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Computational complexity arising from degree correlations in networks

Alexei Vázquez1 and Martin Weigt2,3

1INFN and International School for Advanced Studies, Via Beirut 4, 34014 Trieste, Italy
2Institute for Theoretical Physics, University of Go¨ttingen, Bunsenstrasse 9, 37073 Go¨ttingen, Germany

3The Abdus Salam International Center for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy
~Received 1 July 2002; published 7 February 2003!

We apply a Bethe-Peierls approach to statistical-mechanics models defined on random networks of arbitrary
degree distribution and arbitrary correlations between the degrees of neighboring vertices. Using the nonde-
terministic polynomial time hard optimization problem of finding minimal vertex covers on these graphs, we
show that such correlations may lead to a qualitatively different solution structure as compared to uncorrelated
networks. This results in a higher complexity of the network in a computational sense: Simple heuristic
algorithms fail to find a minimal vertex cover in the highly correlated case, whereas uncorrelated networks
seem to be simple from the point of view of combinatorial optimization.
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The last few years have seen a great advance in the s
of complex networks@1#, where the term ‘‘complex’’ refers
to the existence of one or more of the following properties
small world effect@2#, a power-law degree distribution@1#,
and more recently correlations@3–6#. On the other hand, if
we focus on the solution of a given task on top of the
networks, the term complex is better associated with the t
required to solve it, i.e., with its computational complex
@7#. In this context, a problem is complex if its algorithm
solution time is growing exponentially in the network siz
At the core of complexoptimizationproblems one finds the
NP-hard class@7#, where NP stands for the nondeterminis
polynomial time.

In the case of uncorrelated networks with power-law d
gree distributions we can take profit from the existence
hubs to solve different problems, such as destroying the g
component @8#, preventing epidemic outbreaks@9#, and
searching@10#. The extremely inhomogeneous structure
uncorrelated networks can also be exploited to approxim
or even to solve instances of NP-hard problems using h
ristic algorithms running in polynomial time. However, th
influence of properties like degree correlations or cluster
is not yet clear. Recent studies of percolation@6# and disease
spreading@11# have shown that degree correlations can qu
titatively change, e.g., the transition threshold, but qual
tively the results are similar to those obtained for uncor
lated networks.

This changes drastically if we consider hard optimizat
tasks defined over correlated networks. In this work we st
the influence of degree correlations on the computatio
complexity, and in a more general perspective the rela
between the topology of complex networks and the com
tational complexity of hard problems defined on top of the
For this purpose we generalize the Bethe-Peierls approac
statistical-mechanics models defined on networks with an
bitrary degree distribution and arbitrary degree correlati
of adjacent nodes.

The approach is applied to characterize the minimal v
tex covers on these graphs. We have chosen this problem
two reasons: It belongs to the basic NP-hard optimizat
problems over graphs@7#, and has found applications i
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monitoring Internet traffic@12# and denial of service attac
prevention@13#. Our analytical results are later compare
with an approximate solution obtained using a heuristic
gorithm. This heuristic algorithm fails to find minimal verte
covers in the strongly correlated case, whereas networks
low correlations seem to be simple from the point of view
combinatorial optimization. Within our analytical approac
this change of behavior is associated with replica symme
breaking~RSB!.

Consider a set of undirected graphs withN vertices and an
arbitrary degree distributionpd . Following a randomly cho-
sen edge, we will find a vertex of degreed11 with prob-
ability qd5(d11)pd11 /c, with c denoting the average de
gree. The numberd of additional edges will be called th
excess degree. We further assume correlations between ad
cent vertices: The probability that a randomly chosen e
connects two vertices of excess degreesd andd8 is given by
(22dd,d8)edd8 . The conditional probability that a vertex o
excess degreed is reached following any edge coming from
a vertex of excess degreed8,

p~dud8!5edd8 /qd8 , ~1!

thus explicitly depends on bothd andd8. Consistency with
the degree distribution requires(d850

` edd85qd , andedd8 has
to be symmetric. For uncorrelated graphsedd85qdqd8 fac-
torizes. The strongest positive correlations are reached
edd85qdddd8 , where only vertices of equal degrees are co
nected.

