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Smoothed dissipative particle dynamics
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We present a fluid particle model that is both a thermodynamically consistent version of smoothed particle
hydrodynamic{SPH and a version of dissipative particle dynam{€PD), capturing the best of both meth-
ods. The model is a discrete version of Navier-Stokes equations, like SPH, and includes thermal fluctuations,
like DPD. This model solves some problems with the physical interpretation of the original DPD model.
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[. INTRODUCTION physical dimensions of the suspended particles which are in
the submicron range. At these scales, the fluid flow starts to
Smoothed particle hydrodynami¢SPH) is a Lagrangian feel the underlying molecular nature of the fluid that shows
particle method introduced by Lu¢{] and Monaghaf2] in up as fluctuations in the hydrodynamic variables, well de-
1970s in order to solve hydrodynamic problems in astroscribed by the Landau and Lifshitz thed§]. These hydro-
physical contexts. It has been extensively applied in thelynamic fluctuations couple to the colloidal particles through
study of accretion disc, galaxy dynamics, and star collisiondoundary conditions and are the ultimate origin of the diffu-
among other problemg3]. The starting equations are the sive behavior of the colloidal particles. This is the well-
inviscid Euler equations, which are assumed to be a valitknown point of view of the hydrodynamic theory of Brown-
model for stellar material in which dissipative effects arejan motion [10] that successfully predicted the
small. The basic idea in SPH is to use an interpOIant fUnCtiO%xperimenta"y observed |Ong_time tails in the Ve|ocity auto-
that allows one to compute spatial derivatives of the fields aggrelation function of the colloidal particlgd1]. Hydrody-
a given particle location. In this way, the hydrodynamic namic fluctuations of simple fluids in equilibrium and non-
equations are solved with a set of particles with prescribedyjjjibrium  situations can also be measured directly by
interactions. The re§ult|ng _qlgonthm is very muph Ilkg MO- Leans of light spectroscofi2].
lecular dynamics with additional thermodynamic variables. On the other hand, the method of dissipative particle dy-

The large amount of algorithmic knowledge in molecular : S T -
dynamics[4] can be transferred directly to the simulation of namlc_s(DPD) [13], which is very similar in spinit to SPH,
does include thermal fluctuations. However, DPD as conven-

partial differential equations. ) ! o
Generalizations of SPH in order to include viscosity andtlonally m_troduced s_uffers from several problems Th-e
nservative forces in the model do not allow for arbitrary

thermal conduction and address laboratory scale situatiorf&®

like viscous flow and thermal convection have been prefduations of statébut see Refl14] for isothermal DPD, (i)

sented only quite recentl}5—8]. It is actually possible to the transport coefficients cannot pe specified Qirectly' in the
derive different implementations of the SPH equations for model and a round way through kinetic theory is required in
dissipative fluids and every group seems to have its favoritedrder to relate these transport coefficients with the model
However, in all the implementations we are aware of, there igarameter$15], and(iii) the physical scale probed by DPD
no explicit consideration of the Second Law. Actually, weis undefined. In this paper, we deepen the connection be-
have not been able to prove that any of the proposed impldween SPH and DPD, extracting the best of both methods
mentations actually complies with the Second Law. The onlyfluctuations from DPD, connection to Navier-Stokes from
exception is that of Ref.8] where the simplest case of heat SPH [16]. The above problems of DPD disappear in the
conduction in a solid is considered. Even though the equamodel. We have advocated the view that the particles in DPD
tions may represent faithfully the continuum equations, ancatnd SPH should be regarded as portions of the fluid repre-
these continuum equations do respect the second law, potegenting moving thermodynamic subsystefig]. Following
tial problems may not be excluded in an algorithm whichthis idea, we have presented a finite volume discretization of
does not explicitly agree with the second law. . the Navier-Stokes equations in a Lagrangian moving Voronoi
The purpose of this paper is to formulate an SPH impleyrid [18]. The Voronoi grid is relatively easy to implement in
mentation for a dissipative fluid that explicitly acknowledgestwo spatial dimensions but becomes rather involved in three
the second law. This is not a tiny nicety. Actually, there is andgimensions. For this reason, using the idea of spherically

intimate Conn.ectiomthe fluctuation-dissipation theOI‘Q.r’[]_e.- Symmetric interp0|ants is very appea”ng from the point of
tween the fulfillment of the second law and the possibility ofyjew of algorithmic simplicity.

describing correctly hydrodynamic fluctuations in the fluid,

as we show below. A second objective of this paper is to

introduce thermal fluctuations in a consistent way in SPH. Il. THE MODEL

These fluctuations arise naturally if the physical scales of the '

problem are mesoscopic as, for example, in colloidal suspen- The equations of hydrodynamics in a Lagrangian descrip-
sions. In this case, the hydrodynamic scale is dictated by thton are[19]
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The time derivative in Eq(l) is the well-known substantial
derivative describing how the quantities vary as we follow
the flow field. p=p(r,t) is the mass density fieldy FIG. 1. The functionsN/(r) (solid line), F(r) (bold ling), and
=v(r,t) is the velocity field, s=s(r,t) is the entropy FF(r) (dotted ling.

per unit mass field, P=P*p(r,t),s(r,t)] and T . ) ) ) )

