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Equivalence of ensembles in creation-annihilation nonequilibrium models
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We consider a class of stochastic models on a lattice in which particles are created and annihilated with
given rates. The class include very distinct models such as the contact process and the stochastic Ising model.
We show how to set up stochastic models with the dynamics that conserve the number of particles that are
equivalent, in the thermodynamic limit, to the creation-annihilation models. We also obtain a formula that
allows the calculation of the rates with respect to the ensemble of constant particle number.
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[. INTRODUCTION catalylic process. We show that these models, which we call
constant rate models, are equivalent, in the thermodynamic
The use of distinct ensembles in equilibrium statisticallimit, to the models defined by the dynamic rules that con-
mechanics was introduced by Gibbs and consists of a powserve the number of particlésr magnetization in the case of
erful tool in the study of the thermodynamical properties ofthe stochastic Ising modelwhich we call constant particle
statistical models. There is a standard procedure for passifg/mber models. Examples of constant rate models include
from one ensemble to anothdr—3]. The main feature of the the ordinary contact process and similar mo¢8ls12, and
transformation is that a quantity that is held fixed in oneth® Glauber modgil3] and any other one-spin flip stochastic
ensemble becomes a fluctuating variable in the other. Fdiynamics of the Ising mod¢lL0,14—-18. Examples of con-

instance, in the canonical ensemble the number of particles flant paruclz num(tj)e; m}gdels mlglude :}he .cogservat;}\-/g con-
constant, whereas in the grand-canonical ensemble it fluctd@ct proces$5], and the Kawasaki stochastic dynamids]

ates. The descriptions of systems by distinct ensembles bg_nd similar dynamics in which two up-down spins exchange

come equivalent in the thermodynamic limit. places[20]. An equivalence b_etween the constant rate en-
The procedure introduced by Gibbs is appropriate forsemble anc_i the constant pa_rtlcle number ensemb_le is shown

equilibrium systems, that is, systems described by the Gibb<e'® by using a method similar to that used by Hilhorst and

probability distribution, but cannot be used in nonequilib- jland [7]'. . .

rium systems. Here we are concerned with the constructio The appllcathn of the p'resent.method In the case Of. the

of distinct ensembles for nonequilibrium systems of particle{latt'ce'gas(the Ising model, in particular, allows us to obtain

described by the probabilistic dynamic rules whose time evo-_Orrnulas that connect the chemical potentidle magnetic

lution is governed by a master equation. We show thé'eld) to certain averages with respect to the ensemble of
' I%onserved particle numbémagnetization Some of these

equivalence between two types of stationary state ensemble . ; .
d P y Qirmulas for the chemical potential have been obtained pre-

the constant rate ensemble, in which particles are created al
annihilated with fixed given rates, and the constant particlé’
number ensemble, defined by the dynamic rules in which the
number of particles is kept constant. Il. TRANSITION RATES
The possibility of using distinct ensembles in nonequilib-
rium models was advanced by Ziff and Brosilp4] in their
study of a irreversible surface-reaction system. More re

cently, Tomeand de Oliveirg[5] introduced the conserved represent the collection of occupation variables in a lattice

contact process, a VefSiOU of the ordinary contact proceSgiy \ sites. We consider stochastic models composed by
with strictly conserved particle number. In this process, par-

. : . . .~ two subprocesses: creation of a single particle~(0), with
ticles jump around over the sites of a regular lattice, falling o c o . .

: . Pfransition ratek w;(»), and annihilation of a single particle
down only on empty sites that have at least one ne|ghbor|neE

iously by a distinct metho@21,22,.

Let us denote byy; the occupation variable attached to
sitei, of a lattice, with»;=0 or 1 according to whether site
1 is empty or occupied. The vectar= (74,75, . .. ,gy) Will

: " a
site occupied. The conserved contact process displays pro 1—0), with trgnslltlorr: ratekaW; El”)' fTEe const'antkc and ihi
erties that, in the thermodynamic limit, are identical to those<a &€ respectively, the strengths of the creation and annihi-

of the ordinary contact process, including universal as well2tion rates and

as nonuniversal quantities, and was identified as the contact wi(n)=(1—7)ci(7), )
process in an ensemble of constant particle number. This was
indeed confirmed by the numerical simulations in one di- wi(n)=na(n), (2

mension[5] and more than one dimensip@]. Hilhorst and

Wijland [7] provided a proof of the equivalence between thewherec;(n) and a(#») do not depend omy; . Since these

two stationary state ensembles. two subprocesses are mutually exclusive, the one-site transi-
We consider here a class of stochastic models on a latticéon ratew;(») from statex; to state - »; can be written as

in which particles are created and annihilated with giventhe sum

rates. The creation and annihiliation can be a simple process,

such as a spontaneous process, or more complex, such as a Wi (77) =KW (7) +Kwi( 7). 3
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Actually, any one-site process can be understood as modynamic limit, since the summation on the right-hand side
creation-annihilation process, as the one-site transition ratef Eq. (8) involves a finite number of terms even for an
can always be written in the fori3). infinite system.

