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Synchronization-based approach for estimating all model parameters of chaotic systems
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The problem of dynamic estimation of all parameters of a model representing chaotic and hyperchaotic
systems using information from a scalar measured output is solved. The variational calculus based method is
robust in the presence of noise, enables online estimation of the parameters and is also able to rapidly track
changes in operating parameters of the experimental system. The method is demonstrated using the Lorenz,
Rossler chaos, and hyperchaos models. Its possible application in decoding communications using chaos is
discussed.
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Synchronization of unidirectionally coupled chaotic sy
tems has been a subject of great interest for over a de
@1–4#. The interest in understanding the synchronizat
characteristics of chaotic systems stems from its poten
applications in a variety of areas, e.g., in optics, commu
cations, and time series analysis of chaotic systems. An
portant issue in time series analysis of chaotic systems is
estimation of all parameters using information from a sca
measured output. This information can in turn be used
estimate all the unmeasured system states, provided
model is known.

In general, there are three key issues in parameter est
tion of dynamical systems. First, the method has to be rob
in the presence of noise. Second, the method must a
estimation of all parameters using any conveniently mea
able output from the system. Third, it must be able to rapi
track changes in the operating parameters of the experim
tal system.

Current parameter estimation techniques can be bro
classified as online and off-line strategies. The online, e
adaptive control approach@5#, though simple to implement
has been demonstrated to be unsuitable for estimatio
multiple parameters~e.g., for the Rossler system!. In con-
trast, off-line, e.g., autosynchronization@6# and error mini-
mization@7,8# schemes have been demonstrated to be ab
estimate all parameters. The former is a geometric appro
where the optimal vector fields governing temporal evolut
of the parameters are obtained using a linearization ba
numerical procedure. Using the error minimization approa
Goodwin et al. have shown that all parameters can be e
mated by using a scalar measurable output~not necessarily
corresponding to one of the state space variables! of chaotic
and hyperchaotic systems@8#.

For systems with multiple parameters, the least squa
error function possesses several minima@8#. This can lead to
an erroneous estimate of parameters owing to convergen
one of the local minima. Moreover, in practice, it may not
always possible to possess information of the time at wh
parameter changes in the experimental system occur. Fo
line schemes, a lack of this information results in errone
estimates of the determined parameters. Off-line sche
cannot be used in this situation, since there is no way
incorporate the effect of parameter changes in the le
squares minimization method traditionally employed for p
rameter estimation.
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In this paper, the least squares approach is used to dev
a general and robust method for deriving the dynamical s
tem governing the evolution of all parameters of a chao
system. The technique is demonstrated using simulated
perimental data from the Lorenz, Rossler chaos, and Ros
hyperchaos systems. The advantages of the method ar
ability to ~a! estimate all parameters in an online setting,~b!
respond to unknown changes in parameters of the exp
mental system, and~c! converge to the ‘‘true’’ estimates o
the parameters. Each of these is a distinct improvement o
capabilities of the existing methods.

We begin by briefly describing the set up of the parame
estimation problem. Let

ẋ5f~x,p! ~1!

represent the experimental dynamical system with state v
ablesxPRn, whose parameterspPRm are to be estimated
The overdot indicates differentiation with respect to timet.
The only information available from this experimental sy
tem is ~i! the functional form of the model and~ii ! a scalar
time series given by an observables(x). The model is given
by the following equation:

ẏ5g~y,q!, ~2!

where yPRn and qPRm, and the functional form ofg is
identical to that off in Eq. ~1!. We assume that there exists
unidirectional coupling scheme using the available sca
output of the experimental system (1) which enab
asymptotic synchronization of the model system (2) with
experimental system (1), i.e., y→x as t→`, if q5p. The
coupling can either be a drive–response coupling sche
e.g., the Pecora-Carroll scheme@1# or a feedback coupling
scheme@9#. The conditions which enable synchronization
the model system~2! with the experimental system~1! are
well known. In most cases, synchronization is guarantee
all conditional Lyapunov exponents of the error systemė
5 ẋ2 ẏ constructed using Eqs.~1! and ~2! are negative@10#.
Techniques are now available which enable design of an
directional scheme which guarantees synchronization@11#.

For the sake of conciseness, we only consider feedb
coupling in this report. The general representation of t
scheme is given by
©2003 The American Physical Society04-1
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ẏ5g~y,q!2BKT@s~y!2s~x!#, ~3!

whereB is a constant vector andK is the gain vector. The
scheme~3! has been previously used for achieving identi
synchronization in a hyperchaotic system@9#.

We now develop the main theme of this paper which c
be defined as ‘‘Develop a formalism for constructing a s
tem of differential equations governing the evolution of t
model system parametersq such that (y,q)→(x,p) as t
→`. ’’ Our objective will be to design a parameter evolutio
scheme that asymptotically drives the measured errors(y)
2s(x) to zero, and thereby yields (y,q)→(x,p) as t→`.
The starting point is the following minimization problem:

G~q!5min@$s~y!2s~x!%2#. ~4!

