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Noise-induced synchronization in realistic models
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Noise-induced synchronization is studied numerically in two realistic models—the Pikovsky-Rabinovich
circuit model and the Hindmarsh-Rose neuron model. A different feature, single-variable-Jacobian matrix, is
found in these two models and conditions are found by which two noncoupled identical systems can been
synchronized by forcing with a common Gaussian noise term.
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Noise-induced synchronization is a subject area that
created a good deal of interest of late@1–5#. Theoretical
results have recently inspired experimental work and no
induced synchronization was observed for the first time i
biological system among pairs of noncoupled sensory n
rons @3#. From a theoretical perspective, one is usually c
cerned with three types of questions: Whether noise-indu
complete synchronization~CS! can be realized in a certai
chaotic system? Which variable or equation is the most
fective to apply the common noise when attempting
achieve CS in identically forced chaotic systems? Andhow
strong should the noise intensity be to achieve CS? Unfo
nately it is usually hard, if not impossible, to answer any
these questions with rigour or with some type of gene
proof. At a minimum, the attractor of the system conside
must have a large enough basin of attraction to suffer
perturbation of noise which often must be relatively stro
for CS to be achieved. In this paper, these questions
examined for two realistic models: the Pikovsky-Rabinov
~PR! circuit and the Hindmarsh-Rose~HR! neuron model. As
discussed here, common noise can induce CS in uncou
identical PR ~HR! models and the critical noise intensi
proves to be roughly equal to the mean size of the orig
chaotic attractor. At this level, the models’ deterministic d
namics are swamped out by the common stochastic no
and the models synchronize to the same stochastic forci

It has previously been observed that noise-induced CS
be realized in two uncoupled identical Lorenz systems w
common Gaussian noise is applied to the equation of mo
of the y variable. For the standard parametersd510, r
528, andb58/3, the critical noise intensity isDc

y533.3. It
is also important that theattractor with such strong noise
on y equation is still similar to the original attractor@1,2#.
Noise applied on the equation ofx can also achieve CS, bu
much higher noise intensity (Dc

x.100) is needed and th
distortion of the attractor is very severe. For the variablez, it
has been explained in Ref.@1# that, due to the symmetries o
the Lorenz system, noise acting only in thez direction often
fails to push trajectories of identical systems into the sa
half space, and CS is, therefore, unachievable. By these
teria, we may say that the most effective variable isy and the
critical intensity isDc

y533.3. It is interesting to note thatDc
y

is also similar to the mean size of the attractor in they di-
rection, that is,Sy'35. Here, the mean size is defined by t
1063-651X/2003/67~2!/027201~3!/$20.00 67 0272
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mean value of local maxima minus the mean value of lo
minima of y, i.e., the mean fluctuation amplitude ofy. We
have also found this interesting correspondence in the
lowing two examples.

The Pikovsky-Rabinovich~1978! @6# circuit model has
the following equations:

ẋ5y2bz,

ẏ52x12gy1az, ~1!

ż5~x2z31z!/m1Dj,

with b50.66, a50.165, g50.201, andm50.047. This
model mimics a simple electronic circuit. The noisej is
Gaussian witĥ j(t)j(t2t)&5d(t) andD denotes the noise
intensity. The equations were integrated using the stocha
Euler method@2# with a time-step ofDt50.001. The PR
circuit model with parameters given above has a symme
chaotic attractor@6#. The projection of the attractor in thez-y
plane is given in Fig. 1~a! for the case ofD50. Figure 1~b!
shows the same projection of the attractor when noise
intensity D53.0. Let X1 and X2 denote the vectors
(x1 ,y1 ,z1), (x2 ,y2 ,z2) of two identical systems. The larges
Lyapunov exponent~LLE! and the average synchronizatio
error uX12X2u versus noise intensityD are given in Fig.
1~c!. It can be seen that the LLE becomes negative wh
Dc

z'2.9 and the synchronization error vanishes whenD
.Dc

z . Interestingly, again the noise intensity is rough
equal to the mean size of the attractor in thez direction (Sz
'2.8). However, if the equations are modified with comm
noise applied either for thex or y equation, the models fail to
synchronize. There is a critical intensity pointD'0.25, be-
low which synchronization is absent, and above which
system becomes unstable and variables undergo explo
growth.

