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Breaking time for the quantum chaotic attractor
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A model of a quantum dissipative system is considered in the regime when the classical limit corresponds to
a chaotic attractor, and the breaking timgof the classical-quantum correspondence is obtained. The model
describes a periodically kicked harmonic oscillator a particle in a constant magnetic figldith a dissipa-
tion. Another analog of this problem is the dissipative kicked Harper model. It is shown that in the limit of the
so-called dying attractor, the breaking timg can be arbitrarily large.
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The role of dissipation in quantum systems is an object ofum corrections will be of the order of 1 and will destroy the
extensive research, especially due to the different practicasemiclassical behavior of the systems. In this paper, we will
needs of contemporary experimental and theoretical physicgalculate the breaking time%d) for a dissipative quantum
Different aspects related to the quantum dissipative prosystem. We consider the nonlinear dissipative dynamics of a
cesses can be found|ihi—6]. A special interest in dissipation particle in the presence of a constant magnetic field. The
is related to the decoherenf€]| that can prevent quantum classical counterpart of the model that appearef®6j is
computing, since the common opinion is that dissipation
should lead to losses of the quantum features of a system o -

[8,2]. A detailed analysis of related problems can be found in X+ yx+ wix=ekoTsin(kox) >, 8(t—nT), (3
[2], where a quantum counterpart of a dissipative kicked ro- =T

tor map[9] is considered. It is practically shown j&] that . . . .
for small dissipation the time decay of different observableé’.\’hICh corresponds to the cyclotronic motion with the effec-

and the destruction of localization take place in the systemf“ve cyclotron frequencyoH in the presence of_dissipatior_l of
The goal of this paper is to return to the question of thethe ratey, while the perturbation is a periodic set of kicks

existence of a quantum analog of a classical chaotic attract(W'th the periodT and the amplitudes, and ko. IS a wave
and to estimate the breaking timg of the semiclassical number. The model also corresponds to a kicked harmonic

applicability in the presence of finite dissipation, i.e., of diS_oscillator with dissipation and, with some modification, can

sipation that does not go to zero. The breaking timavas be applied to nonlinear optid27] or in the interaction of

derived for a nondissipative system|ib0] and discussed in rgdia_tion with mattef27—2_q. I.t was shown_ in(2] that dis- .
numerous papefd1—23. Its general form sipation destroys the localization length. Since the last one is

a strong manifestation of classical chaos in the quantum situ-

1 ation, we select modéB) that does not have a localization
7= In(clh) (1) for y=0 andQT==/2 [30]. And, finally, one more reason
to consider model3) is that for the same conditiong
with the Lyapunov exponemt and some constamtcan be =0,QT=/2, itis as adequate as the kicked Harper model

qualitatively estimated from the wave-packet dispersion. A31,32.

more sophisticated expression gf appears in the case in  This quantum problem can be considered in the frame-
which the classical limit consists of a possibility of a strongWork of the following non-Hermitian Hamiltonian:

stickiness of trajectories to some hierarchical set of islands in
phase space. The quantum breaking time appears to be

oo

H=(Q—-iy)ata+eTcosky(a'+a) >, s(t—nT).
n=-—w

C
Th=h—i|n(c2/ﬁ) ) (4

Here annihilation and creation operators have the commuta-

with  standing as an anomalous transport exponent for clagion rule [a,a’]=%. The complex frequency=Q —iy/2
sical diffusion[23,24]. The estimates of the constamtgc,  determines the effective frequency
in Eg.(2) and a simulation of Eq2) were performed ifi24].

A typical situation for the appearance of a classical cha- wny=[Q%+ %142 (5)
otic attractor includes a fairly strong dissipation and an ex-
ternal pumping[9] (see also the recent rigorous consider-in the presence of a finite width of the levels. In the clas-
ation in [25]). This type of chaotic attractor is related to sical limit, the system has chaotic zones, and resonances be-
systems that are close to the Hamiltonian ones. The quantiween the perturbation and the linear oscillator leading to the
zation of such systems means that after the t"ré‘lé, guan-  unlimited pumping of energ}31]. The non-Hermitian nature
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of H does not change the operator’s algebra, and it produces (sinkox)s(sin(koi»
the following Heisenberg equations:
_ = sin(kox) — 7ik3sin(kox) D (X,X),
iha=[a,H]=hwa—ek,T siMky(a+a’)]

D _ X JIX 12
XD 8(t—nT), (X’X)_ﬁaa*’ (12
n
. - wherex=x(t). The differentiation ovee& can be replaced by
—iha'=[H" a"|=ho*a’— ek T sinko(a+a’)] the differentiation over the initial momentum and coordinate.
From Egs.(7) and(9), we obtain
X2, o(t=nT). (6) (x| mo ) y
00 oma ) T2 lap @