=Te] p(r,1),s(r,t)], are the pressure and temperature ﬁe|dsposmons_; of the particle f':md its nelghbors_. _ConS|der a bell-
given by the local equilibrium assumption. The transport co-Shaped interpolant functiow/(r/h) with a finite supporth
efficients (taken to be constant for simplicitare the shear @nd which is normalized to unity

and bulk viscosities, { and the thermal conductivity. The

viscous heatingield ¢ is defined by f dr W(r)=1. (6)

9 U\ Uy 2
¢=27VV-VVH+{(V-V)%, @ 1n the limit h—0 W(r) tends to the Dirac function. The

olumeV, of particlei is defined as the inverse of the density

where the traceless symmetric part of the velocity gradienY
y P ¥y d; which, in turn, is defined by

tensor is
1
— 1 1 ——d= .
VVZE[V.V+V.VT]_§V.V 3) Vi_d'_; W([ri=rj]). (7

and the unit tensor has been denotedLb§he field ¢ cap- Note that if there are many neighboring particles around a

tures the physical mechanism by which the energy dissipatedVen one, the contribution to the sum in E@) will be large
by the viscous forces in the fluid is transformed into the@nd so will be the density of the particle. Its associated vol-
internal energy. ume will be thus smaller. We regaldl as the thermodynamic
Our aim is to discretize the above equations in the spatiaYOlume to be associated to the particle. One should note that,
domain of the fluid. A large set dfl points is seeded in this N general,2V;#Vr, whereVy is the total volume of the
spatial domain. Every point is regarded as a moving thermocontainer. We expect, _however, that_ the thermodynamic vol-
dynamic subsystem. It has associated a positiorvelocity ~ UMe a_nd the geometrical volume will be very c_Iose to each
v;, constant mass, and entropyS; . The mass is a fraction other in the case that there are many particles in the system,
| i . . .
m=M+/M of the total masV; of the system. Two more due t0 fthe norrr;ahzauo(ﬁ). _ o th ive f
extensive variables must be associated to every particle in FOr future reference, we introduce also the positive func-
order to describe a thermodynamic system, which are thdon F(r) through
volumeV, and the internal enerdy; . The internal energy is VW(r)=
. . : ry=—rk(r), F(r)=0. 8
a given prescribed function of, S,V (r) (r) (") ®

A usual selection in SPH is the Lucy function féf(r),

Ei=E®(m,S V), (4)
3
where, by the local equilibrium assumpti&@f9m,S,)) is W(r)= 1+3£ (1_1) (9)
the same function that describes the equilibrium thermody- 167h® h h
namics of the whole fluid. Every particle has also a pressure _ _
P; and a temperaturg; given by the equations of state from which the functionF(r) follows
T B 315 [ 1)
=5 |=(r)—477hs 1-] . (10)
_ OE®™ In Fig. 1 we plot the function®V(r),F(r),rF(r).
Pi=— v 5) Our aim is to propose a discrete model that approximates

Egs.(1). More precisely, we want to formulate a set of equa-
In Ref. [17] we considered the volume as an independentions for the discrete variablgs ,v;,S; which have as solu-
variable. It proves much more convenient and intuitive totions very approximately the solutions of Egd) when
define the volume associated to a particle in terms of thevaluated at the points.
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As a first step, in accordance with the Lagrangian descripBy taking the divergence of E¢16) leads to
tion implicit in Egs.(1), we assume that the evolution of the
positions of the patrticles is given by its velocity,

; (r=r)-viF([r—ry|)

i‘i:Vi. (11) V.V(r):_
- | o 2 W(lr=rj)
If v; is a discrete representation of the velocity field, then the i
particles form an irregular grid that moves following the flow
field. We expect that this evolution captures the full Lagrang- > (r=r)F(r—r
. " . - J ( I
ian nature of Egs(l) and no additional convective terms are ]
required. +v(r)- : (17)
A simple discrete model for Eq$1) would be 2 W([r=ry])
di=—di(V-v),

By evaluating this expression at=r;, we obtain the ap-
proximation for the divergence in the form of E{.5).

vi=— (VP)i " L(Vzv)ﬁ 1 [+ n (VV-v);, We have seen, therefore, that the definition of the density
md~ md md, 3 (7) and the equation of motiofl1) already account for the
continuity equation, which is therefore redundant. However,
(¢). K _, in some situations it might represent an advantage to actually
TiS= d, d—i(V i (12) solve the continuity equatiof2].

The argument leading to E(L7) is unsatisfactory for the
We have introducednd, as a discrete version of the density case of the pressure gradieMR); because total momentum
field p at r;. Of course, Egs(12) is still a meaningless would not be conserved. We follow instead a different pro-
collection of symbols until we specify how the spatial de-cedure, which is based on energy considerations. We note
rivatives of the fields are represented at each particle locahat if we set the transport coefficients to zero in E4®)

tion. we obtain a discrete model for an inviscid fluid. Of course
Let us consider the continuity equation. According to thethis fluid conserves energy. The total energy of the system is
definition (7) and the equation of motio(ll), we have given in the particle model by
m 2
__; Fijrij‘vija (13) EZE EVi+Ei ' (18)
I
where we have introduced the notation Its time derivative is given by
F|J:F(|ri_rj|): . . .
E=> [mv;-vi—PV] (19
I’ij = ri - I’J- y !
Vi =Vi— . (14) because, in absence of dissipatigr 0. By substituting the

equations of motior{12) with #,,« set to zero we obtain
Comparison of Eq(13) with the continuity equation in Eq.

