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Saddle-node ghost-induced low-frequency fluctuations in an external-cavity laser diode
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We investigate numerically the low-frequency fluctuation regime in a laser diode subject to optical feedback.
We demonstrate that a saddle-node ghost can induce this regime.
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[. INTRODUCTION cal mechanisms underlying the laser stabilization are still
unknown [8]. Furthermore, the experimental study on the

A semiconductor laser subject to optical feedback exhibitslouble-feedback configuration has revealed time-periodic os-
a large variety of dynamical instabilities including chaos.cillations with frequencies much larger than those that might
These can lead to severe degradation of the laser characterpriori be expected when the laser is biased close to thresh-
istics, e.g., the increase of its typical optical linewidth from old. Periodic oscillations with similar frequencies have been
100 MHz to several tens of gigahertzee Ref[1] and ref- found by investigating numerically the Lang-Kobayashi
erences therejnWhen the laser diode is pumped close to itsequations extended to the double-feedback configuration.
solitary threshold, its optical power can exhibit sudden drop-They have been interpreted as resulting from a beating be-
outs that occur aperiodically. The typical duration betweenyween ECMs and antimod¢9,10].
two Consecutive drOpOUtS iS mUCh |arger than the period of In this paper' we investigate the dynamics of a semicon-
the relaxation oscillations or the external-cavity round-tripgyctor laser pumped close to its solitary threshold and sub-
time. For this reason, 'ghis regime ?s usually referred to as thf‘ect to two optical feedbacks. The increase of one of the
low-frequency fluctuatioriLFF) regime. Already reported in - teoqhack rates leads to the destruction of pairs of steady-state

1977 by Risch and VourmarfP], the LFF regime has at- g, iions. However, even when they have disappeared, the

tracted ”.‘“Ch thgoretical and experimental interest.. MUItipl%ixed points continue to influence the dynamics of the sys-
explanations of its origin have been proposed. A widely ac-

. i . tem. We demonstrate that these saddle-node ghosts can ini-
cepted interpretation of this phenomenon was presented ; . .
Sano[3] in 1994; it relies on the Lang-Kobayashi equations ate the mtensny dropputs that characterize the low-
[4] that assume single-mode operation of the laser and We(,ﬂ;equency fluctuation regime.
to moderate amount of external optical feedback. Sano
showed that the intensity dropouts are caused by crises be-
tween local chaotic attractors and saddle-type antimf@les Il. MODEL AND STEADY-STATE SOLUTIONS
In his analysis, the process of intensity recoveries is associ-

ated to a chaofic itinerancy of the system trajectory in phas roblem of a laser diode subject to optical feedback from a

space among attractor ruins of external-cavity mode . . . .
(ECMy), with a drift towards the maximum gain mode close QOubIe cavity(see Fig. 1 by including a second delay term

to which collisions of the attractor ruins of ECMs and anti- " the rate_ equat_|on for the electrlc. fleld. using the same

modes occur. norma_llzatlon as in Ref.11], the modified Lang-Kobayashi
Contrary to the single-feedback case, the dynamics of gquations are

laser diode subject to two optical feedbacks has been poorly

investigated although its study reveals a great wealth of dy- o=

namical behaviors. Fischet al. have reported experimental ds

realization of high-dimensional chaos in such a sysféin

The Lang-Kobayashi equatiof$] can be extended to the

(1+ia)NE+ k1E(s— 7)) exp(—iQ 1)

Rogister et al. [6,7] have numerically and experimentally +roE(s— T)exp(—1Qd7y), @)
demonstrated that a laser diode subject to a single optical
feedback and operating in the low-frequency fluctuation re-
gime can be stabilized by means of a second optical feed Mirror 2, &,
back. This method relies on the destruction of saddle-type
antimodes responsible for the LFF crises and the creation o Delay 1,
new, stable, maximum gain modes onto which the laser
locks. The idea of using a second optical feedback to stabi- .
lize an external-cavity laser diode was proposed for the first Mirror 1, k;
time by Liu and Ohtsubo in Ref8] but in the case of a laser +————
pumped far above threshold. In this case, however, the physi _
Delay 1,

*Corresponding author. Email address: FIG. 1. Schematic configuration of a laser diode subject to op-

rogister@telecom.fpms.ac.be tical feedback from a double cavity.
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FIG. 2. (a) Stationary angular frequenciésas function ofx,. FIG. 3. Time traces of the normalized laser intensity for

