PHYSICAL REVIEW E 67, 027101 (2003
Computational complexity arising from degree correlations in networks
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We apply a Bethe-Peierls approach to statistical-mechanics models defined on random networks of arbitrary
degree distribution and arbitrary correlations between the degrees of neighboring vertices. Using the nonde-
terministic polynomial time hard optimization problem of finding minimal vertex covers on these graphs, we
show that such correlations may lead to a qualitatively different solution structure as compared to uncorrelated
networks. This results in a higher complexity of the network in a computational sense: Simple heuristic
algorithms fail to find a minimal vertex cover in the highly correlated case, whereas uncorrelated networks
seem to be simple from the point of view of combinatorial optimization.
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The last few years have seen a great advance in the studyonitoring Internet traffid 12] and denial of service attack
of complex networkg1], where the term “complex” refers prevention[13]. Our analytical results are later compared
to the existence of one or more of the following properties: awith an approximate solution obtained using a heuristic al-
small world effect[2], a power-law degree distributiqii], ~ gorithm. This heuristic algorithm fails to find minimal vertex
and more recently correlatioi8—6]. On the other hand, if Ccovers in the strongly correlated case, whereas networks with
we focus on the solution of a given task on top of thesdow correlations seem to be simple from the point of view of
networks, the term complex is better associated with the tim§ombinatorial optimization. Within our analytical approach,
required to solve it, i.e., with its computational complexity this change of behavior is associated with replica symmetry
[7]. In this context, a problem is complex if its algorithmic Preaking(RSB).
solution time is growing exponentially in the network size. ~ Consider a set of undirected graphs whtlvertices and an
At the core of complexoptimizationproblems one finds the arbitrary degree distributiopy . Following a randomly cho-
NP-hard clas§7], where NP stands for the nondeterministic Sen edge, we will find a vertex of degrele-1 with prob-
polynomial time. ability qg=(d+1)pg+1/c, with c denoting the average de-

In the case of uncorrelated networks with power-law de-gree. The numbed of additional edges will be called the
gree distributions we can take profit from the existence ofxcess degre&Ve further assume correlations between adja-
hubs to solve different problems, such as destroying the giarf€nt vertices: The probability that a randomly chosen edge
component[8], preventing epidemic outbreak®], and connects two vertices of excess degréemdd’ is given by
searching[10]. The extremely inhomogeneous structure of(2— Jq,4')€qa - The conditional probability that a vertex of
uncorrelated networks can also be exploited to approximatéxcess degred is reached following any edge coming from
or even to solve instances of NP-hard problems using held vertex of excess degreg,
ristic algorithms running in polynomial time. However, the
influence of properties like degree correlations or clustering p(d[d’)=eqa /dqr D
is not yet clear. Recent studies of percolafiéhand disease - , . .
spreaé/ing[ll] have shown that degrr)ee correlations can quanthus explicitly depends on bothandd’. Consistency with
titatively change, e.g., the transition threshold, but qualitath® degree distribution requirés,, _,eqa=0qq, andeyq: has
tively the results are similar to those obtained for uncorreto be symmetric. For uncorrelated graphg, =dqdq fac-
lated networks. torizes. The strongest positive correlations are reached for

This changes drastically if we consider hard optimization€ad = dadaa’ » Where only vertices of equal degrees are con-
tasks defined over correlated networks. In this work we studyrected.
the influence of degree correlations on the computational Letus now consider a general statistical-mechanics model
complexity, and in a more general perspective the relatiofvith discrete degrees of freedom defined on vertices, and
between the topology of complex networks and the compuinteractions defined on edges. We use a lattice-gas model
tational complexity of hard problems defined on top of them described by the Hamiltonian
For this purpose we generalize the Bethe-Peierls approach to
st.atistical—mecha}nic_s m_odels defingd on networks with an ar- —BH= E 3, w(x ,Xj)+,u2 X; )
bitrary degree distribution and arbitrary degree correlations i<i i
of adjacent nodes.