Let us now consider a general statistical-mechanics mo
with discrete degrees of freedom defined on vertices,
interactions defined on edges. We use a lattice-gas m
described by the Hamiltonian

2bH5(
i , j

Ji j w~xi ,xj !1m(
i

xi ~2!

defined for any microscopic configurationxi50,1, i
51, . . . ,N. J is the adjacency matrix with entriesJi j 51 if
verticesi and j are adjacent, andJi j 50 otherwise. The in-
verse temperature is denoted byb, and the chemical poten
©2003 The American Physical Society01-1
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tial by m. The interactionsw(xi ,xj ) are arbitrary, thus also
including the case of the ferromagnetic Ising mod
w(xi ,xj )5(2xi21)(2xj21). The only disorder present i
Eq. ~2! is given by the edgesJi j . Generalizations to disor
dered interactions, as present, e.g., in spin glasses, ran
local fields, or nonbinary discrete variables, are evident.
clarity of the presentation, we restrict ourselves to the sim
model given above.

Since the graphs are locally treelike, the model can
solved by the iterative Bethe-Peierls scheme which beco
exact if only one pure state is present. The free energy ca
expressed in terms of simple effective-field distributions a
ing on vertices of a given degree. In the case of multiple p
states this has to be generalized to the cavity approach;
e.g., Ref.@15# for an example of a spin glass on a Bet
lattice of constant vertex degree. Alternatively, one can ap
the replica approach. The simple Bethe-Peierls solution
responds to the assumption of replica symmetry~RS!,
whereas the full cavity approach is able to handle also
case of RSB.

Take any edge (i , j ), i.e.,Ji j 51. Let us introduceZx
( i u j ) as

the partition function of the subtree rooted ini, with deleted
edge (i , j ), and with xi fixed to the valuex. This partition
function can be calculated iteratively:

Z0
( i u j )5 )

k5” j uJik51
~ew(0,0)Z0

(ku i )1ew(0,1)Z1
(ku i )!,

~3!

Z1
( i u j )5em )

k5” j uJik51
~ew(1,0)Z0

(ku i )1ew(1,1)Z1
(ku i )!.

The effective fieldsh( i u j )5 ln(Z1
(iuj)/Z0

(iuj)) are thus determined
by the iterative description

h( i u j )5m1 (
k5” j uJik51

u~h(ku i )!, ~4!

whereu(h(ku i )) is the effective field induced byxk on sitei,
and is given by

u~h(ku i )!5 lnS ew(1,0)1ew(1,1)1h(ku i )

ew(0,0)1ew(0,1)1h(ku i )
D . ~5!

The free energy of the system can be written as

2bN f5(
i

f i1(
i , j

Ji j ~ f i j 2 f i2 f j !, ~6!

where the link contribution equals

f i j 52 lnS (
xi ,xj

ew(xi ,xj )1h( i u j )xi1h( j u i )xj D , ~7!

whereas the site contribution

f i52 lnS (
xi

ehixi D ~8!

depends on the cavity field,
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kuJik51

u~h(ku i )!, ~9!

resulting from the influence ofall neighbors on vertexi.
Let us now assume, that the model has only one p

state, which corresponds to the assumption of RS. In
case, the iterative procedure given by Eq.~4! converges to
well-defined distributionsPd(h) of effective fieldsh( i u j ) re-
stricted to vertices of excess degreed. They are determined
by the self-consistency equation

Pd~h!5E
2`

`

)
l 51

d S dhl (
dl50

`

p~dl ud!Pdl
~hl !D

3dS h2m2(
l 51

d

u~hl !D . ~10!

Please note that, in contrast to the uncorrelated case, w
need the field distributions for all possible excess degrees
the uncorrelated case, the average of these distributions
qd is sufficient. We may also introduce the analogous dis
butionsP̃d(h) of cavity fieldshi for vertices of given degree
d ~note: here the full degree is relevant!; they can be calcu-
lated fromPd(h) by

P̃d~h!5E
2`

`

)
l 51

d S dhl (
dl50

`

p~dl ud21!Pdl
~hl !D

3dS h2m2(
l 51

d

u~hl !D . ~11!

Replacing the sum over vertices and edges in Eq.~6! by the
corresponding averages overPd(h) @ P̃d(h)#, we finally find
the free-energy density

b f 52 (
d50

`

~d21!pdE
2`

`

dhP̃d~h!ln~11eh!