We note that an inability to correctly estimate the initial co
ditions of the state variables and/or parameters could re
in large errors during the initial stage of evolution of th
model system. Our goal, reflected in the choice of the c
function ~4!, is to force the model outputs(y) to asymptoti-
cally synchronize with the experimental outputs(x). The
minimization problem~4! is studied as the following equiva
lent system of differential equations

q̇ j52
]G

]qj
522@s~y!2s~x!#

]s~y!

]qj
, j 51, . . . ,m. ~5!

The equilibrium state of the system~5! is typically attained
when the synchronization condition is satisfied, i.e., wh
s(y)5s(x). This ensures that the parameter estimates at
their true values. In contrast, convergence to the true par
eters is not guaranteed in the error minimization appro
since the least squares cost function has several local min
@8#. A knowledge of the variational derivatives]yi /]qj for
i 51, . . . ,n and j 51, . . . ,m is needed for solving this sys
tem of equations. Since the functional form of the mode
known, these derivatives are given by@using Eq.~3!#

d

dt S ]yi

]qj
D5 (

k51

n
]gi

]yk

]yk

]qj
1

]gi

]qj
2BKT(

k51

n
]s~y!

]qj
,

i 51, . . . ,n; j 51, . . . ,m. ~6!

Formulation of Eqs.~4! and ~5! and using Eq.~6! to solve
Eq. ~5! are the key steps in the proposed procedure for e
mating all parameters of a chaotic or hyperchaotic syst
The method consists of solving~i! the experimental system
~1! ~when real experimental data is not available!, ~ii ! the
model system~3!, ~iii ! the equations

q̇j52e j

]G

]qj
522e j@s~y!2s~x!#

]s~y!

]qj
, j 51, . . . ,m

~7!

governing evolution of the parameters, and~iv! the equations
corresponding to the evolution of the variational derivativ
Eq. ~6!. The vector of additional parameterse is needed for
guaranteeing stability of the overall system and it also c
trols the rate of synchronization. When the actual scalar m
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sured output from an experiment is available, an exten
system comprising ofn1m1nm equations needs to b
solved in order to estimatem parameters of an-dimensional
system. The condition for convergence of the procedure
that the real part of the eigenvalues of the Jacobian matri
the conditional Lyapunov exponents of the extended sys
formed using Eqs.~3! and ~7! are all less than zero@6#.

Our first example is the Lorenz system. We demonstr
the method when the scalar observable isx2. The simulated
experimental and model systems are, respectively, given
the following equations:

ẋ15p1~x22x1!, ẏ15q1~y22y1!,

ẋ25p2x12x22x1x3 , ẏ25q2y12y22y1y32k~y22x2!,
~8!

ẋ35x1x22p3x3 ẏ35y1y22q3y3 ,

with p1510, p2528, andp358/3. The six equations~8!,
together with four equations@Eqs.~6! and~7!# for estimation
of each of the three parameters results in a set of eigh
equations, governing the evolution of the~i! simulated ex-
perimental system,~ii ! model system,~iii ! parameters, and
~iv! the variational derivatives. Whenp5q, the feedback
term corresponding to the product of the constant vectoB
5@0,1,0#T, suitable gain vectorK5@0,k,0#T, and the output
error (y22x2) guarantees synchronization of the model s
tem with the experimental system. We consider the situa
where additive uniformly distributed random noise in t
range@20.5,0.5# is present in the measured outputx2. Fig-
ure 1 shows the evolution of the parameters and the rela
estimation errors for the case where in addition to noise
step perturbation in parameters is imposed on the simul
experimental system.It is important to note that this intro-
duces an additional complexity since information about
imposed perturbation is not available to the model. The ro-
bustness of the method is demonstrated by the converg
to the original parameters close tot5125; followed by a
rapid, stable transition, and subsequent convergence into
vicinity of the new operating parameters. All paramete
could be successfully determined when the measured ou
was thex1 variable. However, the method fails when th
measured output is thex3 variable, since the Lyapunov ex
ponents of Eq.~3! are not negative for any choice ofB and
K .

Our next example is the Rossler system and we dem
strate the method when the scalar observable isx2. The
simulated experimental and model system equations
given by

ẋ152x22x3 , ẏ152y22y3 ,

ẋ25x11p1x2 , ẏ25y11q1y22k~y22x2!, ~9!

ẋ35p21x3~x12p3!, ẏ35q21y3~y12q3!,

with p150.2, p250.2, andp359. The feedback paramete
vectors were selected to beB5@0,1,0#T and K5@0,k,0#T.
Results for two different cases are shown in Fig. 2. Th
4-2
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correspond to the situation when~i! additive uniformly dis-
tributed random noise in the range@20.1,0.1# is present in
the measured output@Fig. 2~a!# and ~ii ! in addition to noise,
the parameters of the simulated experimental system ar
creased by 10% att5500 @Fig. 2~b!#. For both cases, the
parameter estimates exhibit small-amplitude fluctuati
around the correct value. The nature of evolution of errors
Fig. 2~b! indicates that the step perturbation results in a ra
transition of the parameter estimates into the vicinity of
new value. A feature of this result is the direct dependenc
the magnitude of fluctuations of individual parameters on
manner in which the parameter is related to the measu
output.