Thin curves correspond to ECMs, thick curves to antimodes. =0 (a), 1.6x107* (b), and 1.4 1073 (0). x;=7.2x10 3. The
Bifurcation diagram of the phase difference function. The first feedtime traces have been averaged over 4 ns to model the limited

back rate is«;=7.2x10"3, bandwidth of detectors that are usually employed in experiments.
dN i i ;
— =P—N-—(1+2N)|EJ%. 7 tained from Eq..(4), shows typical evolut!ons of the prqduct
ds A7, of the stationary angular frequencies)(and the first

. . . ) ) feedback delay £;) when «, is varied. The figure is calcu-
The dimensionless timgis measured in units of the photon |04 for ky=7.2X1073, 7,=1400, 7,=1267+1.5

lifetime 7,; E(s) =A(s)exdi¢(s)] andN(s) are the normal-
ized slowly varying complex electric field and the normal-
ized excess carrier numbet; and x, are the normalized
feedback rates of the first and second external cavitieg-and
and 7, the ratios of the round-trip time to the photon lifetime . . . )
for those cavitiesa is the linewidth enhancement factor and round trip in the first and the second cavities are approxi-
Q) is the product of the angular frequency of the solitary IasermateWQTlE —2.90 mod 2r and}7,=2.78 mod 27, re-

and the photon lifetimeR is the dimensionless pumping cur- SPectively. Similarly to the single-feedback casee Ref.
rent above solitary laser threshold afidthe ratio of the [1]), the steady-state solutions are of two kinds: saddle points

X \/(2cT,), wherer,=1 ps is the photon lifetime ancithe
velocity of light in vacuum, withk, as the bifurcation pa-
rameter.

For these numerical values, the phase differences over one

carrier lifetime to the photon lifetime. that are referred to as antimodes and other solutions that can
The steady-state solutions of E¢$) and(2) can be writ-  be stable and are called external cavity modes. Figtae 2

ten in the form shows that several pairs of external-cavity modes and anti-

modes collide and disappear through saddle-node bifurca-

E=Aexdi(A—Q)s], (3)  tions as the rate of the second feedback increases. Further,

increases ok, lead to the creation of new pairs of steady-

where the stationary angular frequenty the amplitudeAs  g4te solutions but those are not shown in the figure.

and the normalized carrier numbig satisfy the equations

A=Q—k[acogAr)+Sin(A7y)]
I1l. NUMERICAL RESULTS

wol @ COSATy) F SINAT)], @ In this section, the bifurcation diagram of the phase dif-
, P—Ng ference funqtionﬁ(t)— ¢(t— T-l)+2Q g [Fig. 2(b)], the tem-
AS=ToN. -0 (5)  poral evolution of the intensityE|? (Fig. 3) and the system
s trajectories in the plane[¢(t)— d(t—71)+Q7,N(1)]
and (Figs. 4 and pare calculated by solving numerically Eq$)
and (2). The choice of the phase difference function is con-
Ng=— k1COSAT]) — k,COJ A 7,). (6) venient because it reduces for, for stationary behaviors.

We can, therefore, compare FigaRand Fig. Zb). When the
In the following, we use typical values for the linewidth first cavity is acting alone, i.ex,=0, the trajectory displays
enhancement factor and the ratio of the carrier lifetime to thehaotic itinerancy among seven attractor ruins of external
photon lifetime, namelyg=4 andT=1000, and we assume cavity modes and collisions with three different antimodes
that the laser works at the wavelength=780 nm and is [Fig. 4@]. Sharp intensity dropouts are clearly visible in
pumped at threshold.e., P=0). Figure Za), which is ob-  Fig. 3@). For x,=1.2x10"%, the ECM with the lowest
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22107 mo*(c) size. Fork,=2.6x 10" 4, the attractor does no longer collide
0 0 with the saddle-point. Chaotic, quasiperiodic and periodic
- - . behaviors are successively observed frege=2.6x 104 to
z “ o o © 8.4x10 % As an example, a stable chaotic attractor and a
s . ° limit cycle are shown in Figs. 4), 4(d) for k,=2.8x10"*
2 - Q ° and x,=4.5x10 4, respectively. Atk,=8.4x10" 4, the
3 - -8 lowest-frequency ECM becomes stable through a Hopf bifur-
5 0 -40 30 20 10 o0 10 cation. Fromx,=8.4x10"“ to 1.34x 103, all trajectories
'g - are attracted b_y this stable point regardless of t_he initial con-
&) (d) ditions. As k, increases, the ECM and the antimode come
? 0 o close to each other and finally collide at=1.34x10"3
§ -2 G o (Fig. 2 and disappear. Figure(& shows the steady-state
w " =L solutions just before the saddle-node bifurcation. As this pair
. O" . ° of steady-state solutions disappears, an atypical LFF is ob-
o served; the trajectory in phase space exhibits a chaotic itin-
-8 erancy among the external-cavity modes with a drift toward

