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Equivalence of ensembles in creation-annihilation nonequilibrium models
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Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 23 October 2002; published 28 February 2003!

We consider a class of stochastic models on a lattice in which particles are created and annihilated with
given rates. The class include very distinct models such as the contact process and the stochastic Ising model.
We show how to set up stochastic models with the dynamics that conserve the number of particles that are
equivalent, in the thermodynamic limit, to the creation-annihilation models. We also obtain a formula that
allows the calculation of the rates with respect to the ensemble of constant particle number.
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I. INTRODUCTION

The use of distinct ensembles in equilibrium statisti
mechanics was introduced by Gibbs and consists of a p
erful tool in the study of the thermodynamical properties
statistical models. There is a standard procedure for pas
from one ensemble to another@1–3#. The main feature of the
transformation is that a quantity that is held fixed in o
ensemble becomes a fluctuating variable in the other.
instance, in the canonical ensemble the number of particle
constant, whereas in the grand-canonical ensemble it flu
ates. The descriptions of systems by distinct ensembles
come equivalent in the thermodynamic limit.

The procedure introduced by Gibbs is appropriate
equilibrium systems, that is, systems described by the G
probability distribution, but cannot be used in nonequil
rium systems. Here we are concerned with the construc
of distinct ensembles for nonequilibrium systems of partic
described by the probabilistic dynamic rules whose time e
lution is governed by a master equation. We show
equivalence between two types of stationary state ensem
the constant rate ensemble, in which particles are created
annihilated with fixed given rates, and the constant part
number ensemble, defined by the dynamic rules in which
number of particles is kept constant.

The possibility of using distinct ensembles in nonequil
rium models was advanced by Ziff and Brosilov@4# in their
study of a irreversible surface-reaction system. More
cently, Tome´ and de Oliveira@5# introduced the conserve
contact process, a version of the ordinary contact proc
with strictly conserved particle number. In this process, p
ticles jump around over the sites of a regular lattice, falli
down only on empty sites that have at least one neighbo
site occupied. The conserved contact process displays p
erties that, in the thermodynamic limit, are identical to tho
of the ordinary contact process, including universal as w
as nonuniversal quantities, and was identified as the con
process in an ensemble of constant particle number. This
indeed confirmed by the numerical simulations in one
mension@5# and more than one dimension@6#. Hilhorst and
Wijland @7# provided a proof of the equivalence between t
two stationary state ensembles.

We consider here a class of stochastic models on a la
in which particles are created and annihilated with giv
rates. The creation and annihiliation can be a simple proc
such as a spontaneous process, or more complex, such
1063-651X/2003/67~2!/027104~4!/$20.00 67 0271
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catalylic process. We show that these models, which we
constant rate models, are equivalent, in the thermodyna
limit, to the models defined by the dynamic rules that co
serve the number of particles~or magnetization in the case o
the stochastic Ising model!, which we call constant particle
number models. Examples of constant rate models incl
the ordinary contact process and similar models@8–12#, and
the Glauber model@13# and any other one-spin flip stochast
dynamics of the Ising model@10,14–18#. Examples of con-
stant particle number models include the conservative c
tact process@5#, and the Kawasaki stochastic dynamics@19#
and similar dynamics in which two up-down spins exchan
places@20#. An equivalence between the constant rate
semble and the constant particle number ensemble is sh
here by using a method similar to that used by Hilhorst a
Wijland @7#.

The application of the present method in the case of
lattice-gas~the Ising! model, in particular, allows us to obtai
formulas that connect the chemical potential~the magnetic
field! to certain averages with respect to the ensemble
conserved particle number~magnetization!. Some of these
formulas for the chemical potential have been obtained p
viously by a distinct method@21,22#.