The ability for thez equation to better accommodate noi
forcing is a consequence of the stabilizing cubic termF(z)
52z31z ~corresponding to the tunnel diode in the origin
circuit!. Approximating in the first instancex5 x̄50, and
plugging this into the equation forż with D50, we see that
z has two locally stable equilibriaz* 561 separated by the
unstable equilibriumz* 50. For relatively small noise lev-
els, the trajectory spirals relatively slowly in thex2y plane
©2003 The American Physical Society01-1
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on one of the attractor wings, where eitherz'1 or z'21.
However, the large noise levels associated withDc

z52.9 are
able to pushz from one stable equilibrium to the other wit
rapidity, so that it oscillates randomly between the two eq
libria. Note that when close to synchronization, the syst
may be approximated asḋ5D f (x,y,z)d, where d5X1
2X2 and D f (x,y,z) is the Jacobian matrix of the syste
evaluated on the synchronization manifold. By definition,
LLE is the long term time average of the logarithm of t
norm of the product of the Jacobian along the trajectory
simple calculation shows thatD f (x,y,z) is a function of the
single variablez. As synchronization is ensured if the LLE
negative, synchronization is controlled exclusively by t
dynamics of thez variable.

The reason that noise onz can induce CS may be unde
stood by Figs. 1~d! and 1~e!, where the distribution ofz is
plotted when the model is without noise and with noise,
spectively. In Fig. 1~d!, the distribution ofz is thus for the
case when the dynamics are strictly deterministic and
model’s trajectory wanders on the chaotic attractor of F
1~a!. In Fig. 1~e!, the distribution is given with noise inten
sity D53.0 ~i.e., slightly greater than the critical levelDc

z

52.9). At this noise level, the model’s dynamics are larg
swamped by the stochastic noise and the deterministic at
tor appears largely washed out@Fig. 1~b!#. For noise levels

FIG. 1. Simulation result of the Pikovsky-Rabinovich circu
model. ~a! Projection of the original attractor on they-z plane (D
50); ~b! with noise intensityD53.0 on they-z plane, noise added
on thez direction; ~c! the largest Lyapunov exponent~dash-dotted
line! and average synchronization erroruX12X2u ~solid line! via
noise intensityD; ~d! sample data original distribution onz; ~e!
distribution with noiseD53.0. The contraction regions are show
by the dotted background.
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lower than Dc
z , the deterministic attractor of Fig. 1~a! is

more distinctive. Following Zhou and Kurths, define acon-
traction region @1# as that region on the attractor, whe
Re(L i),0(i 51,2,3) @L i are the eigenvalues o
D f (x,y,z)]. Figures 1~d! and 1~e! shows this contraction
region projected in thez dimension as a dotted backgroun
Noise has the effect of increasing the visiting frequency
the contraction region, thereby making the LLE negative

We now turn to consider the Hindmarsh-Rose~1982! @7#
neuron model,

ẋ5y2ax31bx22z1I 1Dj,

ẏ5c2dx22y, ~2!

