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Noise-induced synchronization in realistic models
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Noise-induced synchronization is studied numerically in two realistic models—the Pikovsky-Rabinovich
circuit model and the Hindmarsh-Rose neuron model. A different feature, single-variable-Jacobian matrix, is
found in these two models and conditions are found by which two noncoupled identical systems can been
synchronized by forcing with a common Gaussian noise term.
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Noise-induced synchronization is a subject area that hasmean value of local maxima minus the mean value of local
created a good deal of interest of Idte—5]. Theoretical minima ofy, i.e., the mean fluctuation amplitude wf We
results have recently inspired experimental work and noisehave also found this interesting correspondence in the fol-
induced synchronization was observed for the first time in dowing two examples.
biological system among pairs of noncoupled sensory neu- The Pikovsky-Rabinovich1978 [6] circuit model has
rons[3]. From a theoretical perspective, one is usually conthe following equations:
cerned with three types of questions: Whether noise-induced

complete synchronizatiofCS) can be realized in a certain X=y—pz,

chaotic system? Which variable or equation is the most ef- .

fective to apply the common noise when attempting to y=—X+2yy+az, (1)
achieve CS in identically forced chaotic systems? Awwiv _

strong should the noise intensity be to achieve CS? Unfortu- z=(x—22+2)/u+DE,

nately it is usually hard, if not impossible, to answer any of

these questions with rigour or with some type of generaWwith 8=0.66, «=0.165, y=0.201, andu=0.047. This
proof. At a minimum, the attractor of the system considerednodel mimics a simple electronic circuit. The noigeis
must have a large enough basin of attraction to suffer th&aussian wit(t)¢(t—7))=(r) andD denotes the noise
perturbation of noise which often must be relatively strongintensity. The equations were integrated using the stochastic
for CS to be achieved. In this paper, these questions arguler method(2] with a time-step ofAt=0.001. The PR
examined for two realistic models: the Pikovsky-RabinovichCircuit model with parameters given above has a symmetric
(PR) circuit and the Hindmarsh-RogBIR) neuron model. As chaotic attractof6]. The projection of the attractor in thzey

discussed here, common noise can induce CS in uncoupl ane is given in Fig. (@) for the case 0D=0. Figure 1b)

identical PR(HR) models and the critical noise intensity SNows the same projection of the attractor when noise of

proves to be roughly equal to the mean size of the origina{ntenSity D=3.0. Let X, and X.2 denote the vectors
X1,Y1,21), (X2,Y2,2,) of two identical systems. The largest

chaotic attractor. At this level, the models’ deterministic dy- 9
namics are swamped out by the common stochastic noiséYaP“”OV exponen(LLE) and the average synchronization

and the models synchronize to the same stochastic forcing® o' [X1—X,| versus noise intensitp are given in Fig.

It has previously been observed that noise-induced CS ca}{zc)' It can be seen that the LLE becomes negative when
be realized in two uncoupled identical Lorenz systems wheiPc~2-9 and the synchronization error vanishes wiign
common Gaussian noise is applied to the equation of motior D¢ - Interestingly, again the noise intensity is roughly
of the y variable. For the standard parametets 10, p ~ equal to the mean size of the attractor in theirection (S,
=28, andb=8/3, the critical noise intensity ®Y=33.3. It  ~2.8). However, if the equations are modified with common
is also important that thattractor with such strong noise N0ise applied either for theory equation, the models fail to
on 'y equation is still similar to the original attractpt,2]. ~ Synchronize. There is a critical intensity polt=0.25, be-
Noise applied on the equation ®fcan also achieve CS, but low which synchronization is absen.t, and above which thg
much higher noise intensityD>100) is needed and the system becomes unstable and variables undergo explosive

distortion of the attractor is very severe. For the variapie ~ 9roWth.

has been explained in RéfL] that, due to the symmetries of , | Nne ability for thezequation to better accommodate noise
the Lorenz system, noise acting only in theirection often  [0rcing is a consequence of the stabilizing cubic tef(z)

fails to push trajectories of identical systems into the samé" —2°+2 (corresponding to the tunnel diode in the original
half space, and CS is, therefore, unachievable. By these créircuit). Approximating in the first instance&=x=0, and
teria, we may say that the most effective variablg &d the  plugging this into the equation farwith D=0, we see that
critical intensity isDY=233.3. It is interesting to note th&)  z has two locally stable equilibriz* =+ 1 separated by the
is also similar to the mean size of the attractor in yhei- unstable equilibriunz* =0. For relatively small noise lev-
rection, that isS,~35. Here, the mean size is defined by theels, the trajectory spirals relatively slowly in the-y plane
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FIG. 1. Simulation result of the Pikovsky-Rabinovich circuit  F|G. 2. Simulation result of the Hindmarsh-Rose neuron model.
model.(a) Projection of the original attractor on thez plane @ (a) Projection of the original attractor on tizex plane @ =0); (b)
=0); (b) with noise intensityD = 3.0 on they-z plane, noise added with noise intensityD = 2.4 on thez-x plane, noise added on thxe
on thez direction; (c) the largest Lyapunov expone(dash-dotted  djrection; (c) the largest Lyapunov exponefatash-dotted lineand
line) and average synchronization eriot; —X,| (solid line) via  average synchronization errt, — X,| (solid line) via noise inten-
noise intensityD; (d) sample data original distribution on (6) sty D; (d) distribution onx without noisej(e) distribution onx with
distribution with noiseD =3.0. The contraction regions are shown ngise D=2.4. The contraction regions are shown by the dotted
by the dotted background. background.