II. TRANSITION RATES

Let us denote byh i the occupation variable attached
site i, of a lattice, withh i50 or 1 according to whether sit
i is empty or occupied. The vectorh5(h1 ,h2 , . . . ,hN) will
represent the collection of occupation variables in a latt
with N sites. We consider stochastic models composed
two subprocesses: creation of a single particle (0→1), with
transition ratekcwi

c(h), and annihilation of a single particle
(1→0), with transition ratekawi

a(h). The constantskc and
ka are, respectively, the strengths of the creation and ann
lation rates and

wi
c~h!5~12h i !ci~h!, ~1!

wi
a~h!5h iai~h!, ~2!

where ci(h) and ai(h) do not depend onh i . Since these
two subprocesses are mutually exclusive, the one-site tra
tion ratewi(h) from stateh i to state 12h i can be written as
the sum

wi~h!5kcwi
c~h!1kawi

a~h!. ~3!
©2003 The American Physical Society04-1
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Actually, any one-site process can be understood a
creation-annihilation process, as the one-site transition
can always be written in the form~3!.

The numerical simulation of the creation-annihilation pr
cess just defined can be performed as follows. At each t
step a site of the lattice is chosen at random. If it is emp
then a particle is created with probability proportional
kcci(h). If it is occupied, then the particle is annihilated wi
probability proportional tokaai(h).

The stochastic process associated to an ensemble of
stant particle number is a two-site process whose trans
rate wi j (h) from state (h i ,h j ) to state (12h i ,12h j ) is
given by

wi j ~h!5wi
a~h!wj

c~h!, ~4!

or

wi j ~h!5~12h i !h jai~h!cj~h!. ~5!

The numerical simulation of the constant particle num
model can be performed as follows. At each time step
randomly chosen particle jumps from its place to an em
site chosen randomly. The jumping probability is prop
tional to the productai(h)cj (h), where i is the departing
site andj is the arriving site. In this manner, both the pr
cesses of creation and annihilation of particles of the c
stant rate model are replaced by just a jumping process in
constant particle number model.

III. CONSTANT RATE ENSEMBLE

The time evolution of the probability distributionP(h,t)
is governed by the master equation

d

dt
P~h,t !5(

i
$wi~h i !P~h i ,t !2wi~h!P~h,t !%, ~6!

whereh i is the vectorh i5(h1 ,h2 , . . . ,12h i , . . . ,hN) and
wi(h) is the one-site creation-annihilation transition ra
given by Eq.~3!.

An equivalent description of the system is made throu
the time evolution of the correlation functions. Let us defi
the state functionf A(h) by

f A~h!5)
i PA

h i , ~7!

where the product is over the sites belonging to a given seA.
From the master equation it is straightforward to show th

d

dt
^ f A&5(

i PA
^$ f A~h i !2 f A~h!%wi~h!&, ~8!

where

^ f ~h!&5(
h

f ~h!P~h,t ! ~9!

denotes the average of any state functionf (h). The set of
equations for all correlations is equivalent to the mas
equation. This description is appropriate for taking the th
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modynamic limit, since the summation on the right-hand s
of Eq. ~8! involves a finite number of terms even for a
infinite system.

Substituting the transition rate~3! into ~8! one obtains the
time evolution of the correlation in the form

d

dt
^ f A&5kc(

i PA
^$ f A~h i !2 f A~h!%wi

c~h!&1ka(
i PA

^$ f A~h i !

2 f A~h!%wi
a~h!&. ~10!

Now we use the obvious relationh i(12h i)50 to show that

f A~h!wi
c~h!50 if i PA, ~11!

f A~h i !wi
a~h!50 if i PA, ~12!

so that

d

dt
^ f A&5kc(

i PA
^ f A~h i !wi

c~h!&2ka(
i PA

^ f A~h!wi
a~h!&.

~13!

In particular,

d

dt
^h i&5kc^wi

c~h!&2ka^wi
a~h!&, ~14!

so that, in the stationary state, one has

kc^wi
c~h!&5ka^wi

a~h!&. ~15!