The approach is applied to characterize the minimal verdefined for any microscopic configurationx;=0,1,i
tex covers on these graphs. We have chosen this problem fer1, ... N. Jis the adjacency matrix with entrigl; =1 if
two reasons: It belongs to the basic NP-hard optimizatiorverticesi andj are adjacent, and;;=0 otherwise. The in-
problems over graph§7], and has found applications in verse temperature is denoted By and the chemical poten-
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tial by w. The interactionsv(x;,X;) are arbitrary, thus also

including the case of the ferromagnetic Ising model, hi:M—Fk\JE*l u(hggiy) s 9
w(Xi,Xj)=(2x;—1)(2x;—1). The only disorder present in a

Eq. (2) is given by the edges;; . Generalizations to disor- resyiting from the influence adll neighbors on vertek

dered interactions, as present, e.g., in spin glasses, random| ot ys now assume, that the model has only one pure
local fields, or nonbinary discrete variables, are evident. FOEtate, which corresponds to the assumption of RS. In this
clarity of the presentation, we restrict ourselves to the simpl%ase, the iterative procedure given by E4). converges to
model given above. well-defined distribution®,(h) of effective fieldshy;, re-

Since the graphs are locally treelike, the model can b&icted to vertices of excess degreThey are determined
solved by the iterative Bethe-Peierls scheme which becomqi, the self-consistency equation

exact if only one pure state is present. The free energy can bée

expressed in terms of simple effective-field distributions act- » d i
ing on vertices of a given degree. In the case of multiple pure Py(h)= f 11 (dh, > p(di|d)Pyq (h|))
states this has to be generalized to the cavity approach; see, —=l=1 d=0 '
e.g., Ref.[15] for an example of a spin glass on a Bethe

lattice of constant vertex degree. Alternatively, one can apply N
the replica approach. The simple Bethe-Peierls solution cor-

responds to the assumption of replica symmetRS),

whereas the full cavity approach is able to handle also th&lease note that, in contrast to the uncorrelated case, we do
case of RSB. need the field distributions for all possible excess degrees. In

Take any edgei(j), i.e.,J;=1. Letus introducéfj“) as theuncorrelated case, the average of these distributions over
the partition function of the subtree rootedijrwith deleted ~ dd is Sufficient. We may also introduce the analogous distri-
edge (,j), and withx; fixed to the valuex. This partition  butionsPy(h) of cavity fieldsh; for vertices of given degree
function can be calculated iteratively: d (note: here the full degree is relevarthey can be calcu-

lated fromPy(h) by

d
h—u—gl u(ho). (10)

Zglj): H (ew(O,O)ngH)_’_ew(O,l)Z(lk|i))'

d ©
k%=1 ~ *
i Pd<h>=f [IRELDS p(d.ld—l)Pdlmo)
3 — (=1 d=o0
Z(lili):e,u H (eW(lio)ngli)_i_eW(lvl)Z(lkli))_ d
k#j|Jj=1 _ _2
x5 h=pu=2 u(h)|. (11)
The effective fieldsh;,=In(z{"/z{") are thus determined
by the iterative description Replacing the sum over vertices and edges in(Bgby the
corresponding averages oveg(h) [P4(h)], we finally find
halp=#+ > u(hegiy) (4)  the free-energy density
k*j|Ji=
Wher.eu(.h(k“)) is the effective field induced by, on sitei, Bf=— E (d—l)pdfw thpd(h)m(lJreh)
and is given by d=0 -
(1,0) (L1)+hy c <& ©
W) =In| ST ) =3 edd,J dh di Py(h)Pg:(h’)In(e"©0
(k) aW(0.0) | gw(0.)+hyy |- 2 4a=0 o
+ew(1,0)+h+ew(0,1)+h’+ew(1,1)+h+h’)_ (12)

The free energy of the system can be written as

The simplest application of this approach is given by the

—BNf=2 fi+ > J(f;—fi—T)), (6)  ferromagnetic Ising model. If we look to the ground states,

' = i.e., to the limitB—oo, we find that, as expected, the global
where the link contribution equals magnetization is determined by the size of the giant compo-
nent. The existence of a ferromagnetic phase at low tempera-