ż5r @S~x2x!2z#,

where a51.0, b53.0, c51.0, d55.0, S54.0, r 50.006,
x521.56, andI 53.0. The dynamics of this model is ver
different to that of the Lorenz attractor and the PR circuit
exhibits a multi-time-scaled burst-rest behavior, a pheno
enon which has great importance in neuroscience. The
jection of the attractor inz-x plane is given in Fig. 2~a!
without noise and in Fig. 2~b! with noise intensityD5Dc

x

52.4. Though the subtle structure of the attractor disappe

FIG. 2. Simulation result of the Hindmarsh-Rose neuron mod
~a! Projection of the original attractor on thez-x plane (D50); ~b!
with noise intensityD52.4 on thez-x plane, noise added on thex
direction;~c! the largest Lyapunov exponent~dash-dotted line! and
average synchronization erroruX12X2u ~solid line! via noise inten-
sity D; ~d! distribution onx without noise;~e! distribution onx with
noise D52.4. The contraction regions are shown by the dot
background.
1-2
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in this strong noise regime, it still exhibits burst and re
behaviors in thex and y variables. The LLE and averag
synchronization erroruX12X2u versus noise intensityD is
given in Fig. 2~c!. It can be seen that the LLE becom
negative whenDc

x52.4 and the synchronization error va
ishes forD.Dc

x . The mean size of the original attractor
the x direction isSx'2.5. Furthermore, CS can also be o
tained by adding noise on they equation, withDc

y'6, cor-
responding to the mean size of the attractor in they direction
Sy'6.2. But small noise levels~e.g.,D50.3) applied to the
z equation severely distorts the attractor preventing mean
ful synchronization.

Again the Jacobian matrixD f (x,y,z) of the system is a
function of the single variable, this timex. The reason tha
noise onx can induce CS may be understood by Figs. 2~d!
and 2~e!. Figure 2~d! gives the distribution ofx for the de-
terministic chaotic attractor (D50, LLE.0), with the dot-
ted background indicating the contraction region. In F
2~e!, it can be seen that with noiseD52.4, x tends to visit
the contraction region with much greater frequency, expla
ing why the LLE of the system is negative. Note that in t
equation defining the motion of the variablex, there is also a
cubic term F(x)52ax31bx2. We see that when nois
pushesx into the contraction region (x,21.4), the cubic
term acts as a large restoring force~stabilizing agent!. This
stabilizing action of the cubic term in the contraction regim
is also responsible for the negative LLE when under no
forcing.

Finally, we study the kinetic rate neural spike equatio
with the parameters given in Ref.@5#. We found that CS can
be induced through noise forcing of any single variable. T
equation fory is the most effective with smallest critica
noise intensity (Dc

y50.01) for CS. The variablez was the
least effective with the highest critical noise intensity (Dc

z

50.025). It is interesting thatDc
y andDc

z corresponds to the
mean size of the attractor in corresponding directionsSy and
R
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In summary, we numerically analyzed noise-induced

in several time-continuous chaotic models: the PR circ
the HR neuron, and kinetic rate neural spike model. Fr
these models, several interesting conclusions can be dra
noise-induced CS, in general, can be obtained by add
noise on the ‘‘more stable’’ variable; for the PR and H
models, the one associated with the equation having a st
contractive cubic term. In addition, because the latter mod
are both linear apart from the aforementioned cubic te
~polynomial!, their Jacobian matrices are a function of
single variable only~the effective variable!. The PR and HR
models have single-variable-Jacobian matrix~but the kinetic
rate model not!. It is thus not surprising that the variable i
the Jacobian matrix had so much influence. The critical no
intensity for CS is roughly equal to the mean size of t
attractor measured with reference to the direction of the v
able to which the noise is applied. At this intensity, the no
swamps the deterministic dynamics allowing identical mo
els to synchronize to their common stochastic forcing. It h
been found that noise-induced CS can be realized in Ch
circuit, but only with the application ofnonzeromean noise
forcing @4#. However, we found zero-mean Gaussian no
can realize synchronization in the PR circuit model, proba
because of the tunnel diode in this circuit~which is the
source of the cubic term discussed above!.

It is possible that a designed experimental system of
same character can be effectively controlled by noise.
expect that the ideas presented in this paper may be he
for further investigations of noise-induced synchronization
circuit and neuron experiments, and other practical appl
tions.
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