(12) suggests the following representation of the divergence _ (VP), Vo i ).
of the velocity E d; (V-v)il. (20
1 v By using the form(15) for the divergence of the velocity and
(V-vi=g > Fijrij v =y (15  after simple rearrangements we end up with
This is compatible with the intuitive idea that the divergence E_ (V P). _ E J v (21)
of a velocity field is closely related to the relative rate of 4 d d? J2 Fijfij- Vi

change of the volume.

A further argument to show that Eq15) is a faithful  \yhich suggest that a suitable expression for the pressure gra-
representation of the divergence can be given by consideringient is given by

the following interpolant of the velocity field

(VP), PP
Ej: W(|r—rj|)v]- d; __; d2 d2 Fljrlj (22)
v(ry=——. (16)
e This is the form for the pressure gradient preferred by Mon-
> W(lr=rj))
. j
]

aghan[2].
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The final form for thereversiblepart of the dynamics is, 1, Fij
therefore, —(VA);=-22 —vj,
d; T did;
ri=v,
1 Fi
E(VV'V)i:_E_ d__(I:JI_[5e|ij‘Vij_Vij]v
. Pi P] [ ] 1~
mvi=2_ —2+—2 Fijrij,
io[di d 1, Fij
. d_(v T)i:_zz HTU , (28)
5=0. (23 ' b
) where we have introduced the notation
Note that these equations also conserve total momeitum
=2;mv,; due to the symmetries under exchange of the indi- T=Ti—Tj,
cesi,j. It is obvious that the rate of change of the entropy of
the total system, defined as ri—r
&j=r——- (29
[ri=rj
s=2i S (24)

Upon substitution of Eq(28) into Eq. (12) we obtain the
_ following equations for the variables,v; ,S;,
is zero,S=0. This is consistent with the fact that the revers-

ible part of the dynamics should not produce any entropy r=Vvi,
increase.
We consider now the dissipative terms in E¢s2) in- : P P; 57 Fij
volving second spatial derivatives. We present now a novel mVi:Ej: @Jr 42 Fijrij 3 —¢ 2,: I_dJVu
i i

argument for obtaining approximate expressions for the sec-

ond derivatives at the particles which is based on the follow- 7 Fij
ing identity for an arbitrary functioi\(r), 5\ it3 2}: ad i Vi
i
(r'=r)(r'—=r)#
' A r_ [ _ saf . F
i
=VVAA(r)+ O(V*Ah?). (25

We still need a discrete version for the viscous heating term

This identity is demonstrated in the Appendix by expanding(d’)i ._Rather. thar_1 trying to invent discrete versions for the
A(r’) aroundr and making use of the isotropic nature of velocity gradient in order to computeb];, we resort to the

F(r). The high order terms are negligible if the function Physical meaning of this term, that friction forces should
A(r) is sufficiently smooth on the scale bf The form of the ~ Produce an increase of internal energy in order to conserve
interpolant(25) is suggested after a similar expression giventOtall(?ner.gy' Actually, by using Eq30) in Eq. (19) and

in Ref.[8] for the Laplacian. Actually, taking the trace of Eq. requiring E=0 readily suggest the appropriate form for
(25) leads to (&),

57] g FI] 2 5
2f dr'[A(r')=ADIF(r' =r)=V-VA()+O(V*Ah?),  (9)i=| 5~ 3 = 4,1t 2 (t3

(26) J (31

which is the form used in Ref8]. Of course, we had to The set of Eqs(30) with (31) and the equations of sta(b)
generalize the expression of the Laplacian in R&f.in or-  are a closed system of ordinary differential equations for the
der to deal with the vector nature of the velocity field, asindependent variables,v;,S;.

opposed to the simpler scalar nature of the temperature in the We discuss now the physical meaning of the different

case of heat conduction in solids. terms in the model given in Eq$30). The particles move
The next step consists on discretizing the integrals accordaccording to their velocities and exert forces of a rahge
ing to among each other of different nature. First, a repulsive force
. directed along the line joining the particles that has a mag-
, N nitude given by the pressure and densities of the particles.
f dr H; VJ_; dj’ @7 Roughly speaking, the larger is the pressure in a given re-

gion, the higher the repulsion between them. The fluid par-
Again, this approximation will be valid if the scale of varia- ticles are also subject to friction forces that depend on the

tion of the fieldA(r) is large in front ofh. relative velocities of the particles. There is a component of
In this way, we discretize the dissipative terms involving these forces, directly proportional g that breaks the con-
second derivatives in Eq12) as servation of total angular momentum. If one wishes to re-
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spect this conservation law, then it is necessary to introduce 1.2 e A

in the model a spin variable associated to every parfizlg 1 & &
This spin variable represents the intrinsic angular momentum &Y

of the finite sized particles. In a molecular view, this spin is 08 ¢ 7
directly related to the angular momentum of the system of viv 06 R4 -
molecules that form the fluid particle with respect to the 3

center of mass of the particle. We showed that this spin vari- 04 ]
able is a very rapid variable when the fluid particles are 0.2 [# .
small, and decay towards the vorticity field in a short time 0 4y
scale[19]. For simplicity, we do not consider this issue in 0 2 4 6 8 10 12 14 16

this paper and simply expect that for sufficiently well re-

solved flows, angular momentum conservation is sufficiently ] ) ) ] ] )

well satisfied. A word is in order about the artificial viscosity ~ F'G- 2. The measured viscosity normalized with the input vis-

introduced in SPH in order to deal with shodk&l]. The cosity vq as a function of the_ normahzgd wave_length_D|amonds_

artificial viscosity depends o8, -v;; and on ;- V”)z The awe forh/ly=3, corresponding to 30 interacting neighbors while

linear term should be interpreted as a physical viscosity as | (0Sses are fon/lo=4, corresponding to 50 interacting neighbors.