The next example is a four parameter Rossler hyperch
system. The simulated experimental and model systems
given by the following equations:

ẋ152x22x3 , ẏ152y22y3 ,

ẋ25x11p1x21x4 , ẏ25y11q1y21y42w,
~10!

ẋ35p21x1x3 , ẏ35q21y1y3 ,

ẋ452p3x31p4x4 , ẏ452q3y31q4y42w,

FIG. 1. Temporal evolution of~a! all the three parameters of th
Lorenz system,~b! fractional relative errors for the case when a
ditive noise is present in the measured output and the paramete
the simulated experimental system are changed top1511, p2

535, andp353 at t5150. The stability parameters arek525,
e151, e2515, ande351. The straight lines in~b! correspond to
an error of65%.
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with p150.25, p253, p350.5, andp450.05. The measur-
able output is assumed to bes(x)5x21x4 , w5k„s(y)
2s(x)…, B5@0,1,0,1#T, andK5@0,k,0,k#T. It is possible to
achieve identical synchronization for this system using u
directional coupling and a suitable choice ofK . We study the
ability of the method to track changes in operating para
eters of the simulated experimental system. It is assumed
parametersp1 and p2 of the simulated experimental syste
are increased by 4% att5500. The scaled temporal evolu
tion of all the estimated parametersqi ,i 51, . . . ,4 isshown
in Fig. 3~a!. Figure 3~b! shows the evolution of the estimate
parameters for the case when in addition to changes in o
ating parameters of the simulated experimental system,
formly distributed random noise in the rang
@20.005,0.005# is present in the experimental measured o
put. For each case, it can be seen that the method allow
rapid convergence to the new operating parameters.

Finally, we present a simple example to illustrate a p
sible application of the proposed parameter estimat
scheme in communications using chaos. The problem rel
to decoding of an encoded message signal. It is assumed
the following information is known:~i! the chaotic system
used to encode the message and~ii ! the state variable use
for encoding the message. For simplicity, the messag
taken to be a sinusoidal function, and it is assumed that

of

FIG. 2. Temporal evolution of the estimation errors for all t
parameters of the Rossler system~9! for the case when~a! only
additive noise is present in the measured outputx2, ~b! additive
noise is present and each of the parameters of the simulated ex
mental system is increased by 10% att5500. The parameterq3 has
been scaled down 50 times for greater clarity of representation.
stability parameters arek520, e150.15, e250.2, ande352. The
straight lines correspond to an error of65%.
4-3
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encoding is carried out in an additive manner. The objec
is to decode the noisy transmitted signal and retrieve
message. The first step in achieving this objective is to e
mate the parameters of the model system. Once this has
accomplished, the message can be retrieved by subtra

FIG. 3. Temporal evolution of the four parametersq1 , q2 , q3,
andq4 of the Rossler hyperchaos system~10! for the case when~a!
the parametersp1 andp2 are increased by 4% att5500, ~b! addi-
tive noise is present in the measured outputx21x4, and the param-
etersp1 andp2 of the simulated experimental system are increa
by 4% att5300. For greater clarity of representation, the para
eters have been scaled in the following manner:q2 and q3 are
scaled down by a factor of 10 and34 , respectively, while the param
eterq4 is scaled up by a factor of 4. The stability parameters are~a!
k54, e150.75, ande25e35e450.005; ~b! k53.5, e150.80, and
e25e35e450.002.
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the computed model output from the transmitted signal. F
ure 4 shows the fair degree of comparison between the m
sage signal and the decoded signal estimated using the
renz and Rossler systems for the case when additive nois
the range@20.1,0.1# is also present in the transmitted signa

In conclusion, we have developed an analytical fram
work for the robust design of dynamical systems th
guarantees online estimation of all model parameters o
given chaotic-hyperchaotic system. A possible applicat
in communications using chaos has been demonstrated.
results indicate that the method proposed here would
applicable to the more realistic situation where only discre
time measurements of the experimental output are avail
@8#.

The author gratefully acknowledges funding and supp
provided by the Tata Research Development and Des
Center~TRDDC!, Pune, India.
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FIG. 4. Comparison of the message signalI 5sin(20pt) and the
decoded signals obtained using thex2 variable of Lorenz and
Rossler models as the measured output. These are represent
the continuous, dashed and dotted lines, respectively. Decodin
sults in phase shift as well as in a reduction of the amplitude. T
amplitude of the message signal has been scaled for greater cl
The stability parameters are the same as that given in Fig. 1
Fig. 2.
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