1
c

2 (
d,d850

`

edd8E
2`

`

dh dh8Pd~h!Pd8~h8!ln~ew(0,0)

1ew(1,0)1h1ew(0,1)1h81ew(1,1)1h1h8!. ~12!

The simplest application of this approach is given by t
ferromagnetic Ising model. If we look to the ground stat
i.e., to the limitb→`, we find that, as expected, the glob
magnetization is determined by the size of the giant com
nent. The existence of a ferromagnetic phase at low temp
ture is thus related to percolation. The latter was alrea
analyzed in Ref.@6#.

Another application is given by the vertex cover~VC!
problem. It belongs to the basic NP-hard optimization pro
lems @7# and, therefore, it is expected to require a soluti
time which grows exponentially with the graph size. Let
be more precise. Given a graph with verticesi P$1, . . . ,N%
and edges$( i , j )u1< i , j <N,Ji j 51%, a vertex cover Vis a
subset of vertices,V,$1, . . . ,N%, such that at least one en
1-2
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vertex of every edge is contained inV. So no edge (i , j ) is
allowed to exist withi ¹V and j ¹V. Of course, the set of al
vertices forms a trivial VC. The hard optimization proble
consists in finding theminimal VC.

Using the hard-sphere lattice-gas representation in
duced in Ref.@16#, where xi51 if i ¹V, and xi50 if i
PV, the VC condition can be rewritten as

)
( i , j )uJi j 51

~12xixj !51, ~13!

which fits into the above framework by settingew(xi ,xj )51
2xixj . The chemical potential can be used to fix the car
nality of the VC, minimal ones are obtained in the limitm
→`. They correspond to maximal packings in the lattice-g
picture. To perform the limitm→` all fields have to be
rescaled ash5mz @16#. We obtain

Pd~z!5E
2`

`

)
l 51

d S dzl (
dl50

`

p~dl ud!Pdl
~zl !D

3dS z212(
l 51

d

max~0,zl !D , ~14!

which is solved byPd(z)5( l 521
1` r l

(d)d(z1 l ). This ansatz
allows for integer-valued fields only, we find a simple re
tion including only ther21

(d) :

r21
(d) 5F (

d150

`

p~d1ud!~12r
21
(d1)

!Gd

. ~15!

All other r l
(d) follow easily. The expression inside the pare

theses can be understood as the average probabilitypd that
an edge entering a vertex of degreed11 carries a constraint
i.e., that it is not yet covered by the neighboring vertex
thus fulfills the condition

pd5 (
d150

`

p~d1ud!~12pd1
!d1. ~16!

Keeping in mind that, due to the limitm→`, every vertex
with positive z is fixed to x51, every one with negativez
hasx50, we can immediately read off the fraction of ver
ces belonging to a minimal VC:

xc512 (
d50

`

pd~12pd21!d21S 11
d22

2
pd21D . ~17!

Remember that the last expressions are related to the
lidity of RS, i.e., to the existence of a single connected cl
ter of minimal VCs in configuration space. As observed
Ref. @16#, RS is related to thelocal stability of this solution.
In presence of RSB, Eq.~16! has no stable solution. Since
has to be solved by numerical iteration in the general ca
an instability prevents the program from convergence,
thus provides a precise tool to detect RSB without any R
calculation.
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To see how this works out, we concentrate on netwo
having equal degree distributions but different correlat
properties. We restrict our attention to scale-free graphs w
pd;d2g for d51, . . . ,̀ , with g.2. For a vertex cover,
interesting effects are expected to appear for positive co
lations, or assortative networks. We therefore consider

edd85qd@rdd,d81~12r !qd8#. ~18!

For 0<r<1, this expression linearly interpolates betwe
uncorrelated (r 50) and fully assorted (r 51) networks.
Please note that this network is percolated for allg as soon
asr .0. In Fig. 1 we show the resulting size of the minim
VCs for different values ofg as a function ofr. The RS
solution breaks at a certain value ofr that depends ong.
There, the solution-space structure changes drastically, f
being unstructured, or RS, in the low correlated case to be
clustered, or RSB, for sufficiently high correlations.