is apparent from the above derivation. The quadratic part,

which is needed to prevent penetration in high Mach shocks,

is a Von Neumann-Richtmeyer artificial viscosity which be-  We have performed a numerical simulation of E@€) in

comes operative only for particles that are approaching eactrder to check in very simple situations that the model

other very fast and almost directly head [af. works. An ideal gas has been assumed for which the thermo-
The terms in the entropy equation have the same meaningynamic equatiori4) is (in two spatial dimensions

and heat conduction. The heat conduction term tries to re- Nh? [N

duce temperature differences between particles by suitable E(N,V.9)= 27Tmo( ) p|’

total energy due to its symmetries. It has the form given byHere,N is the(fixed) number of molecules per fluid particle,

Cleary and Monaghan under the assumption of constant them, is the mass of a moleculé, is the Planck constant, and

Ill. SIMULATION RESULTS

Ve

as those in the original equati@fh), that is, viscous heating
S
-2 (33
Nkg
energy exchange. This heat conduction term also conserves

mal conductivity[8]. kg is the Boltzmann constant. We select units in whith
It is worth considering the rate of change of the total=1, Nkg=1, and Nmy=1 and, furthermore, lengths are
entropy(24). A simple calculation leads to measured in terms of the typical distarige- (M/V1)*? be-

tween fluid particles, wher#& is the number of fluid par-
(¢). ticles and V; is the total volume (area of the two-
S= 2 +K2 a d TT (32 dimensional (2D) simulation box. In these units, the
temperature and pressure of each fluid particle are given by

We will have thatS=0 if ($),=0. This will occur if 57
>3¢. Note that the friction force in the velocity equation in
Eqg. (30) is unstable if 5<3¢, producing accelerations of
the particles rather than reducing velocity differences. The Pi=d;T;. (34
model equations are valid only for fluids satisfyingy 5
>3¢{. Note that the bulk viscosity is zero for monoatomic A cubic periodic box is used. The initial state of the system is
gases at low density and it is small for liquifa2]. Under  defined as follows. Particles are located in a triangular lattice
this assumption the above model equations respect the sewith equal temperaturés;=1. Two velocity profiles are as-
ond law. It is crucial in this discussion that the functie(r) sumed, a shear wave and a sound wave of wavelexngth
is positive. Althoughthe structureof the friction force is the  From the decay of this transverse and longitudinal waves it is
same as in Ref$5,20], the interpolant method used in these possible to measure the viscosity and speed of s¢u8H
works does not provide a positive definition of the kernelThe results are presented in Figs. 2 and 3, where the kine-
involved and, therefore, the second law is not guaranteed. matic viscosity and the sound speed normalized with their
The restriction 5>, although not essential in practice, respective input values are plotted as a function of the wave-
seems to be an undesirable limitation of the discretizatiodength of the initial velocity profile. As the wavelength in-
procedure. One can think of another discretization procedurereases one observes a good agreement between the mea-
which, although retaining the thermodynamic consistency osured and input values.
the resulting algorithm, does not suffer from this limitation A remarkable fact is that the discrepancies between mea-
[17]. One should note, though, that an algorithm like thatsured and input values arise when the wavelength of the
presented in Refl17] in order to compute second spatial perturbation is of the order of 6 times the rangef the
derivatives involves two loops over the particles instead ofwveight function. In this respect, the relevant length scale that
the one loop needed in computing Eq&8), making the determines whether a given hydrodynamic field will behave
algorithm a factor of two slower. according to the input transport coefficients is the rangé

N
leﬁdi exp(S — 2},
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12 — 77171711 construction, the fluctuation-dissipation theorem is satisfied
1 + & and the equilibrium fluctuations are governed by the Einstein
sk & g i distribution functior_l. Ano_ther motivation for trying the
’ 5 GENERIC framework is that in the future we plan to introduce
c/co 06 y additional structural variables in the fluid particle model in
04 b+ - order to model non-Newtonian fluid26]. Such a generali-
0.2 | ¢ | zation is best pursued within this framework.
‘ The dynamic equations for the stateof a system at a
ol L given level of description are given in th&ENERIC frame-
0 2 4 6 8 10 12 14 16
AR work by
FIG. 3. The measured sound speed normalized with the sound d_)(_LE+ M ‘7_3 (35)
speed of the equilibrium statg= V2T as a function of the normal- dt  ~ ox X’

ized wavelength\n. Diamonds are foh/l;=3, corresponding to 30

interacting neighbors while crosses are fél,=4, corresponding The first term in the right hand side is named theersible

to 50 interacting neighbors. part of the dynamics and the second term is namedrtbe
versible part. The energye(x) and the entropyS(x) are

the weight function andhot the typical distancé, between functions of the statex used to represent the system. The

fluid particles(which could be loosely understood as a “lat- matricesL,M satisfy a set of stringent properties. Firktis

tice spacing)). Actually, in Figs. 2 and 3 we have plotted for antisymmetric whereasM is symmetric and positive

each wavelength two different simulation results correspondsemidefinite. Most important, the followirdegeneracyon-

ing to different values of,, but the same value ¢f Chang- ditions should hold

ing the ratioh/l; amounts to change the typical number of

interacting neighbors. The discrepancies are small showing ‘9_82 E:

L 0,

that the relevant length scalehisand notl,. In Ref.[15] we Ix IX

arrived at similar qualitative conclusions for the DPD model . .

through a kinetic theory analysis. We have also performeJhese propertles_ensu_re the first and second laws of thermo-

simulations of the model in Eq$30) in which only heat dynamics, that isE=0,S=0. In the case that other dynami-

conduction is operativg8] and have analyzed them with a cal invariantd (x) exist in the systenfas, for example, linear

kinetic theory approach similar to that presented in RE§].  or angular momentumthen further conditions must be sat-

The results are given elsewhg&8], but we advance that the isfied byL,M. In particular

thermal diffusivity also depends on the wavelength of the

temperature profile selected and that discrepancies from the ﬂLﬁzo 5_' ‘7_5:0 37)

input value arise when the wavelength is of the order of the X ax T ax o ax

rangeh of the weight function. _

We should mention that we have encountered a problemwhich ensure that=0.

which is also typical of other SPH and DPD simulations. We The deterministic equatior{85) are, actually, an approxi-

observe the tendency of the system to form ordered struanation in which thermal fluctuations are neglected. If ther-

tures (like crystalg in the equilibrium state. These implies mal fluctuations are not neglected, the dynamics is described

the existence of elastic contributions that should not bedy the following stochastic differential equatiofb]

present if the equations are to represent the hydrodynamics

of a Newtonian fluid. Of course, under forcing boundary

conditions, these crystals are destroyed and it is expected

that the elastic contributions are negligible in front of the

viscous forces in the systef24]. to be compared with the deterministic equatid@s). The

stochastic termdx in Eqg. (38) is a linear combination of

independent increments of the Wiener process. It satisfies the

mnemotechnical ftoule

In this section we cast the obtained method in the form of o

the GENERIC framework[25]. This very general framework dxdx"=2kgMdt, (39

applies to all known dynamic equations for nonequilibrium 5

processes in closed systef@8]. It encodes in a very elegant which means thatlx is an infinitesimal of order 1/227].

way the physics behind the first and second laws of thermoEquation (39) is a compact and formal statement of the

dynamics. Given that we have shown that the proposed fluifluctuation-dissipation theorem, that is, that the amplitude of

particle model actually satisfies these laws, we expect that the thermal fluctuations is proportional to the dissipative ma-

is possible to write the above equations in @eNericform.  trix M. Note the fact that the dissipative mati can be

Our main motivation for casting the previous model into theexpressed in terms of the dyadic product of the noises im-

GENERIC form is that it allows to introduce systematically plies automatically thatl is symmetric and positive definite,

thermal fluctuations in a rather simple way. 38NERIC by  which is the essential property for guaranteeing the second

0. (36)

d—LaE MaSkaMd dx 38
X= 5-’- 54— B& t+dx, ( )

IV. SDPD IN GENERIC FORM
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law. In that sense, one could say that the fluctuationThe total energy and entropy of the system expressed in
dissipation theorem is the warrant for the second lawterms of the state variables are given in EG$) and (24),

Clearly, a model that has not a positive definite dissipativaespectively. For future reference, we compute here the de-
matrix M cannot be generalized in order to include thermalrivatives of the energy and entropy functions with respect to

fluctuations. the state variables,
In order to guarantee that the total energy and dynamical (VP),
invariants do not change in time, a strong requirement on the d—l 0
form of dx holds JE i JS
—= —=|0 (45
JE - al - - '
Zdx=0, —dx=0, (40) x| o
X Ix 1
T

implying the last equations in Eq&36) and (37).
The termkg(d- M/dx) in Eq. (38) can be understood es- where the explicit form(22) is assumed for the pressure gra-

sentially as coming from the stochastic interpretation sedient.

lected, which is Itdnterpretation. In order to avoid potential

misunderstandings we consider the Fokker-Planck equation A. Reversible part of the dynamics

governing the distribution functiop(x,t) for the stochastic

variablesx. The Fokker-Planck equation is mathematically Equations(23) can be cast in the following matrix form:

equivalent to the stochastic differential equatid@s) and . (VP),
can be obtained following a standard proced{2@|. It is r a4
given by i

\./i :; L”

: (46)

J 0= J L6E+MﬁS ) +(9M(9 ¢ my;
S PO == [ L= M [p(X,1) |+ = M= p(X,1). 5 .
(41 j
This Fokker-Planck equation has as equilibrium solution ~ Where the block.;; has the simple form
p=HX) = G(E(X), 1 (X))exp{S(x)/kg}, (42 0 19 O
1
which is the Einstein distribution function for equilibrium Lij=—| —18; 0 O0]. (47
fluctuations in the presence of dynamical invarid2&. The m
arbitrary functiong(E(x),l(x)) is fixed by the initial distri- 0 0 O

bution function of dynamical invariants in the syst¢28].
For example, if we know with absolute precision the valueNow we can form a matrik made of the blocks;; , in such
Eo.lo of these dynamical invariants, then E¢2) becomes a way that Eqs(46) are simplyx|,.,=LVE. This matrixL is
. antisymmetric, thus guaranteeing that total energy is con-

p*Yx) = S(E(x) ~Eo)o(1(x) —lo)exp{S(x)/ke}. (43)  gerved. It also satisfies the degeneradyS=0 as can be
easily shown, and this guarantees that the entropy is constant
due to the reversible part of the dynamics. Note that the
condition (44) is also satisfied by the reversible equations.
Moreover, the Jacobi identity is also satisfiedlby