The numerical simulation of the creation-annihilation pro-  Substituting the transition rat8) into (8) one obtains the
cess just defined can be performed as follows. At each timéme evolution of the correlation in the form
step a site of the lattice is chosen at random. If it is empty,
then a particle is created with probability proportional to _<fA> Kk z {f () = FA()IWE( 7))+ Ky 2 ({fa( 7))
kc.ci(#n). Ifitis occupied, then the particle is annihilated with
probablhty proportional tdk,a;(7)

The stochastic processaassociated to an ensemble of con- —falmwi(m). (10
stant particle number is a two-site process whose transitio

rate w, () from state ¢, .7,) to state (: 7;,1—7,) is Now we use the obvious relatiom (1— ;) =0 to show that

given by FA(DWE()=0 if ieA, (12)
wij (7) =wWi( )W (), (4) fA(7IWA()=0 if ieA, (12
or so that
Wi (7)=(1—=n;) 7@ (n)ci(n). ) d _
_ — i\\/C . a
The numerical simulation of the constant particle number dt<fA> kﬂ% (Ta(r Wi () kag?\ (Falmwi(m)).
model can be performed as follows. At each time step a (13

randomly chosen particle jumps from its place to an empty
site chosen randomly. The jumping probability is propor-In particular,

tional to the product;(#)cj(#), wherei is the departing

site andj is the arriving site. In this manner, both the pro- —(ni):kc<wi°( 7)) —ka(W( 7)), (14
cesses of creation and annihilation of particles of the con- dt
stant rate model are replaced by just a jumping process in th

% that, in the stationary state, one has
constant particle number model.

Ke(Wi'(7)) =Ka(W7( 7). (15
I1l. CONSTANT RATE ENSEMBLE
The time evolution of the probability distributioB( 7,t) IV. CONSTANT PARTICLE NUMBER ENSEMBLE
is governed by the master equation The two-site process is governed by the following master

d . A equation:
GPn0=2 {wi(7 PO, -wi( P70}, (O

| | GiP(nt= Z {wi (7)P(7,0) =W (m)P(7.1)},
where7' is the vectory'= (71,75, ..., 1= 75, ...,7y) and .

wi(#n) is the one-site creation-annihilation transition rate (16
given by Eq.(3). where 71 is the vector 7l=(7;,....1=%,....1
An equivalent description of the system is made through_ ,,. ~~  , ) and N is the total number of sites in the
the time evolution of the correlation functions. Let us def'”elattme The transition rate;; () is given by Eq.(4) and the
the state functiorfs(7) by model strictly conserves the number of particles.
An equivalent description in terms of the correlations can
fa(m =11 . (7)  also be made here. The time evolution of the correlatip
'eA is given by
where the product is over the sites belonging to a giveset d 1 .
From the master equation it is straightforward to show that gilfale=y > ) —falmiwi(m)e, (1D
i
a(fAFEA {faln") = fa(m)Iwi(m), (8)  where the notatioK- - - ) stands for the average with respect
' to the conservative dynamics.
where Taking into account that
fa(n)=fal(7) if ieAjeA, (18)
(f(m)=2 f(mP(n.1) (9) ' o
7 fa(n")=faln') if ieAjeA, (19
denotes the average of any state functi¢m). The set of fa(p)=fa(n) if (i&AjeA, (20

equations for all correlations is equivalent to the master
equation. This description is appropriate for taking the therwe may write the time evolution dff 5). as
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Olt<fA>c NE 2 {Faln") = fAmpwE (Wi ()e

2 > (Al = FA() WA WS 7))

ieA jeA

ZlH Z|

g E {Faln) = FA() WA )W( 7)) -

(21)

Using the obvious relatiom;(1— 7)) =0 we may write
the following identities:

fal7)Wi(m)=0 if icA, (22)
fA(7 W) =0 if ieA, (23
fA()Wi(m)=0 if jeA, (24
which allows us to write
d 1
i Twe=—§ 2, 2, (Famwimwitm)e
N 2 2 (W)W (). (29

ieA

V. EQUIVALENCE OF ENSEMBLES

In this section we show the equivalence between the con-
stant rate ensemble and the constant particle number en-

semble. Let us define the quantities

1

KoM= 1 EA w3(7), (26)
1

Ke(m)= 3 2 W), 27)
Ng jTa

where Ng is the number of sites not belonging £ This
permits us to write

qilte= = 2, (FalmWim)e(m)e

+ 2 (FA W ka(M))e- (28)
N jeA

We may now take the thermodynamic linNt— oo, which
implies Ng/N—1 since the seA remains finite. Assuming
the law of large number to be valid, the quantitiesand «
approach the averagés?(7)). and(w;(7))., respectively,
in the limit Ng—c. This amounts to replace, by (W),

and «; by (wf). in Eq. (28). Therefore, in the thermody-

namic limit we obtain
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d
qr{fae=—(Wi(m)e 2, (FA(mWI(7)e
ieA

