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Vlasov model using kinetic phase point trajectories

F. Kazeminezhad,1,* S. Kuhn,2 and A. Tavakoli3
1Independent Consultant for Plasma and Energy Physics Group, Institut fu¨r Theoretische Physik, Universita¨t Innsbruck,

Innsbruck, Austria
and Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran

2Institut für Theoretische Physik, Universita¨t Innsbruck, Innsbruck, Austria
3Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Farmanieh Bldg., Tehran, Iran

~Received 18 March 2001; revised manuscript received 10 September 2002; published 26 February 2003!

A method of solution of the collisionless Vlasov equation by following fixed collisionless phase point
~‘‘particle’’ ! trajectories~characteristics! in phase space is presented. It solves the coupled Vlasov Maxwell
system self-consistently and employs the Leapfrog-Trapezoidal scheme to solve for the characteristics explic-
itly. It then uses the bilinear finite element interpolation scheme in phase space and maps vital instantaneous
phase point information~distribution function! to a fixed background phase space mesh while retaining it at the
phase point. The scheme is an enhanced second order one in time and fourth order in space. The code is then
used to model a thermal plasma as well as two stream instability using mobile electrons and fixed background
ions: the scheme being a momentum conserving one by construction allows energy conservation without
assignment of particle shape functions; Langmuir waves are obtained with very good agreement with the
Bohm-Gross dispersion relation; the two stream results do not show any numerically induced oscillations
attributed to the initial well-ordered velocity distributions. Retention of the characteristics also minimized
diffusion. Extensive numerical stability analysis deriving Courant condition for the scheme as well as behavior
of computational modes are done in Appendix A, as well as estimating the impact of numerical diffusion in
Appendix B. Two to five dimensional versions in phase space exist.
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I. INTRODUCTION

The knowledge of the temporal evolution of the distrib
tion function has long been a desire of plasma physicist
well as many involved in many-body physics research. H
we cite a few examples where temporal evolution critica
depends on the time dependent distribution functionf: trans-
port in plasmas, where transport terms possess functi
dependence onf; impact of the Tokamak scrape off laye
impurities on the bulk; and impact of the chaotic partic
distributions on the magneto-tail dynamics. The kinetic V
sov models which follow the distribution function provid
statistically acceptablef and therefore are valuable tools fo
the above mentioned problems.

Many researchers have taken great pains with some
cess in the numerical integration of the Vlasov equat
@1–4,6,8,9#. Some sought solutions by assuming polynom
expansion of the distribution function in velocity@10#. One
of the main obstacles in this endeavor has been the deve
ment of steep gradients in velocity space; i.e., a problem w
no seemingly simple cure. Partial treatments such as incr
in velocity resolution, have sharply limited the ability to e
tend the above work to higher dimensions and thus t
realistic problems.

Integration of the Vlasov equation along the collisionle
phase point trajectories~characteristics! has been the mos
promising of these methods@4,11–13#. In most of these
works, a splitting scheme initially proposed in Ref.@11# has
been employed. In this scheme, they assumed that the Vl
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equation ‘‘should be an approximation’’ to a couple of equ
tions involving the ‘‘free-streaming’’ (] f /]x) and ‘‘acceler-
ating’’ @E(] f /]v)# terms; the latter two involving lines o
constant phase space coordinates. The newf was thus ob-
tained as an algebraic expression in terms of the oldf by a
suitable interpolation method@14#. There are a couple o
problems with this ‘‘approximation’’:~i! it was not rigor-
ously shown under which circumstances the coupled eq
tions have solutions ‘‘approximately’’ consistent with th
Vlasov equation; and~ii ! following characteristics along the
phase space coordinates departs one from the character
on whichf truly remains invariant. As such the validity of th
final solutions resulting from following these coordinat
would be debatable.

In the present work though we directly follow the chara
teristics along whichf is constant in the collisionless cas
i.e., the collisionless phase point trajectories.1 Initially f is
prescribed on a fixed background mesh in phase space
sisting of phase points. The phase points following the ch
acteristics are advanced in time by the Leapfrog-Trapezo
@15# method. Interpolation is performed between the ph
points and the fixed background mesh in phase space u
the method of bilinear rectangular finite elements@16#. From
the interpolatedf on the mesh, all the desired quantities su
as space charge density, electron kinetic energy density,
are then computed; and used to further advance the p
points.