To check the consequences of this transition for heuri
optimization algorithms, we have numerically generat
scale-free networks with correlations@Eq. ~18!#, and applied
a generalization of the leaf-removal heuristic of Bauer a
Golinelli @17#. For the special case of correlations given
Eq. ~18!, the network can be generated using a modificat
of the Molloy-Reed algorithm@14# for random graphs of
arbitrary degree distribution. First, each nodei is assigned a
degreedi with probability pdi

. Then we create a setL con-

taining di copies of each nodei. Finally, pairs of nodes are
connected according to following rule:~i! Select a nodei in
L at random.~ii ! With a probabilityr, select a second nod
j PL with dj5di in L at random; otherwise select an arb
trary nodej PL at random.~iii ! Connecti and j and delete
both fromL. This is repeated untilL is empty.

FIG. 1. Minimal VC size for a network with degree distributio
pd;d2g and degree correlations given by Eq.~18!. The lines give
the analytical solution forg52.5 ~lower curve! andg53.0 ~upper
curve!. The curves stop at the point where RS breaks. The sym
are numerical estimates forg52.5 ~circles! and g53.0 ~squares!,
and network sizeN5106. In the inset we plot the upper error boun
Dx for generalized leaf removal. The onset of a nonzero error
incides with the RSB transition, marked by arrows.
1-3
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Once the network is generated, we construct a VC usin
generalized leaf-removal algorithm@18# defined as follows:
Select a vertex of minimal current degree from the netw
and cover all its neighbors. The considered vertices and
incident edges are removed from the network. This ste
iterated untill the full network is removed. If, for som
graph, this algorithm stops without having ever chosen v
tices of current degreed>2, the constructed VC is minima
@17#. Overestimations may appear if the algorithm is a
forced to select vertices of higher degreed>2, where the
error can be at mostd21. Thus, summing (d21)(1
2dd,0)/N over all iteration steps, we obtain an upper bou
Dx on the total error made in estimatingxc using the above
heuristic algorithm. IfDx goes to zero in the large-N limit,
the algorithm has consequently constructed an almost m
mal VC.

In Fig. 1 we show the size of VCs found by generaliz
leaf removal as a function ofr. Up to the RSB point the
numerical solutions are close to the analytical values, up
finite-size corrections resulting mainly from a degree cut
dmax;N1/g. Beyond the RSB point we still have a numeric
estimate but we cannot be sure that it is optimal. In the in
of Fig. 1 the upper bound on the error is displayed. In the
region we haveDx'0 for N@1 and, therefore, the heuristi
algorithm asymptotically yields the exact valuexc . How-
ever, in the highly correlated region we find a finiteDx at
any network size, thus the heuristic algorithm fails to fi
almost minimal vertex covers. Moreover, the point whereDx
becomes different from zero coincides with the RSB poin

It is interesting to know in which phase realistic networ
are. As mentioned in the introduction, VCs have found
v.
d

-

.
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plications in monitoring Internet traffic@12# and in the denial
of service attack prevention@13#. The analysis of Interne
maps has revealed negative~dissasortative! correlations at
the autonomous system level@4#. Negative correlations are
actually common in technological and biological networ
@6#. Hence the generalized leaf-removal heuristic should o
put almost optimal VCs in linear time. Conversely, soc
networks exhibit positive~assortative! correlations@6#. In
this case VCs can be used to monitor social relations
tween pairs of individuals but, because of the existence
negative correlations, simple heuristic algorithms may fail
produce near optimal solutions.

To summarize, we have generalized the Bethe-Peierls
proach to random networks with degree correlations, a
analyzed the VC problem as a prototype optimization pr
lem defined over graphs. We have found that uncorrela
power-law networks are simple from the point of view
combinatorial optimization, inhomogeneities of neighbori
vertices can be exploited. The introduction of sufficien
large degree correlations leads to RSB and thus to a fai
of simple heuristic algorithms. For constructing optimal s
lutions, complete algorithms including, e.g., backtracki
have to be used. These, however, result in general in ex
nential solution times, and thus in a higher algorithmic co
plexity. Our results point out that optimization problems
many technological and biological networks can be sim
due to the strong degree inhomogeneities and negative
relations present on them.

We acknowledge fruitful discussions with M. Leone, A
Vespignani, and R. Zecchina.
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