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Synchronization-based approach for estimating all model parameters of chaotic systems
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The problem of dynamic estimation of all parameters of a model representing chaotic and hyperchaotic
systems using information from a scalar measured output is solved. The variational calculus based method is
robust in the presence of noise, enables online estimation of the parameters and is also able to rapidly track
changes in operating parameters of the experimental system. The method is demonstrated using the Lorenz,
Rossler chaos, and hyperchaos models. Its possible application in decoding communications using chaos is
discussed.
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Synchronization of unidirectionally coupled chaotic sys- In this paper, the least squares approach is used to develop
tems has been a subject of great interest for over a decadegeneral and robust method for deriving the dynamical sys-
[1-4]. The interest in understanding the synchronizationtem governing the evolution of all parameters of a chaotic
characteristics of chaotic systems stems from its potentiadystem. The technique is demonstrated using simulated ex-
applications in a variety of areas, e.g., in optics, communiperimental data from the Lorenz, Rossler chaos, and Rossler
cations, and time series analysis of chaotic systems. An imnyperchaos systems. The advantages of the method are its
portant issue in time series analysis of chaotic systems is th&oility to (a) estimate all parameters in an online settity,
estimation of all parameters using information from a Scalarrespond to unknown changes in parameters of the experi-
me_asured output. This information can in turn be L_Jsed O ental system, an(t) converge to the “true” estimates of
estimate all the unmeasured system states, provided thfo narameters. Each of these is a distinct improvement over
model is known. capabilities of the existing methods.

In general, there are three key issues in parameter estima- : . P
tion of dynamical systems. First, the method has to be robust We begln by briefly describing the set up of the parameter
stimation problem. Let

in the presence of noise. Second, the method must alloW
estimation of all parameters using any conveniently measur- .
able output from the system. Third, it must be able to rapidly x=f(x,p) @
track changes in the operating parameters of the experime
tal system.

Current parameter estimation techniques can be broad
classified as online and off-line strategies. The online, e.g
adaptive control approadb], though simple to implement,
has been demonstrated to be unsuitable for estimation
multiple parameterge.g., for the Rossler systemin con-
trast, off-line, e.g., autosynchronizati¢@] and error mini-
mization[7,8] schemes have been demonstrated to be able to :
estimate all parameters. The former is a geometric approach y=9(y.a), 2
where the optimal vector fields governing temporal evolution

of the parameters are obtained using a linearization basevé ) : .
numerical procedure. Using the error minimization approachI ern.tlcal .to that of n Eq. (). We assume that th_ere exists a
Unidirectional coupling scheme using the available scalar

Goodwin et al. have shown that all parameters can be esti-

mated by using a scalar measurable oufjmot necessarily g:t'?#t toc'zifc ;hic;ﬁ%?zrggggtii tr?)elsrfg&el(? s'g?rl]C(hZ) E\i\z;]bltise
corresponding to one of the state space varialdéshaotic ymp y Y

and hyperchaotic systeni]. experimental system (1).e., y—Xx ast—oo, if g=p. The

For systems with multiple parameters, the least square%Oupllng can either be a drive—response coupling scheme,

error function possesses several minif@h This can lead to e'%" the Pecr?ra-Ca(;_r(_)ll SChf}'ﬁE or %Ifeedbar(]:k c_oup_lmg f
an erroneous estimate of parameters owing to convergence t emec[jg]l. The con |t|prrllsr\]/v Ich enable SBI/”C ronization o
one of the local minima. Moreover, in practice, it may not bet e model systent2) with the experimenta s_yster(rl) are
always possible to possess information of the time at whicIA(VeII knoY\(n. In most cases, synchronization is guarantged if
parameter changes in the experimental system occur. For oall conditional Lyapunov exponents of the error system
line schemes, a lack of this information results in erroneous=Xx—Yy constructed using Eq$l) and(2) are negativg 10].
estimates of the determined parameters. Off-line schemeBechniques are now available which enable design of an uni-
cannot be used in this situation, since there is no way talirectional scheme which guarantees synchronizgtidh
incorporate the effect of parameter changes in the least For the sake of conciseness, we only consider feedback
squares minimization method traditionally employed for pa-coupling in this report. The general representation of this
rameter estimation. scheme is given by

n- . . . .

represent the experimental dynamical system with state vari-
blesxe R", whose parametergse R™ are to be estimated.
he overdot indicates differentiation with respect to time

The only information available from this experimental sys-

6?m is (i) the functional form of the model an@i) a scalar

time series given by an observalsiex). The model is given

by the following equation:

hereye R" and qe R™, and the functional form ofy is
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y=g(y,q) — BK[s(y)—s(x)], 3) sured output from an experiment is available, an extended
system comprising ofn-++m-+nm equations needs to be

whereB is a constant vector anld is the gain vector. The solved in order to estimate parameters of a-dimensional
scheme(3) has been previously used for achieving identicalsystem. The condition for convergence of the procedure is
synchronization in a hyperchaotic systé¢#i. that the real part of the eigenvalues of the Jacobian matrix or