A

1Note that@4# also attempted a similar procedure; there they
not appear to retain the same characteristics throughout. We be
that was the main cause of their observed energy nonconserva
in section three we present results confirming this fact. Nunn@5#
using a similar concept while retaining characteristics though, s
ied the driven impact of the VLF emissions on resonant particle
the magnetosphere.
©2003 The American Physical Society04-1
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The organization of the paper is as follows. Section
describes the general model. Section III describes the
merical scheme used to update the characteristics and
interpolation scheme. Section IV includes tests of the mo
via energy conservation and the linear eigenmode analy
the energy tests include comparison between cases with
without fixed characteristics, as well as Leapfrog vers
Leapfrog-Trapezoidal numerical schemes for updating tra
tories in the former case;2 linear eigenmode tests includ
thermal as well as streaming plasmas for confirmation w
the linear theory, as well as testing the extend of numeric
induced streaming instability and diffusion in the mod
Finally a brief conclusion with future directions is included3

II. THE MODEL

Here we model a system comprised of thermal electr
and immobile ions. At timet50, Maxwellian electrons lie
on top of the ions in a phase space mesh. For every poin
configuration space, there existnvx points in velocity space
which give rise to a discretized Maxwellian. This arrang
ment insures a Maxwellian distribution and practically
within discretization noise zero electric field within the co
figuration grid space initially. As such it corresponds to p
ticle in cell codes which are initialized with ‘‘quiet starts
@6#. Generalization of this model to include Maxwellian ion
at the same phase space points with the electrons would
insure ‘‘quiet starts’’ as it will insure zero electric field an
related velocity distributions within that scale. This is in co
trast to the PIC codes which are initialized with a rando
velocity distribution and therefore higher initial electric fie
fluctuations.

For a system composed ofnx configuration space points
one thus hasnx3nvx grid phase points. Each phase point
by definition characterized by its positionx and its velocity
vx , and has associated with it a distribution function va

f p5(1/Apv th
2 )e2vx

2/v th
2

(v th is the thermal speed!; please see
Fig. 1.

As the simulation begins, the representative elect
phase points begin to move at their respective speeds u
the influence of the resulting charge separation fieldEx .
Their trajectories are therefore advanced using the follow
set of equations:

dvx

dt
52

e

m
Ex , ~1!

2We define fixed characteristics when they are retained throug
a simulation, in contrast to reconstructing them at each time ste
in Ref. @4#. The energy tests are indented to distinguish the imp
of characteristic retention from the computational modes~Appendix
A! on the energy conservation.

3The presentations outlined are in two dimensional phase sp
This is done to aid the reader better visualize the outlined inte
lations and shorten equations and function indices without any
of generality to higher dimensions. Where appropriate, it is
plained how the extension to higher dimensions has been perfor
in the higher dimensional versions.
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dx

dt
5vx , ~2!

d2f

dx2
524pe~n02ne!, ~3!

wheren0 is the density of the uniform background ion di
tribution andne corresponds to that of the electrons. As t
representative phase points follow their collisionless traj
tories, thef p associated with them remains unchanged. T
information is however mapped into a fixed backgrou
mesh; i.e., from the distribution off p’s, f g associated with
the phase space mesh is obtained by interpolation. Fromf g
any and all desired higher moments can be computed. Du
computational constraints, velocity cutoffs as in PIC mod
are imposed. For example,f g at maximum~cutoff! vx in our
simulation was 10211 times maximumf g . Due to the con-
stancy of the phase density in the model, the fraction
phase space initially occupied byf g should remain un-
changed unlessf g begins to distort due to numerical errors4

That distortion will set limitations in the model which i
discussed in Appendix B.

Due to the discretization noise, the physical system c
sidered maintains small amplitude collective oscillations
proximately consistent with the following linearized set
fluid equations:5
ut
as
ct

e.
o-
ss
-
ed

4This condition will no longer hold if micro scale fields~and the
resulting transport correlations@7#! could no longer be neglected i
comparison with the long range fields and result in collision integ
terms in the Vlasov equation.

5u here is the velocity moment~average velocity!, while vx above
corresponds to the phase point velocities. Also for sufficiently l
frequencies, the electrons remain practically isothermal and
eigenmode oscillations are well approximated by the noted se
fluid equations.

FIG. 1. ~a! A typical phase space mesh.~b! A typical phase point
(x,vx) at its host cell;Dx andDv correspond to the respective gri
spacings. ~c! One dimensional finite element shape facto
~weights! of the two cell points at the phase point location.
4-2
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2 ivne1n0iku50, ~4!

