trap- In the remaining part of the paper, we discuss the proper-
sitions are localized (R%(1))=0(1)] and mean waiting ies of the WTDsp(7,T), see Fig. 4. For short, all curves
times decrease with system sigér)=0(1/N)]. We may [
now calculatea(T) from the simulations, results are shown 0
in Fig. 2. The most important observation is theg({T) is
temperature independent for<1. Interestingly, this is not
affected by the variation of the elementary jump width
(R?(1)), which increases with temperature, a fact that was
recently observed by Schuét al. [18]. A possible explana-
tion for this might be found in the increasing population of
higher-order stationary poin{s], which are known to be
more distant to neighboring minima, but also provoke many
“bookkeeping” IS transitions, thus resulting in larger back- -10 .,

D(T)= lim <§2Eri1(:<<:>>)> =

n—o n—oo

ward correlation$23]. T |og 10T
In any event, the constancy @f(T) in the landscape- ' . ' ' '
influenced regim& <1 implies that the temperature depen- 0 2 4 6 8

dence of D(T) follows alone from (r(T)), i.e., D(T) FIG. 4. Distributions of waiting timesp(7,T), for T=1.0, 0.8,
«1K7(T)). This S'mp|? picture br.eaks .dOW” for>1, 0.6, 0.5, and 0.43&rom left to right. Curves have been shifted to
where the explored regions of configuration space probablyyerlap for smallr. Lines corresponding to algebraic decays with
have a completely different structure. It has to be noted thagxponents 0.5 and 2 are shown as guides to the eye. The arrows
the constancy of(T) for low T relies heavily on our reso- mark +*(T), i.e., the waiting time with the property
lution of all elementary IS transitions leading to relaxation. Jxmdre(7) 7=0.%(7). Inset: Power-law exponewt(T) from fits

A further insight from Fig. 2 is that the dynamics on the to the long-time decay. Within the possible accuragT)~T/T,
level of MBs is basically a random walk except for minor +1.
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exhibit a power-law behavior with exponentl/2, similar to Interestingly, the algebraic decay of the WTDs follows for
Ref. [32]. At 7=~10°—10*, a crossover to the faster decay some theoretical models of diffusion with builtin traps. This
o(7,T)c7~ D can be observed. FaF~0.45, one findsy s the case for Bouchaud's trap mod&b] and the trapping
~2.0, for which the expectation value) would diverge. diffusion model of Odagakét al.[15]. A recent comparison
However, the behaviop(7)e 7~ * cannot extend to infinity. of WTDs in the Lennard-Jones system with that of trap mod-
Due to the finite number of MBs in the system, there exists &|s can be found in Ref34].
maximum effective barrieE,, giving rise to an exponential |n conclusion, the detailed analysis of hopping on the PEL
cutoff at some minimum ratgy;,. has provided different insights into the mechanism of diffu-
The slow decay of the WTDs leads to the important ob-sjon in supercooled liquids. As we have seen, the emergence
servation that the mean waiting tinie) is dominated by the  of |ong-lived MBs is the reason for the slowing down of
contributions from larger (see arrows in Fig. 4 For ex-  mgjecular motion in our supercooled model liquid. As a next
ample, aff=0.435, 90% of 7) are formed by the 6% long-  step the waiting time should be related to the respective MB
est waiting times, which are basins of lifetimes greater thanynergies to establish a connection between enétgyrmo-

0.5x10° MD steps. This may come as a surprise becadl)se gynamicg and dynamics in the spirit of the Adam-Gibbs
the short-lived MBs are much more numerous than the longre|ation (see the subsequent pajaE)).

lived and (ii) one might intuitively think that the diffusion

constant and, thugz) is dominated by the fast particles. The ~ We gratefully acknowledge helpful discussions with J.P.
result is in qualitative agreement with the approach of XiaBouchaud, T. Odagaki, D.R. Reichman, R. Schilling, H.R.
and Wolynes who regard the relaxation of long-lived localSchober, and H.W. Spiess. Funding was granted by the
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