We now develop the main theme of this paper which carthe conditional Lyapunov exponents of the extended system
be defined as “Develop a formalism for constructing a sysformed using Eqs(3) and(7) are all less than zer®].
tem of differential equations governing the evolution of the  Our first example is the Lorenz system. We demonstrate
model system parametexg such that ¢,q)—(x,p) ast the method when the scalar observable s The simulated
—o0.” Our objective will be to design a parameter evolution experimental and model systems are, respectively, given by
scheme that asymptotically drives the measured esggy  the following equations:
—s(x) to zero, and thereby yieldsy,q) — (x,p) ast—co. . .
The starting point is the following minimization problem: X1=P1(X2=X1), Y1=0d1(Y2—Y1),

G(q)=min[{s(y) —s(x)}?]. (4) Xo=PaX1— Xo— X1X3, Y2ZQ2Y1—V2_Y1Y3—k(yz_xz()é)

We note that an inability to correctly estimate the initial con-

Qitions of the state_variablgs_gnd/or parameters _could result 5<3=X1X2—D3X3 yazylyz_q3y3,

in large errors during the initial stage of evolution of the _ _

model system. Our goal, reflected in the choice of the coswith p;=10, p,=28, andp;=8/3. The six equationsd),
function (4), is to force the model outpis(y) to asymptoti-  together with four equatiorifgs.(6) and(7)] for estimation
cally synchronize with the experimental outps(x). The  of each of the three parameters results in a set of eighteen
minimization problem(4) is studied as the following equiva- €quations, governing the evolution of tki¢ simulated ex-

lent system of differential equations perimental system(ii) model system(iii) parameters, and
(iv) the variational derivatives. Whep=gq, the feedback

- _ asty) . term corresponding to the product of the constant veBtor
4= aq; —2Ls(y)=s0] 9q; ' j=1...m. (5 =[0,1,0]", suitable gain vectoK =[0k,0]", and the output

error (y,—X,) guarantees synchronization of the model sys-
The equilibrium state of the syste(b) is typically attained tem with the experimental system. We consider the situation
when the synchronization condition is satisfied, i.e., wherwhere additive uniformly distributed random noise in the
s(y)=s(x). This ensures that the parameter estimates attaifange[ — 0.5,0.3 is present in the measured outpyt Fig-
their true values. In contrast, convergence to the true paranure 1 shows the evolution of the parameters and the relative
eters is not guaranteed in the error minimization approaclestimation errors for the case where in addition to noise, a
since the least squares cost function has several local minimaep perturbation in parameters is imposed on the simulated
[8]. A knowledge of the variational derivativesy;/dq; for  experimental systenit is important to note that this intro-

i=1,...nandj= /M is needed for solving this sys- duces an additional complexity since information about the
tem of equatlons Slnce the functional form of the model isimposed perturbation is not available to the modEthe ro-
known, these derivatives are given hysing Eq.(3)] bustness of the method is demonstrated by the convergence
N to the original parameters close te-125; followed by a
dayi)| < 99 5Yk+ TE as(y) rapid, stable transition, and subsequent convergence into the
dt a_qj = ayk 99 ,?qj e} é’q] ' vicinity of the new operating parameters. All parameters

could be successfully determined when the measured output
i=1,...0n; j=1,...m. (6) was thex; variable. However, the method fails when the
measured output is the; variable, since the Lyapunov ex-
Formulation of Egs(4) and (5) and using Eq(6) to solve  ponents of Eq(3) are not negative for any choice Bfand
Eq. (5) are the key steps in the proposed procedure for estik .
mating all parameters of a chaotic or hyperchaotic system. Qur next examp|e is the Rossler system and we demon-
The method consists of solvin@ the experimental system strate the method when the scalar observabla,is The
(1) (when real experimental data is not availableéi) the  simulated experimental and model system equations are

model systen(3), (iii) the equations given by
. JG Js vy VIR
U= €igg ~ ~2alsy) sl a;y.), j=1,...m =TT e T Y
j j :
@) Xo=X1+P1Xo,  Y2=Y1+diya—K(Ya=Xa),  (9)

governing evolution of the parameters, dng the equations Lo _ oo _

corresponding to the evolution of the variational derivatives Xs=P2+Xs(Xi=P3). Y3~ Azt Ys(YaGs).

Eq. (6). The vector of additional paramete¢ss needed for  with p;=0.2, p,=0.2, andp;=9. The feedback parameter
guaranteeing stability of the overall system and it also convectors were selected to =[0,1,0]" and K=[0k,0]".
trols the rate of synchronization. When the actual scalar meaResults for two different cases are shown in Fig. 2. These
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FIG. 1. Temporal evolution ofd) all the three parameters of the FIG. 2. Temporal evolution of the estimation errors for all the

Lprenz gystgm(b) fract.lonal relative errors for the case when ad- parameters of the Rossler systé@) for the case wherta) only
ditive noise is present in the measured output and the parameters Qf yiive noise is present in the measured outout (b) additive

the simulated experimental system are changedpie 11, p, noise is present and each of the parameters of the simulated experi-