() analyzed in Ref{6].
Another application is given by the vertex coverC)
whereas the site contribution problem. It belongs to the basic NP-hard optimization prob-
lems[7] and, therefore, it is expected to require a solution
f— —In( E ehixi) ®) time which grows exponentially with the graph size. Let us
! 5 be more precise. Given a graph with verti¢es{1, ... N}
and edges{(i,j)|1$i<j$N,Jij =1}, avertex cover s a
depends on the cavity field, subset of verticesy C{1, ... N}, such that at least one end

fi=— In( > eWOi X F Xt iy,

) ture is thus related to percolation. The latter was already
X ’Xj '
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vertex of every edge is contained \h So no edgei(j) is ' '
allowed to exist with ¢ V andj & V. Of course, the set of all
vertices forms a trivial VC. The hard optimization problem
consists in finding theninimal VC

Using the hard-sphere lattice-gas representation intro-
duced in Ref.[16], wherex;=1 if i¢V, and x;=0 if i

eV, the VC condition can be rewritten as e
1-xx;)=1, 13
(i,i)JiJ-:l( ) (13 03 | 4 ]
which fits into the above framework by settimtf*i X)) =1 J
—X;X;. The chemical potential can be used to fix the cardi- %5 1
nality of the VC, minimal ones are obtained in the lingit 0.2 : ' ' '

0.2 0.4 0.6 0.8 1
r

— o0, They correspond to maximal packings in the lattice-gas
picture. To perform the limitu—o all fields have to be

rescaled afi=uz [16]. We obtain FIG. 1. Minimal VC size for a network with degree distribution
d ” py~d~ 7 and degree correlations given by Ed8). The lines give
[ the analytical solution fory=2.5 (lower curve and y= 3.0 (upper
Pq(2)= J_OOH (dz'dlEO p(d'|d)Pd|(Z')) curve. The curves stop at the point where RS breaks. The symbols

are numerical estimates fgr=2.5 (circles and y=3.0 (squares
and network siz&=10°. In the inset we plot the upper error bound

, (14) Ax for generalized leaf removal. The onset of a nonzero error co-
incides with the RSB transition, marked by arrows.

d
X 8 z—l—z max0,z))
=1

which is solved byPy(z)=3;"" ,p(P8(z+1). This ansatz
allows for integer-valued fields only, we find a simple rela-
tion including only thep'?) :

To see how this works out, we concentrate on networks
having equal degree distributions but different correlation
properties. We restrict our attention to scale-free graphs with
d pg~d~ 7 for d=1, ..., with y>2. For a vertex cover,

' (15) interesting effects are expected to appear for positive corre-
lations, or assortative networks. We therefore consider

p“’%=[ > p(ds|d)(1—p'
di=0

All other p{? follow easily. The expression inside the paren- €aq =gl S g +(1—1)dg]. (18)
theses can be understood as the average probaijityhat ’
an edge entering a vertex of degiee 1 carries a constraint,
i.e., that it is not yet covered by the neighboring vertex. It
thus fulfills the condition

For Osr=<1, this expression linearly interpolates between
uncorrelated (=0) and fully assorted r(=1) networks.
Please note that this network is percolated foryalis soon
o asr>0. In Fig. 1 we show the resulting size of the minimal
4= 2 p(d1|d)(1—7rd1)d1. (16)  VCs for different values ofy as a function ofr. The RS
d,=0 solution breaks at a certain value ofthat depends ony.
There, the solution-space structure changes drastically, from
Keeping in mind that, due to the limjt—, every vertex peing unstructured, or RS, in the low correlated case to being
with positive z is fixed tox=1, every one with negative  clustered, or RSB, for sufficiently high correlations.
hasx=0, we can immediately read off the fraction of verti-  To check the consequences of this transition for heuristic
ces belonging to a minimal VC: optimization algorithms, we have numerically generated
scale-free networks with correlatiofigg. (18)], and applied
- a generalization of the leaf-removal heuristic of Bauer and
1+ del)' (17) Golinelli [17]. For the special case of correlations given by
Eq. (18), the network can be generated using a modification