the lowest frequencies. The fixed points that have disap-
peared atc,=1.34x 10" 3 continue to influence the dynam-
ics: they leave a ghost that attracts the trajectéegtures of
FIG. 4. Phase trajectories observed in the plas€t) —¢(t  saddle-node ghost are described in Rgfg,13). The trajec-
—m)+Q7,N(t)]. Squares show the antimodes; circles thetory js then repelled toward higher values of the excess car-
external-cavity modes(a) and (b): LFF for x;=0 and x;=1.6  yiar number along the direction of the unstable manifold of
X 10", respectively(c) Chaotic behavior foi,=2.8<10°%. (d)  the antimode that has disappeafBily. 5(b)]. As a result, the
Limit_ cycle corresponding to a periodic behavior fa,=4.5 |4ser exhibits strong intensity dropouftig. 3(c)] that are
X 107", The first feedback rate i, =7.2x 10" in all cases. not associated to attractor crises. Additional increaseof

) ) i . leads to a progressive attenuation of the influence of the an-
frequency and the corresponding antimode collide and disapsiijated fixed points on the dynamics as well as to a de-

pear through a saddle-node bifurcatiéfig. 2). The LFF  reaqe in size of the ruin of the nearest chaotic attractor.
continues howe\{e[rFlg. 3(b)], because a crisis with remain- Chaotic [Fig. 5(c)], quasiperiodic and periodifFig. 5(d)]
ing antimodes still occuiFig. 4(b)]. As «, increases further,  pahaviors are successively observed. Finally, kat4.8

10 -40 -30 -20 -10 0 10
Phase Difference

the ruin of the chaotic attractor associated to the lowests ;-
frequency external-cavity mode decreases progressively

: 3 the laser output becomes stationary. Fgr=4.8
Y 1073, the rest of the bifurcation diagram reveals a scenario
similar to that described in Reff6,7], i.e., a succession of

-3 -3 . . . . . H
2107 1o regions within which the laser is locked onto a stable maxi-

0 . 0 . mum gain mode and regions where the laser exhibits com-

> . I . plex behaviors such as chaos and low-frequency fluctuations.
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By using an extension of the Lang-Kobayashi equations,
we have investigated the dynamics of a laser diode subject to
optical feedback from a double cavity and pumped at thresh-
old. When both cavities are acting in concert, an increase of
one of the feedback rate can lead to the annihilations of fixed
points through saddle-node bifurcations. We have shown that
the saddle-node remnants continue to influence the dynamics
and can induce intensity dropouts. This kind of solution have
not been reported so far in the extensively studied single-
feedback case. We attribute the difficulty to observe such
dynamics in a single-feedback system to the fact that, in this
system, an increase of the feedback rate does never lead to
the annihilation of fixed points even when multiple round

—7)+Q7 ,N(t)]. Squares show the antimodes; circles theliPS in the single external cavity are taken into account in

external-cavity modega) Stationary behavior fok,=1.3x 10 3,
the laser locks onto the lowest-frequency EGfilled circle). (b)
Atypical LFF for x,=1.4x10 3. (c) Chaotic behavior fork,

the Lang-Kobayashi equations. In the double-feedback con-
figuration, annihilation of pairs of external-cavity modes and
antimodes can be achieved regardless of the lengths of the-

=1.6x 1073, (d) Limit cycle for k,=2.2x 103, The first feedback external cavities and in large ranges of feedback phases. In-
rate isk;=7.2x10"% in all cases.

each case, a second optical feedback strongly modifies the
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