It is convenient to transfer to the momentum-coordinate vari-
ables. Using the linear transformation where xo=x(t=0) and py,=p(t=0). Following [26], we
integrate the Ehrenfest equatiofid) over the periodr. Be-
x=(a+ah/\2mQ, p=iymQ/2(a’-a), (7)  tween two consequent kicks, the equation of motion is

we obtain from Eq(7) X+ yX+ wyx=0. (14)
R . Y R At a kick in the moment,=nT, the shift conditions are
p=—02mx— 5P+ koeT sin(kox) >, 8(t—nT),

" X(t,+0)=x(t,—0),

- - +0)= -0)+ [

X= p/m_ %X (8) p(tn 0) p(tn 0) k06T<S|nkOXn>a

where

Let us introduce a coherent state bgsi$ at the initial time

t=0. Then we define the mean values of the operators at (sinkoxn) =sinkox(ty = 0)

timet, X[1—AkED (X(t,—0),x(t,—0))].
x(t)=(§((t))=<a|§((t)|a), The result of this integration is the following map:
p(t) =(p(t))=(alp(t)| ). ©) an:e‘(V’z)Tl (Pt koeT<sinkoxn>)( cosQT

This definition also implies that the operator) and p(t) )

are normally ordered, i.e., there exists a presentation _ %sinQT) —Ox,sinQT| 1+ é ]

(x()=2 x(H{@h*a)=2 xq(t)(a*)*a!, 1
xn+1=5e(7’2)T| (Pn+ Ko€eT{sinkoxn))sinQT

(P(1))=2 py (t){(@hka'y=> py (t)(a*) e (10
+Qxp,

Y .
cosQ T+ mstT) ] . (15

with corresponding coefficients (t),pi (), while « _ o _
=(a(t=0)) and o* =(af(t=0)). Using Egs.(9) and(10), A variety of realizations for the classical counterpart has
the Heisenberg equatiomg) can be averaged over the co- been studied ”[26] for different values of the parameters

herent statesa). It gives the Ehrenfest equations QOT,y,e. For simplicity, one consider@ T= /2. Introduc-
ing the dimensionless variables

b=—m02x—%p+koeT(sinkox)2 S(t—nT), Kox=—v, Kop/mQ=u, (16)
n
we obtain[26]

x=p/m— %x, (11) y ¥
Upyr=e 02T — 5 (Unt Ku(sinua)) +vy 1+—492

where (sinky)=(a|sinkox|e). This quantity can be calcu- 2

lated only approximately33,10 for an arbitraryt. In the Mo (1Y ;

first order off:, it is that 5 KusinuaD(vn,vn),
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_ . Y
Un+1=¢€ T _(un+KH<SmUn>)+mvn
RKG iV
+me WZ)TEKH sinv,D(v,,vy). 17
Here
Ky=—eTki/mQ=|e| Tki/mQ (18)
and
1[[dv,\2 [dv,\?
D(Unyvn)zz 0 + a0, | (19

Let us introduce the dimensionless quantum parameter

_ hk3
h=—2

—k (20

Whenh=0, there is a chaotic attractor under the condition

of strong chaos and strong dissipati@®]. A rough estima-
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This valueri? is the dissipative classical-quantum breaking
time. For y=0, it coincides with Eq.(1), where A
=2InKy. It follows from (21) that the denominator in Eq.
(22) is always positive, but it can be arbitrarily small. The
situation, when 2 IiK,—+T is very small, was called if9]

“the dying attractor.” In this caser'?) is arbitrarily large but
finite. The result of Eq(22) expresses the fundamental cor-
respondence principle. It establishes relations between the
main parameters, namely the dimensionless semiclassical pa-

rameterh, the global chaos parametéy, , and the decay,
that determine the quantum dynamics of the system with the
non-Hermitian Hamiltonian.

The final result can be commented on as follows. Since
the dying attractor situation is

1—yT/A—0+, (23)

it means an increase of the validity of the semiclassical con-
sideration simultaneously with the increase of time of the
decay of correlations. Therefore, one meets two competing

tion of the classical chaotic attractor can be obtained fro"factors with respect to quantum computing: less decoherence

the stability condition of the initial pointy,v) =(0,0). From
Eq. (17) whenh=0, the criteria are

>1. (21)

Ky>2 cosl{%T

The evolution of the quantum correctio(k9) is determined
by the local instability of classical trajectorie®,,,/dv,

~e~("ATK,, . An exponential growth of the quantum cor-
rections D(v,,,v,) with time leads to the breakdown of
semiclassical equations that describes quantum dynamics

the framework of the Ehrenfest equatiofid). A radius of
the convergence of the expansi@t®) gives the following
restriction on time:

t<AD In(1h) __ [(1—yTIA 22
Th m—%(—v ). (22

due to chaos but more decoherence due to the dissipation.
Our consideration has at least two weak points that are worth
mentioning: we use an oversimplified model of dissipation
and we are unable to characterize the situationt fori® .

The first point does not seem too serious and represents some
technical features that can be overcome. The second point is
more serious: what is the quantum manifestation of the clas-
sical chaotic attractor and does it mean that tforr\® we

can preserve the quantum features of the system necessary
fﬁr quantum computing, and at the same time suppress the
external dissipation? These problems will be studied in the
future.
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