=35, andps=3 att=150. The St.ab'“ty par_ameters ake=25, mental system is increased by 10% &t500. The parameter; has

€1=1, &=15, andez=1. The straight lines irfb) correspond 10 00 caled down 50 times for greater clarity of representation. The

an error of-5%. stability parameters ade=20, €;,=0.15, €,=0.2, andez=2. The
straight lines correspond to an error 85%.

correspond to the situation whén additive uniformly dis-

tributed random noise_ in the randj_e_r 0_.1,0.]}_i_s presen_t N \with p,;=0.25,p,=3, p;=0.5, andp,=0.05. The measur-

the measured outplljFlg.. 2(a)] and (ii) in addition to noise, “able output is assumed to b&(X)=X,+xX;, W=Kk(s(y)

the parameters of the smulated experimental system are in- s(x)), B=[0,1,0,17, andK =[0k,0k]". It is possible to

creased by 10% at=500 [Fig. 2b)]. For both cases, the ,chieve identical synchronization for this system using uni-

parameter estimates exhibit small-amplitude ﬂucmation%irectional coupling and a suitable choicekof We study the
around the correct value. The nature of evolution of errors i bility of the method to track changes in operating param-
Fig. 2(b) indicates that the step perturbation results in a rapithye s of the simulated experimental system. It is assumed that

transition of the parameter estimates into the vicinity of thegarameterspl andp, of the simulated experimental system

new value. A feature of this result is the direct dependence of ., i \reased by 4% at500. The scaled temporal evolu-
the magnitude of fluctuations of individual parameters on theEion of all the estimated paraﬁ’netexs i=1 4 isshown

manner in which the parameter is related to the measureﬂ Fig. 3(@). Figure 3b) shows the evolution of the estimated

OUt_Frl]Jt' ¢ e is af ter Rossler h h cParameters for the case when in addition to changes in oper-
€ next exampie IS a four parameter Rossier hypercna 5ting parameters of the simulated experimental system, uni-

system. The simulated expe_rimental and model systems afgrmly distributed random noise in the range
given by the following equations: [ —0.005,0.00%is present in the experimental measured out-
put. For each case, it can be seen that the method allows a
X1=—Xp—X3, Y1=—Y2— Vs, rapid convergence to the new operating parameters.
Finally, we present a simple example to illustrate a pos-
. . sible application of the proposed parameter estimation
Xo= Xyt P1XatXa,  Y2= Y1t Uiyt Ya—W, scheme in communications using chaos. The problem relates
(10 to decoding of an encoded message signal. It is assumed that
the following information is known{i) the chaotic system
used to encode the message &ingdthe state variable used
. _ for encoding the message. For simplicity, the message is
Xa= —P3X3+PsXs, Y4=—03Y3tqsys—W, taken to be a sinusoidal function, and it is assumed that the

X3=Pat+XiXs, Y3=Oa+Y1Ys,
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FIG. 4. Comparison of the message sigiakin(20rt) and the
decoded signals obtained using tke variable of Lorenz and
Rossler models as the measured output. These are represented by
the continuous, dashed and dotted lines, respectively. Decoding re-

i sults in phase shift as well as in a reduction of the amplitude. The
"J” ,& _f AT ,m.ﬂgm, _________________ amplitude of the message signal has been scaled for greater clarity.

) The stability parameters are the same as that given in Fig. 1 and
Fig. 2.
0.1 k& : : : (b)
0 125 250 375 500
Time the computed model output from the transmitted signal. Fig-

ure 4 shows the fair degree of comparison between the mes-

andq, of the Rossler hyperchaos systéh®) for the case wheia) sage signal and the decoded signal estimated using th_e L(.)'
the parameterp, andp, are increased by 4% at500, (b) addi-  '€NZ and Rossler systems for the case when adfj|t|ve noise in
tive noise is present in the measured output x,, and the param- (€ rangg —0.1,0.1 is also present in the transmitted signal.
etersp; andp, of the simulated experimental system are increased [N conclusion, we have developed an analytical frame-
by 4% att=300. For greater clarity of representation, the param-work for the robust design of dynamical systems that
eters have been scaled in the following manregr:and q; are  guarantees online estimation of all model parameters of a
scaled down by a factor of 10 arid respectively, while the param- given chaotic-hyperchaotic system. A possible application
eterq, is scaled up by a factor of 4. The stability parameters@re in communications using chaos has been demonstrated. Past
k=4, €,=0.75, ande,= 3= €,=0.005; (b) k=3.5, ,=0.80, and  results indicate that the method proposed here would be
€= €3=€,=0.002. applicable to the more realistic situation where only discrete-

o ) ] -~ ~_ time measurements of the experimental output are available
encoding is carried out in an additive manner. The objectiv 8].

is to decode the noisy transmitted signal and retrieve the

message. The first step in achieving this objective is to esti- The author gratefully acknowledges funding and support
mate the parameters of the model system. Once this has beprovided by the Tata Research Development and Design
accomplished, the message can be retrieved by subtractifigenter(TRDDC), Pune, India.

FIG. 3. Temporal evolution of the four parameters q,, qa,
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