That Eq.(42) is the equilibrium solution of Eq41) is easily
proved by substitution and making use of the propertiels of
and M. By doing so, we note that the following condition
must be fulfilled

Jd B _d Xlrey=0 (44 B. Irreversible part of the dynamics

— oy Mrev—
oX X  IX In order to cast the irreversible part of the dynamics in the
which is a statement about the reversible dynamics of th&m X|ix=MVS, we should construct the matrid that
system. For a system with no dissipative processds ( pro_duces the |rr(_aver3|b!e terms in E@O). Instead of trylr}g
=0), Eq.(44) is actually a version of Liouville’s theorem. In 0 figure out by inspection the possible formMfas we did
graphical terms the Liouville theorem’s states the incom-for L, we fpllqw _here a different route based on the
pressibility of the reversible flow ix space. In essence, Li- fluctuation-dissipation theorem, E(9)
ouville’s theorem guarantees that the reversible part of the

dynamics has as a stationary solution, a function of dynami- M = dxdx" (49)
cal invariants only. Another important property tthashould 2kgdt”

satisfy is the Jacobi identit}25] that encodes the time in-

variance of the reversible structure of the equations. What forms should we postulate for the noise temisin

Now we show that Eqs(30) can be expressed in the order to construcM such thatM VS produces the irrevers-
GENERIC form. The full state of the system is characterizedible terms in Eqs(30)? We note that the dissipative forces in
by the independent variables={r;,v;,S;, i=1,... M}. the velocity equation have a shear component. We developed
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a model some time back in which these shear forces arise
[20]. Even though we introduced a spin variable in order to

have total angular momentum conservation, we take the sim-

dw

i’

O AWEE =885+ 86,1676 F dt,

pler view in which this variable is not introduced. Therefore, dVii-dVjj =[6ijdirjs — &ij: 6ir1dt,
the postulated random force in the velocity equation will be ,
very similar to that in Ref{20]. dw: dV;;, =0. (53

We postulate the following form for the thermal noises

dx={0,dV; ,d§}. Note that we do not assume any fluctua-Which respect the symmetrie(52) under particle inter-
tion in the position because we want to respect the purelghange. The additional dynamical invariahfx) in this

reversible equatiohi =v,;. The velocity and entropy random
terms are postulated to be

de/F? (A dW;; +B; 3t dW;; 1) - g,

1 .
TidS=-5 2 (AjjdWij +Bjj st dWi; 1) & vij
+; C;dV;; . (49)

We have introduced, for each paji of particles, a matrix of

independent increments_of the Wiener procey;;. Its
traceless symmetric padW;; is given by
/B 1 af Ba 5“:3
where the trace is defined as
trdw;;]1=2> dwg”. (51)

As a convention, superindices refer to tensorial components

while subindices label different particles.

In Eq. (49) we have also introduced an independent incre-

ment of the Wiener process for each pair of particteg;; .

This term will give rise to the heat conduction terms. Finally,

the functionsA;; ,B;; ,C;; might depend on the state of the

model is the total linear momentuR(x) = =;mv; (no angu-
lar momentum conservation is imposells derivatives with
respect to the state variables are

0

P

— | ml

I (549
0

Now, it is a trivial exercise to show that Eqgt0), which
now take the form

Z my; 'd?/i‘f‘Tith:O,
I

2 md’\V/i:O

(55)

are exactly satisfied, due to the symmeti&®. In this way,
the postulated noises conserve exactly momentum and en-
ergy. Consequently, the irreversible part of the dynamics will
also conserve momentum and energy.

According to Eq.(39), the matrixM is given by

0 0 0

dv;dv/
2kgdt

M*)MIJ:

(56)
dSdv]
2kgdt

system through the positions and entropy of the particles. We

postulate the following symmetry properties:

dW;, =dw;,
dv; = —dv; ,

Aij=Aji,

By =B .

Cy=Cj:. (52)

We compute in Appendix B the elements of this matrix.

Now we are in position to write the deterministic irrevers-
ible part of the dynamic§x|i,r=M~(aS/(9x), which will be
given by

r 0
J
S 1

Jirr

The matrix multiplication leads readily to the following
equations:

The independent increments of the Wiener processes satisfy

the following mnemotechnical ltaules

':i|irr:01 (58
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. 1 1 T ke
mVi|irr:_; aijVij+ §aij+bij QJVUQ] , Tldszzz 1_dij T +T C a”V + 3 +bij
. 2kg <, TiTj (10
TiSi|irr:_; Cij 2 aljvlj+ 2 alj+b ><(qJ"V'J) dt_? Ti+Tj ?aij+bij dt
e k
X(vij-&))% (59) —ZKE ” T [dt— 2K—BE dd Tdt+T dS.

