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Breaking time for the quantum chaotic attractor
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A model of a quantum dissipative system is considered in the regime when the classical limit corresponds to
a chaotic attractor, and the breaking timet\ of the classical-quantum correspondence is obtained. The model
describes a periodically kicked harmonic oscillator~or a particle in a constant magnetic field! with a dissipa-
tion. Another analog of this problem is the dissipative kicked Harper model. It is shown that in the limit of the
so-called dying attractor, the breaking timet\ can be arbitrarily large.
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The role of dissipation in quantum systems is an objec
extensive research, especially due to the different prac
needs of contemporary experimental and theoretical phys
Different aspects related to the quantum dissipative p
cesses can be found in@1–6#. A special interest in dissipation
is related to the decoherence@7# that can prevent quantum
computing, since the common opinion is that dissipat
should lead to losses of the quantum features of a sys
@8,2#. A detailed analysis of related problems can be found
@2#, where a quantum counterpart of a dissipative kicked
tor map@9# is considered. It is practically shown in@2# that
for small dissipation the time decay of different observab
and the destruction of localization take place in the syste

The goal of this paper is to return to the question of
existence of a quantum analog of a classical chaotic attra
and to estimate the breaking timet\ of the semiclassica
applicability in the presence of finite dissipation, i.e., of d
sipation that does not go to zero. The breaking timet\ was
derived for a nondissipative system in@10# and discussed in
numerous papers@11–22#. Its general form

t\5
1

L
ln~c/\! ~1!

with the Lyapunov exponentL and some constantc can be
qualitatively estimated from the wave-packet dispersion
more sophisticated expression oft\ appears in the case i
which the classical limit consists of a possibility of a stro
stickiness of trajectories to some hierarchical set of island
phase space. The quantum breaking time appears to be

t\5
c1

\m
ln~c2 /\! ~2!

with m standing as an anomalous transport exponent for c
sical diffusion@23,24#. The estimates of the constantsc1,c2
in Eq. ~2! and a simulation of Eq.~2! were performed in@24#.

A typical situation for the appearance of a classical c
otic attractor includes a fairly strong dissipation and an
ternal pumping@9# ~see also the recent rigorous consid
ation in @25#!. This type of chaotic attractor is related
systems that are close to the Hamiltonian ones. The qua
zation of such systems means that after the timet\

(d) , quan-
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tum corrections will be of the order of 1 and will destroy th
~semi!classical behavior of the systems. In this paper, we w
calculate the breaking timet\

(d) for a dissipative quantum
system. We consider the nonlinear dissipative dynamics
particle in the presence of a constant magnetic field. T
classical counterpart of the model that appeared in@26# is

ẍ1g ẋ1vH
2 x5ek0T sin~k0x! (

n52`

`

d~ t2nT!, ~3!

which corresponds to the cyclotronic motion with the effe
tive cyclotron frequencyvH in the presence of dissipation o
the rateg, while the perturbation is a periodic set of kick
with the periodT and the amplitudee, and k0 is a wave
number. The model also corresponds to a kicked harmo
oscillator with dissipation and, with some modification, c
be applied to nonlinear optics@27# or in the interaction of
radiation with matter@27–29#. It was shown in@2# that dis-
sipation destroys the localization length. Since the last on
a strong manifestation of classical chaos in the quantum s
ation, we select model~3! that does not have a localizatio
for g50 andVT5p/2 @30#. And, finally, one more reason
to consider model~3! is that for the same conditionsg
50,VT5p/2, it is as adequate as the kicked Harper mo
@31,32#.

This quantum problem can be considered in the fram
work of the following non-Hermitian Hamiltonian:

H5~V2 ig!a†a1eT cosk̃0~a†1a! (
n52`

`

d~ t2nT!.

~4!

Here annihilation and creation operators have the comm
tion rule @a,a†#5\. The complex frequencyv5V2 ig/2
determines the effective frequency

vH5@V21g2/4#1/2 ~5!

in the presence of a finite widthg of the levels. In the clas-
sical limit, the system has chaotic zones, and resonances
tween the perturbation and the linear oscillator leading to
unlimited pumping of energy@31#. The non-Hermitian nature
©2003 The American Physical Society03-1
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of H does not change the operator’s algebra, and it produ
the following Heisenberg equations:

i\ȧ5@a,H#5\va2e k̃0T sin@ k̃0~a1a†!#

3(
n

d~ t2nT!,

2 i\ȧ†5@H†,a†#5\v* a†2e k̃0T sin@ k̃0~a1a†!#

3(
n

d~ t2nT!. ~6!

It is convenient to transfer to the momentum-coordinate v
ables. Using the linear transformation

x̂5~a1a†!/A2mV, p̂5 iAmV/2~a†2a!, ~7!

we obtain from Eq.~7!

ṗ̂52V2mx̂2
g

2
p̂1k0eT sin~k0x̂!(

n
d~ t2nT!,

ẋ̂5 p̂/m2
g

2
x̂. ~8!

Let us introduce a coherent state basisua& at the initial time
t50. Then we define the mean values of the operator
time t,

x~ t !5^x̂~ t !&5^aux̂~ t !ua&,

p~ t !5^ p̂~ t !&5^au p̂~ t !ua&. ~9!