Remember that the last expressions are related to the v&f the Molloy-Reed algorithn{14] for random graphs of
lidity of RS, i.e., to the existence of a single connected clus@rbitrary degree distribution. First, each ndde assigned a
ter of minimal VCs in configuration space. As observed indegreed; with probability py . Then we create a set con-
Ref.[16], RS is related to théocal stability of this solution.  taining d; copies of each node Finally, pairs of nodes are
In presence of RSB, E16) has no stable solution. Since it connected according to following rulé) Select a nodé in
has to be solved by numerical iteration in the general case, at random.ii) With a probabilityr, select a second node
an instability prevents the program from convergence, ang e £ with d;=d; in £ at random; otherwise select an arbi-
thus provides a precise tool to detect RSB without any RSBrary nodej € £ at random.(iii) Connecti andj and delete
calculation. both from L. This is repeated until is empty.

o)

Xe=1— > pg(l—mg_1)%*
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Once the network is generated, we construct a VC using glications in monitoring Internet trafficl 2] and in the denial
generalized leaf-removal algorithfi8] defined as follows: of service attack preventiofiL3]. The analysis of Internet
Select a vertex of minimal current degree from the networkmaps has revealed negativdissasortativie correlations at
and cover all its neighbors. The considered vertices and athe autonomous system leviel]. Negative correlations are
incident edges are removed from the network. This step igctually common in technological and biological networks
iterated untill the full network is removed. If, for some [6]. Hence the generalized leaf-removal heuristic should out-
graph, this algorithm stops without having ever chosen verpyt aimost optimal VCs in linear time. Conversely, social
tices of current degre¢=2, the constructed VC is minimal networks exhibit positive(assortative correlations[6]. In
[17]. Overestimations may appear if the algorithm is alsoihis case VCs can be used to monitor social relations be-
forced to select vertices of higher degrée2, where the  y\ een pairs of individuals but, because of the existence of

(irg)r (/:En be E?lt_ mosd—1. Thus, sbummmg d_l)él negative correlations, simple heuristic algorithms may fail to
a)/N over all iteration steps, we obtain an upper boundy, “y " oo "o Al ol tions,

Ax on the total error made in estimating using the above To summarize, we have generalized the Bethe-Peierls ap-

heuristic algorithm. 1fAx goes to zero in the largh-limit, roach to random networks with degree correlations, and
the algorithm has consequently constructed an almost minf2 9 A

mal VC. analyzeq the VC problem as a prototype optimization prob-
lem defined over graphs. We have found that uncorrelated
power-law networks are simple from the point of view of
8ombinatorial optimization, inhomogeneities of neighboring
S . . . vertices can be exploited. The introduction of sufficiently
finite-size corrections resulting mainly from a degree cutoffIarge degree correlations leads to RSB and thus o a failure

dma,~N™. Beyond the RSB point we still have a numerical f simple heuristic algorithms. For constructing optimal so-
estimate but we cannot be sure that it is optimal. In the insg‘i‘)I P 9 ' g op

of Fig. 1 the upper bound on the error is displayed. In the R utions, complete algorithms including, 9. backtr_acking
region we havé\x~0 for N>1 and, therefore, the heuristic ave to be l.Jsed.' These, howev_er, re.sult n gen.eral.ln E€XPO-
algorithm asymptotically yields thé exact vélug How- nential solution times, and thus in a higher algorithmic com-

. . : ! . plexity. Our results point out that optimization problems in
ever, in the hlghly correlated region we f".]d a fm_mx at many technological and biological networks can be simple
any network size, thus the heuristic algorithm fails to f|nddue to the strong degree inhomogeneities and negative cor-
almost minimal vertex covers. Moreover, the point whise

becomes different from zero coincides with the RSB point. relations present on them.
It is interesting to know in which phase realistic networks We acknowledge fruitful discussions with M. Leone, A.
are. As mentioned in the introduction, VCs have found ap-Vespignani, and R. Zecchina.

In Fig. 1 we show the size of VCs found by generalized
leaf removal as a function af. Up to the RSB point the
numerical solutions are close to the analytical values, up t
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