on one of the attractor wings, where eitire¢rl orz~—1.  |ower thanDZ, the deterministic attractor of Fig.(d is
However, the large noise levels associated iifh=2.9 are  more distinctive. Following Zhou and Kurths, definean-
able to pusle from one stable equilibrium to the other with traction region[1] as that region on the attractor, where
rapidity, so that it oscillates randomly between the two equiRe(A,)<0(i=1,2,3) [A; are the eigenvalues of
libria. Note that when close to synchronization, the systenpf(x y,z)]. Figures 1d) and Xe) shows this contraction
may be approximated a$=Df(x,y,z)d, where §=X;  region projected in the dimension as a dotted background.
—X, and Df(x,y,z) is the Jacobian matrix of the system Noise has the effect of increasing the visiting frequency of
evaluated on the synchronization manifold. By definition, thethe contraction region, thereby making the LLE negative.
LLE is the long term time average of the logarithm of the We now turn to consider the Hindmarsh-Rq4€82 [7]
norm of the product of the Jacobian along the trajectory. Aneuron model,

simple calculation shows th&tf(x,y,z) is a function of the

single variablez. As synchronization is ensured if the LLE is x=y—ax’+bx?—z+1+D¢,

negative, synchronization is controlled exclusively by the .

dynamics of thez variable. y=c—dx?—y, (2
The reason that noise ancan induce CS may be under-

stood by Figs. dd) and Xe), where the distribution of is 'z:r[s(x—X)—z],

plotted when the model is without noise and with noise, re-

spectively. In Fig. 1d), the distribution ofz is thus for the wherea=1.0, b=3.0, c=1.0, d=5.0, S=4.0, r=0.006,
case when the dynamics are strictly deterministic and thgg= —1.56, andl =3.0. The dynamics of this model is very
model’s trajectory wanders on the chaotic attractor of Figdifferent to that of the Lorenz attractor and the PR circuit. It
1(a). In Fig. 1(e), the distribution is given with noise inten- exhibits a multi-time-scaled burst-rest behavior, a phenom-
sity D=23.0 (i.e., slightly greater than the critical lev&lZ  enon which has great importance in neuroscience. The pro-
=2.9). At this noise level, the model's dynamics are largelyjection of the attractor ire-x plane is given in Fig. @)
swamped by the stochastic noise and the deterministic attragvithout noise and in Fig. () with noise intensityD =D

tor appears largely washed dufig. 1(b)]. For noise levels =2.4. Though the subtle structure of the attractor disappears
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in this strong noise regime, it still exhibits burst and restS,, respectively.
behaviors in thex andy variables. The LLE and average In summary, we numerically analyzed noise-induced CS
synchronization errofX; —X,| versus noise intensitp is  in several time-continuous chaotic models: the PR circuit,
given in Fig. Zc). It can be seen that the LLE becomesthe HR neuron, and kinetic rate neural spike model. From
negative wherD¢=2.4 and the synchronization error van- these models, several interesting conclusions can be drawn:
ishes forD>D}. The mean size of the original attractor in noise-induced CS, in general, can be obtained by adding
the x direction isS,~2.5. Furthermore, CS can also be ob- noise on the “more stable” variable; for the PR and HR
tained by adding noise on theequation, withD}~6, cor-  models, the one associated with the equation having a strong
responding to the mean size of the attractor inytliérection  contractive cubic term. In addition, because the latter models
S,~6.2. But small noise levelg.g.,D=0.3) applied to the are both linear apart from the aforementioned cubic term
zequation severely distorts the attractor preventing meaningpolynomia), their Jacobian matrices are a function of a
ful synchronization. single variable onlythe effective variable The PR and HR
Again the Jacobian matribf(x,y,z) of the system is @ models have single-variable-Jacobian matkut the kinetic
function of the single variable, this time The reason that ate model ndt It is thus not surprising that the variable in
noise onx can induce CS may be understood by Figsl)2 e jacobian matrix had so much influence. The critical noise
and 2g). Figure 2d) gives the distribution ok for the de-  jyiensity for CS is roughly equal to the mean size of the
terministic ChaOt'(.: at.tragtor[.‘(zo, LLE>Q)’ W'th_the dot- . attractor measured with reference to the direction of the vari-
ted background indicating the contraction region. In Fig. e 6 which the noise is applied. At this intensity, the noise

2(€), it can l_)e seen that_ with noig@=2.4, x tends to visit . _swamps the deterministic dynamics allowing identical mod-
the contraction region with much greater frequency, explam—els to synchronize to their common stochastic forcing. It has
ing why the LLE of the system is negative. Note that in the y 9.

equation defining the motion of the variatdethere is also a b_een_ found that nmse-mduc_ed ?S can be realized in _Chuas
cubic term F(x)=—ax3+bx2. We see that when noise circuit, but only with the application oionzeromean_ noise
pushesx into the contraction regionx< —1.4), the cubic forcing [4]. However, we found zero-mean Gaussian noise

term acts as a large restoring for(stabilizing agent This can realize synchronizatio_n in the PR cir.cuit.mc.)del,. probably
stabilizing action of the cubic term in the contraction regimebec"’mse of the tunnel diode in this circgwhich is the

is also responsible for the negative LLE when under noiseCuce of th_e cubic term dl_scussed ab_ove
forcing. It is possible that a designed experimental system of the

Finally, we study the kinetic rate neural spike e uations>aMe character. can be eﬁectively cpntrolled by noise. We
y y P q expect that the ideas presented in this paper may be helpful

éor further investigations of noise-induced synchronization in

circuit and neuron experiments, and other practical applica-

equation fory is the most effective with smallest critical tons

noise intensity PY=0.01) for CS. The variable was the
least effective with the highest critical noise intensi®%( We are grateful for the support of the James S. McDonnell
=0.025). It is interesting thd) andDZ corresponds to the Foundation. P.S. was financially supported by the Royal So-
mean size of the attractor in corresponding directi§pand  ciety of London.
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