where we have introduced the following quantities:

(63)
AZ(1 1
& = gk. ?JF T/ The prime inX; restricts the index to be different fromi.
B We have introduced in E463) the dimensionless quantity
B2 /1 1
v (?+?)' g - (ke ke (64
B meTEle ol
c;

(60)  whereC; is the heat capacity at constant volume of particle
Note thatC; is an extensive quantity and, therefore, for large

; ; - fluid particles the dimensionless ralig/C; is very small. In
N hat E re identical to Eqs30) if we ch o = :
ote that Eqs(59) are identical to Eqs30) © choose the limit kg—0, one recovers the deterministic equations

i kT T,

57] Fij (30), which are a discretization of the Navier-Stokes equa-
Qj=|—%— g“) _d tions. Therefore, the set of equatiof@3) can be understood
as a discrete Lagrangian version of fluctuating hydrodynam-
a ” E ics [9].
by + | g e The stochastic differential equatiof&3) will produce, at
3 3 did; equilibrium, a distribution of the variables given by the Ein-
stein distribution functiori43). This is automatically ensured
co = in. (61) by the GENERIC structure of these equations.
g did; The stochastic differential equatiof@3) conserve energy

o . _exactly. In order to prove this, it is necessary to uSechb
Through Egs(60) these forms implies the following ampli- ¢yys,

tudes for the thermal noise

9E 1 PE _ .
| g, TiT; 5_7;_49) i} | dE= p” dx+ 5 ax&dedX' (65)
T; +T 3 did;
s A straightforward algebra using Eq&3) leads todE=0.
| gk , 5_77 8 i Finally, Egs.(63) take a much compact form for the particu-
B 3 did;| lar case in which the bulk viscosity vanishés; 0. In this
caseAj;=B;; in Egs.(62) and the thermal fluctuatior@9)
Fij 12 have also a much simpler structure.
Cij=|4xkgTiT;7— a d (62

V. DISCUSSION
In summary, by postulating the noise ter(@®) with ampli- . . .
tudes(62), the fluctuation-dissipation theorem leads to a dis- dBIy foIIowmg the 3’?‘00”‘.9" dparr]tlcle hy_drodynkam|cs me_th-
sipation which is exactly the same as the dissipation in th€d00gy, we have discretized the Navier-Stokes equations
SDPD deterministic model, Eq¢30). with the aid of a novel interpolant that ensures the explicit
We finally write the stochastic differential equatiof@s) fulfillment of the second law. This allows to introduce ther-

for our model. The ternkgdM/dx is computed in the Ap- (Tal _ﬂuct:_tuat;r?ns na co;aﬁtent \t/vay thIrOLégPthf:e fluctuation-
pendix and the final equations are issipation theorem and allows to apply 0 mesoscopic

scales where these fluctuations are important.
dr;=vidt, The model is very similar to the original dissipative par-
ticle dynamics model, although in a much improved form.
There are several advantages of the present model with re-
F”rl,dt E (1—d;j)ay;v;;dt spect to the original formulation of DPD. The introduction of
the volume of the particles as a thermodynamic variable al-
lows one to formulate a thermodynamically consistent model
e;e; 'Vijdt+md\7i ’ in which the conseryativg forces of the original DPD algq-
rithm are actually given in terms of pressure forces. This

P

@

md\/izz
! i

aji
—; (1—dij)(?1+bij
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allows one to introduce arbitrary equations of state in the ) (VP); 2 (VP); (VP);
model. In particular, equations of state of the van der Waals ~ Mvi=——¢ —2 dtd ij[ a T a }
type describing liquid-vapor transitions can be used. A recent ! e : ! 69)
work by Pagonabarraga and Frenkel has considered the in-

troduction of a van der Waals equation of state, but th&yhere WP);/d; is given in Eq.(22). Thus we see that an
model is limited to isothermal situations and does not conyqgitional term in the momentum equation arises by virtue of

serve exactly total energhl4]. With the model presented the modification of the position equation. This term con-
here it is now possible to study thermal effects in the genseryes total momentum and total energy.

eration of bubbles and droplets in nonequilibrium liquid-
vapor coexistence. In addition, the introduction of a volume
variable for each fluid particle introduces a physical length
scale allowing for a clear interpretation of the size of the We would like to thank Marisol Ripoll and Mar Serrano
dissipative particles and the scales that are being explored #or useful discussions. This work was partially supported by
actual simulations. Another great benefit of the model preGrant No. DGYCIT PB97-0077.
sented over the classic DPD model is the fact that a direct
connection between the model parameters and the transport APPENDIX A
coefficients of the fluid is given. In the original DPD model
it was necessary to follow an indirect route by means of We demonstrate here the identity E@5). First we note
kinetic theory in order to relate the model parameters withthat the functiorF(r) satisfies the property
the transport coefficients of the fluid being modeldd).
Note that we provide specific functional forms for the weight f drE(nm =1 (A1)
function to be used in the DPD model, and the form in which
the weight function appears in the pressure force and viscous
force terms are not identicalr{F; /did; in the former, ascan be proved from
Fij /d|dJ in the |ate).