This definition also implies that the operatorsx̂(t) and p̂(t)
are normally ordered, i.e., there exists a presentation

^x̂~ t !&5( xk,l~ t !^~a†!kal&5( xk,l~ t !~a* !ka l ,

^ p̂~ t !&5( pk,l~ t !^~a†!kal&5( pk,l~ t !~a* !ka l ~10!

with corresponding coefficientsxk,l(t),pk,l(t), while a
[^a(t50)& anda* [^a†(t50)&. Using Eqs.~9! and ~10!,
the Heisenberg equations~8! can be averaged over the c
herent statesua&. It gives the Ehrenfest equations

ṗ52mV2x2
g

2
p1k0eT^sink0x&(

n
d~ t2nT!,

ẋ5p/m2
g

2
x, ~11!

where ^sink0x&[^ausink0x̂ua&. This quantity can be calcu
lated only approximately@33,10# for an arbitraryt. In the
first order of\, it is
02720
es

i-

at

^sink0x&[^sin~k0x̂!&

5sin~k0x!2\k0
2sin~k0x!D~x,x!,

D~x,x!5
]x

]a

]x

]a*
, ~12!

wherex[x(t). The differentiation overa can be replaced by
the differentiation over the initial momentum and coordina
From Eqs.~7! and ~9!, we obtain

D~x,x!5
1

2mV F S ]x

]x0
D 2

1
mV

2 S ]x

]p0
D 2G , ~13!

where x05x(t50) and p05p(t50). Following @26#, we
integrate the Ehrenfest equations~11! over the periodT. Be-
tween two consequent kicks, the equation of motion is

ẍ1g ẋ1vHx50. ~14!

At a kick in the momenttn5nT, the shift conditions are

x~ tn10!5x~ tn20!,

p~ tn10!5p~ tn20!1k0eT^sink0xn&,

where

^sink0xn&5sink0x~ tn20!

3@12\k0
2D„x~ tn20!,x~ tn20!…#.

The result of this integration is the following map:

pn115e2(g/2)TH ~pn1k0eT^sink0xn&!S cosVT

2
g

2V
sinVTD2Vxn sinVTS 11

g2

4V2D J ,

xn115
1

V
e2(g/2)TH ~pn1k0eT^sink0xn&!sinVT

1VxnS cosVT1
g

2V
sinVTD J . ~15!

A variety of realizations for the classical counterpart h
been studied in@26# for different values of the parameter
VT,g,e. For simplicity, one considersVT5p/2. Introduc-
ing the dimensionless variables

k0x52v, k0p/mV5u, ~16!

we obtain@26#

un115e2(g/2)TH 2
g

2V
~un1KH^sinvn&!1vnS 11

g2

4V2D J
1

\k0
2

mV
e2(g/2)T

g

2
KH sinvnD~vn ,vn!,
3-2
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vn115e2(g/2)TH 2~un1KH^sinvn&!1
g

2V
vnJ

1
\k0

2

mV
e2(g/2)T

g

2
KH sinvnD~vn ,vn!. ~17!

Here

KH52eTk0
2/mV5ueuTk0

2/mV ~18!

and

D~vn ,vn!5
1

2 F S ]vn

]v0
D 2

1S ]vn

]u0
D 2G . ~19!

Let us introduce the dimensionless quantum parameter

h̃5
\k0

2

mV
. ~20!

When h̃50, there is a chaotic attractor under the conditi
of strong chaos and strong dissipation@26#. A rough estima-
tion of the classical chaotic attractor can be obtained fr
the stability condition of the initial point (u,v)5(0,0). From
Eq. ~17! when h̃50, the criteria are

KH.2 coshS g

2
TD.1. ~21!

The evolution of the quantum corrections~19! is determined
by the local instability of classical trajectories]vn11 /]vn
;e2(g/2)TKH . An exponential growth of the quantum co
rections D(vn ,vn) with time leads to the breakdown o
semiclassical equations that describes quantum dynamic
the framework of the Ehrenfest equations~11!. A radius of
the convergence of the expansion~12! gives the following
restriction on time:

t,t\
(d);

ln~1/h̃!

2 lnKH2gT
5t\ /~12gT/L!. ~22!
ce

02720
in

This valuet\
(d) is the dissipative classical–quantum breaki

time. For g50, it coincides with Eq. ~1!, where L
52 lnKH . It follows from ~21! that the denominator in Eq
~22! is always positive, but it can be arbitrarily small. Th
situation, when 2 lnKH2gT is very small, was called in@9#
‘‘the dying attractor.’’ In this case,t\

(d) is arbitrarily large but
finite. The result of Eq.~22! expresses the fundamental co
respondence principle. It establishes relations between
main parameters, namely the dimensionless semiclassica
rameterh̃, the global chaos parameterKH , and the decayg,
that determine the quantum dynamics of the system with
non-Hermitian Hamiltonian.

The final result can be commented on as follows. Sin
the dying attractor situation is

12gT/L→01, ~23!

it means an increase of the validity of the semiclassical c
sideration simultaneously with the increase of time of t
decay of correlations. Therefore, one meets two compe
factors with respect to quantum computing: less decohere
due to chaos but more decoherence due to the dissipa
Our consideration has at least two weak points that are w
mentioning: we use an oversimplified model of dissipati
and we are unable to characterize the situation fort.t\

(d) .
The first point does not seem too serious and represents s
technical features that can be overcome. The second poi
more serious: what is the quantum manifestation of the c
sical chaotic attractor and does it mean that fort.t\

(d) we
can preserve the quantum features of the system nece
for quantum computing, and at the same time suppress
external dissipation? These problems will be studied in
future.
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