IV. CONSTANT PARTICLE NUMBER ENSEMBLE

The two-site process is governed by the following mas
equation:

d

dt
P~h,t !5

1

N (
i j

$wi j ~h i j !P~h i j ,t !2wi j ~h!P~h,t !%,

~16!

where h i j is the vector h i j 5(h1 , . . . ,12h i , . . . ,1
2h j , . . . ,hN), and N is the total number of sites in th
lattice. The transition ratewi j (h) is given by Eq.~4! and the
model strictly conserves the number of particles.

An equivalent description in terms of the correlations c
also be made here. The time evolution of the correlation^ f A&
is given by

d

dt
^ f A&c5

1

N (
i j

^$ f A~h i j !2 f A~h!%wi j ~h!&c , ~17!

where the notation̂•••&c stands for the average with respe
to the conservative dynamics.

Taking into account that

f A~h i j !5 f A~h j ! if i ¹A, j PA, ~18!

f A~h i j !5 f A~h i ! if i PA, j ¹A, ~19!

f A~h i j !5 f A~h! if i ¹A, j ¹A, ~20!

we may write the time evolution of̂f A&c as
4-2
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d

dt
^ f A&c5

1

N (
i PA

(
j PA

^$ f A~h i j !2 f A~h!%wi
a~h!wj

c~h!&c

1
1

N (
i PA

(
j ¹A

^$ f A~h i !2 f A~h!%wi
a~h!wj

c~h!&c

1
1

N (
i ¹A

(
j PA

^$ f A~h j !2 f A~h!%wi
a~h!wj

c~h!&c .

~21!

Using the obvious relationh i(12h i)50 we may write
the following identities:

f A~h i j !wi
a~h!50 if i PA, ~22!

f A~h i !wi
a~h!50 if i PA, ~23!

f A~h!wj
c~h!50 if j PA, ~24!

which allows us to write

d

dt
^ f A&c52

1

N (
i PA

(
j ¹A

^ f A~h!wi
a~h!wj

c~h!&c

1
1

N (
i ¹A

(
j PA

^ f A~h j !wi
a~h!wj

c~h!&c . ~25!

V. EQUIVALENCE OF ENSEMBLES

In this section we show the equivalence between the c
stant rate ensemble and the constant particle number
semble. Let us define the quantities

ka~h!5
1

NB
(
i ¹A

wi
a~h!, ~26!

kc~h!5
1

NB
(
j ¹A

wj
c~h!, ~27!

where NB is the number of sites not belonging toA. This
permits us to write

d

dt
^ f A&c52

NB

N (
i PA

^ f A~h!wi
a~h!kc~h!&c

1
NB

N (
j PA

^ f A~h j !wj
c~h!ka~h!&c . ~28!

We may now take the thermodynamic limitN→`, which
implies NB /N→1 since the setA remains finite. Assuming
the law of large number to be valid, the quantitieska andkc

approach the averages^wi
a(h)&c and^wi

c(h)&c , respectively,
in the limit NB→`. This amounts to replaceka by ^wi

a&c

and kc by ^wi
c&c in Eq. ~28!. Therefore, in the thermody

namic limit we obtain
02710
n-
n-

d

dt
^ f A&c52^wi

c~h!&c(
i PA

^ f A~h!wi
a~h!&c

1^wi
a~h!&c(

j PA
^ f A~h j !wj

c~h!&c , ~29!

which is equivalent to Eq.~13! as long as

kc/ka 5 ^wi
a~h!&c/^wi

c~h!&c . ~30!

This formula allows us to calculate the rates with respec
the ensemble of constant particle number. Equation~30! es-
tablishes the equivalence between the ensembles in the
tionary regime. For the time-dependent regime, however,
~30! might not always hold. For instance, if the initial state
such that the averages ofka and kc are not constants, Eq
~30! cannot be satisfied@7#.