The GeENERIC framework allows to introduce modifica- f drr VW(r)=—1. (A2)
tions of the model that respect the thermodynamic consis-
tency. As an example, we consider the XSPH model intro-_ . . _ - :
duced by Monaghan in order to avoid interpenetration of_Th'S_ identity fOIIO_WS by partlr_;ll integration and the normal-
particles at high mach numbef&]. The proposal of Mon- 1Zation (6). Equation(Al) implies
aghan is to substitute the equation of motidad) by

ACKNOWLEDGMENTS

J drF(r)r-r=3,

i 2
ri:Vi_; dITdJV”WlJ:; A”Vj, (66) o 3
f drF(r)ré=—. (A3)
0 4ar
where
By Taylor expandingA(r') aroundr we obtain
2
Aij=ddejWij+5ij 1—ddejWij)- (67) A(r')=A(r)+VA(r)-(r—r")
1
This modification produces updates of the positions which +S VVAM):I(r=r)(r=r)+---. (A4)

take into account the surrounding velocity of the fluid and
reduces interpenetration in actual simulations. If we want tQye sypstitute this expression in
introduce this equation of motion for the positions, the anti-

symmetric structure of the matrik enforces to have the (r'—r)e(r' —r)b
following set of reversible equations: f dr’[A(r’)—A(r)]F(|r’—r|){#]
r'—r
r o 1 oy [(VP) 1,
d =5V VBA(r)fdr’F(|r’—r|)
: 1
Vi|=3 2| -y 000 . (68 / /
; m my; 68 (r'=n) ' =kl —r*r'—r)k anio
' 0 0 O X 2 +O(V*Ah%)
S (r'=r)
T;

. . . o _Lowgs a* ¢” 99’ ipp
This L matrix is antisymmetric and satisfies the incompress- =35V V7 A(r) | daF(q)| —————|+ O(V'AhY),
ibility of the flow in x space. The resulting equation of mo- q
tion for the velocity becomes (A5)
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where the change of variableg=r'—r=(x,y,z) has been dvedvA A2
made. The first derivative term in E¢A4) produces a third ~ m? Id ‘ :5”[2 7"((5“134- eﬁ(qﬁk)}
order tensor that vanish by isotropy. The fourth order tensor t k
is easily computed in spherical coordinates. The only surviv- B
. |k '] o
ing components are of the form + 8 2 kqﬁk} L5+ q]qg)
3
XXXX 82 Aﬁ )
5 ~ T3 S
yy 1
2 5 (A6)
dvi'dS AL (VS Vik
where use has been made of E43). Therefore, the con- —MTi—g =9 2 7 > ek 5 &k
traction of the isotropic fourth order tensor with the second
derivatives ofA(r) becomes simply Bizk AIk o Vik
+ & > kEik -
3 2
r=n)(r' —n)?
| artac-awiede - —r>2 YV,
ij | Vi i o
1 2 TR 7%)
=—V-VA(r) 8+ =VeVAA(r)+ O(V*Ah?), (A7) B2 _ A2
5 5 i) i oy Vi
from which Eq.(25) in the text follows.
APPENDIX B: CALCULATION OF M AND dM/dx ~ o~ o
. o ) dSqu _ 2 A|2k Vik ik o
We compute the following preliminary results by using _mTiT—aii = 2 74'6.;(' o ik
the Ito formulas(53)
s E Bizk_Aizk o Vik
tr[dW“/]tr[dW“7]23[5”5 r+6 6| J]dt " K 3 k=ik 2
—— Al (Vi vij
o ax — —— | —=4e . . —e"
tr[dW;;, JdW;5 =0, 5> |2 T8> 8
Bi—Al . Vi
dw dW'B =[86j+ 58 ,]{ (525 P ~ T3 S8 3

+ 67 ﬂaaﬁ)— 5@ sPF" |dt.  (B1)

It is also convenient to compute the following object:

aa’ +5 2 B|2k_Ai2k( E)z
[AI,,dWﬁ‘? +Blertr[dW“,]} | < 3 k
2
Ay

BB i

B2 — A2 Vi |2
1 +M( L0 L5 2 _ 2
:[5”5| 1jr+ Gijr Oy ]]{ Aii A 2(5a35aﬂ 15 ﬁb*aﬁ) 3 &6j 2 5”2'( Cix C”

(B3)
+(Bii’Bi ||’A ) o 5’8[3}(1'{ (B2)

From these expressioriB3), the components of the ma-
Now we are in the position of computing the correlations oftrix M in Eq. (56) are readily obtained. We now need to
the random forcedv; ,dS . By using Eqs(49) and(B2) one  compute the elements of the vectaggM/dx in Eq. (39).
obtains This vector has the form
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Note thatd;; is a dimensionless quantity involving the heat

kBZ WM” capacity at constant volume of ceJIC;, which is defined
S from
0
IO ~ o~ aTy T B7
o Wl o duds s C o7
]
2 P deV, s P d"SdS The next term is
9 dSdv; 2k T,T;
(B4) Sdv ke 5 11 a+b” iT
07VJ 2det mT, J#' T +T
We compute each term separately, (Bg)
2 a dv, dv _ _
Kg v 2det and, finally, the last term is
g dvd§ 1 ajj g dSd§
k E (95 2det 2 du ajj Vi 3 le Vij - & &j |, kB; 081- . 2|(Bdt
(B5)
2K kB F” 1 ( TJ kB
where we have introduced TG 2 dd, T, o7 2 T G dij
TiT; ks kg a
T ¢ ¢ (B6) x| ayv2 + J+b,, (vij.qj)z}. (B9)
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