W)Yo, (FaWi(n)e, (29

which is equivalent to Eq13) as long as
Ke/Ka = <Wia( 77)>c/<WiC( 7)c-

This formula allows us to calculate the rates with respect to
the ensemble of constant particle number. Equai& es-
tablishes the equivalence between the ensembles in the sta-
tionary regime. For the time-dependent regime, however, Eq.
(30) might not always hold. For instance, if the initial state is
such that the averages &f, and «. are not constants, Eq.
(30) cannot be satisfief?].

(30

VI. CONTACT PROCESS

In the ordinary contact proce$40,12, the creation of
particles is a catalytic process, whereas the annihilation is
spontaneous. It is a constant rate model defined by the one-
site transition rate

1
wim=(1=m); 2 miotamn, (3

where the summation id is over thez nearest neighbor
sites, from which we may write

1
ke=1, Wim=(1=m)7 X mss (32
Ka=a, Wi(m)=m, (33

wherea is the strength of the annihilation process. The con-
served contact proce$S] is defined by the jump transition
rate given by Egs4), (32), and(33), and defines a constant
particle number model. According to E0) we have[5]

a= (1/p)(Wi(n))c, (34)

where p={(7;). is the density of particle. This formula al-
lows us to calculate the rate with respect to the ensemble
of constant particle number.

VII. LATTICE-GAS MODEL

It is possible to set up a dynamics of the lattice-gas model
in terms of a creation-annihilation process. The lattice-gas
model, which is equivalent to the Ising model, is defined by
the equilibrium Gibbs probability

P(7)=(1/12) e #¢, (35

where

¢(7l):i2j Sijninj_MZ 7 (36)
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with &;; being the interaction between the particles at sites ~ The transition rate corresponding to the constant particle

andj and u being the chemical potential. number model is obtained by substituting andw? in Eq.
There are several stochastic processes that describe tt#®. Using Eq.(30) we write down a formula for obtaining

dynamics of the lattice-gas model. All of them are set up bythe chemical potential

the use of detailed balance. For the models with one-site Bu_ _ Bi(n)

transition rates, the detailed balance reads € [1/(1=p) )€ e,

wi(7)P(7)=wi(7)P(7),
or, taking into account Eq$35) and(36),
wi(m)/wi(7') =exp{(1—27)[ — Bpi(n)+ Bul}, a

(43

wherep= (7). is the density of particles. This formula has
been obtained previously by a distinct procedure in which a
particle is removed from the systel,22.

We may also define another transition rate that satisfies
Eq. (38) such as

wi(n)=kexp(1—»)[—Bdi(n)+Bul}

wherek is a constant. Using the same reasoning as before we
arrive at the following formula:

e Pr=(1lp) ((1— n)e P4y,

(37

8)

(44)
where

di(m)=2 &ijn;. (39)

: (45)

which is another formula that allows us to get the chemical
- : : potential with respect to an ensemble of constant particle
stant rate ensemble. Writing;() in the form given by Eq.  n,mper and has been obtained previously by a distinct pro-

(3) we obtain from Eq(4) the transition ratev;;(7) associ-  ceqyre in which a particle is added to the sysf@h 22,
ated to the constant particle number ensemble. It is worth

mentioning thatv;;(7) so obtained also satisfies the detailed
balance. ] ) o ]

The condition(38) does not suffice to define uniquely a  We have studied a class of creation-annihilation stochastic
transition rate and we are free to define specific one-site trafnodels on a lattice and have shown how to set up equivalent
sition rates for the Ising model. For instance, we may definétochastic models with the dynamics that conserve the num-

Any one-site transition ratev;(») that satisfies the de-
tailed balancg38) defines a process associated to the con

VIIl. CONCLUSION

wi(n)=kexp— [ —Boi(n)+Bul}, (40)

wherek is a constant. The transition rat0) can be written
as a sum of a creation rate and an annihilation rate. Comp
ing it with the form(3) we may write

ke=k,  Wi(n)=(1-n),
W) = B4

(41)

k,=ke P, (42

ber of particles. The constructed constant particle number
models are shown to be equivalent, in the thermodynamic
limit, to the constant rate models. We have also obtained
af(_)rmulas that allow us to calculate the rates with respect to
{he ensemble of constant particle number. These formulas
were applied to the conserved contact process and to the
stochastic lattice gas model for which we obtained expres-
sions for the calculation of the chemical potential with re-
spect to the canonical ensemble.
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