VI. CONTACT PROCESS

In the ordinary contact process@10,12#, the creation of
particles is a catalytic process, whereas the annihilation
spontaneous. It is a constant rate model defined by the
site transition rate

wi~h!5~12h i !
1

z (
d

h i 1d1ah i , ~31!

where the summation ind is over thez nearest neighbor
sites, from which we may write

kc51, wi
c~h!5~12h i !

1

z (
d

h i 1d , ~32!

ka5a, wi
a~h!5h i , ~33!

wherea is the strength of the annihilation process. The co
served contact process@5# is defined by the jump transition
rate given by Eqs.~4!, ~32!, and~33!, and defines a constan
particle number model. According to Eq.~30! we have@5#

a5 ~1/r! ^wi
c~h!&c , ~34!

wherer5^h i&c is the density of particle. This formula al
lows us to calculate the ratea with respect to the ensembl
of constant particle number.

VII. LATTICE-GAS MODEL

It is possible to set up a dynamics of the lattice-gas mo
in terms of a creation-annihilation process. The lattice-g
model, which is equivalent to the Ising model, is defined
the equilibrium Gibbs probability

P~h!5 ~1/Z! e2bf(h), ~35!

where

f~h!5(
i , j

« i j h ih j2m(
i

h i , ~36!
4-3
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with « i j being the interaction between the particles at sitei
and j andm being the chemical potential.

There are several stochastic processes that describ
dynamics of the lattice-gas model. All of them are set up
the use of detailed balance. For the models with one-
transition rates, the detailed balance reads

wi~h i !P~h i !5wi~h!P~h!, ~37!

or, taking into account Eqs.~35! and ~36!,

wi~h!/wi~h i ! 5exp$~122h i !@2bf i~h!1bm#%,
~38!

where

f i~h!5(
j

« i j h j . ~39!

Any one-site transition ratewi(h) that satisfies the de
tailed balance~38! defines a process associated to the c
stant rate ensemble. Writingwi(h) in the form given by Eq.
~3! we obtain from Eq.~4! the transition ratewi j (h) associ-
ated to the constant particle number ensemble. It is wo
mentioning thatwi j (h) so obtained also satisfies the detail
balance.

The condition~38! does not suffice to define uniquely
transition rate and we are free to define specific one-site t
sition rates for the Ising model. For instance, we may de

wi~h!5k exp$2h i@2bf i~h!1bm#%, ~40!

wherek is a constant. The transition rate~40! can be written
as a sum of a creation rate and an annihilation rate. Com
ing it with the form ~3! we may write

kc5k, wi
c~h!5~12h i !, ~41!

ka5ke2bm, wi
a~h!5h ie

bf i (h). ~42!
a
,
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The transition rate corresponding to the constant part
number model is obtained by substitutingwi

c andwi
a in Eq.

~4!. Using Eq.~30! we write down a formula for obtaining
the chemical potential

ebm5@1/~12r!# ^h ie
bf i (h)&c , ~43!

wherer5^h i&c is the density of particles. This formula ha
been obtained previously by a distinct procedure in whic
particle is removed from the system@21,22#.

We may also define another transition rate that satis
Eq. ~38! such as

wi~h!5k exp$~12h i !@2bf i~h!1bm#%, ~44!

wherek is a constant. Using the same reasoning as before
arrive at the following formula:

e2bm5~1/r! ^~12h i !e
2bf i (h)&c , ~45!

which is another formula that allows us to get the chemi
potential with respect to an ensemble of constant part
number and has been obtained previously by a distinct p
cedure in which a particle is added to the system@21,22#.

VIII. CONCLUSION

We have studied a class of creation-annihilation stocha
models on a lattice and have shown how to set up equiva
stochastic models with the dynamics that conserve the n
ber of particles. The constructed constant particle num
models are shown to be equivalent, in the thermodyna
limit, to the constant rate models. We have also obtain
formulas that allow us to calculate the rates with respec
the ensemble of constant particle number. These form
were applied to the conserved contact process and to
stochastic lattice gas model for which we obtained expr
sions for the calculation of the chemical potential with r
spect to the canonical ensemble.
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