2 ivn0mu52 ikTne2neeEx , ~5!

2 ikEx54pnee, ~6!

which give rise to the well known Bohm-Gross dispersi
relation

v25vpe
2 1k2v th

2 . ~7!

This equation will be used for testing the model.

III. NUMERICAL SCHEME

A. Interpolation procedure

As the representative phase points follow their charac
istics, they continually exchange information with the fix
background mesh depicted in Fig. 1. In this exchange
method of bilinear weighting is employed@16#, where at
each instance a representative phase point contributes t
corners of its instantaneous host cell@Fig. 1~b!# its distribu-
tion function. The basis of this scheme is depicted in F
1~c!: i.e., for each degree of freedom~e.g.,x) a representa-
tive phase pointx located within the cell (l x21,l x) contrib-
utes itsf p with the weights

N2~x!5
x2~ l x21!Dx

Dx
, ~8!

N1~x!512N2~x! ~9!

to the pointsl x and (l x21), respectively, andNv2
and Nv1

@with ( l x , x) replaced by (l vx vx) in these equations# to the
mesh pointsl vx and (l vx21), respectively. In higher dimen
sions then, a phase point (x,v) @Fig. 1~b!#, should make the
following contributions to (l x21,l vx21), (l x ,l vx21), (l x
21,l vx), and (l x ,l vx), respectively,

A15N1Nv1 ,

A25N2Nv1 ,

A35N1Nv2 ,

A45N2Nv2 ,

the sum of which gives

(
i , j

NiNv j~x,v !5N1~Nv11Nv2!1N2~Nv11Nv2!

5N11N251, ~10!

where the important property of these weight factors outlin
in Eq. ~9! has been used for bothN as well asNv . Therefore,
the mesh point (l x ,l vx) should receive contributions from a
its associated representative phase points as follows:
02670
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f g~ l x ,l vx!5

(
;(x,v)

N~x!Nv~v ! f p

(
;(x,v)

N~x!Nv~v !

, ~11!

where the summation runs over all the associated ph
points. Likewise, extension of this procedure to include m
dimensions involves taking account of the extra dimensio
contributions. This scheme will thus allow usage of nonu
form meshes in phase space as long as rectangular geom
is maintained.

From f g then, any moment of the distribution functio
such as electron densityne can be computed; e.g.,

ne~ l x!5(
lvx

f g~ l x ,l vx!1 f g~ l x ,l vx11!

2.0
Dv, ~12!

wherene( l x) corresponds to the electron density at the po
l x .6 Using the densityne , the potentialf and, therefore, the
electric fieldEx are obtained on the mesh, and used to
vance the phase points by the same interpolation proced
This interpolation scheme, with the numerical schemes to
outlined, have ensured mass, momentum, and energy co
vation as will be demonstrated in the density and ene
plots.

B. Trajectory integration

The collisionless phase point trajectories and the elec
potential are advanced by finite differencing Eqs.~1!–~3!
above. The following normalizations are employed:7

vpet→t,
x

r D
→x,

v
v th

→v,
ef

T
→f, ~13!

where vpe and r D are the electron plasma frequency a
Debye lengths, respectively.

This results in the normalizedvpe51 and reduces the
said equations to the following set:

dvx

dt
52Ex , ~14!

dx

dt
5vx , ~15!

d2f

dx2
5

ne

n0
21. ~16!

For Eqs.~14! and ~15!, the Leapfrog-Trapezoidal schem
is employed. There, the values ofvx andx need to be known

6This sum corresponds to the Trapezoidal method of numer
integration off g . In higher velocity dimensions, the contribution
of the other dimensions are multiplied by this contribution.

7Note this normalization is henceforth also applied to all the ot
equations in this article.
4-3
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TABLE I. Numerical algorithm of the kinetic trajectory Vlasov model.

Initially we havevx
n21 ,xn21/2, f p

n21/25 f p(xn21/2,vx
n21)

1. Interpolatef p
n21/2 to obtain f g

n21/25 f g(xn21/2,vx
n21) andne

n21/2.
2. Solve Poisson equation to obtainEx

n21/2 from ne
n21/2.

3. Push the phase point velocities one time step,vx*
n5vx

n212Ex
n21/2Dt.

For n50 only computexn215xn21/22@vx
n2110.5(vx*

n1vx
n21)#Dt/2.

For n50 only determinef g
n21 , ne

n21 , andEx
n21 .

4. Push the phase point positions one time step,x* n11/25xn21/21vx*
nDt.

5. Trapezoidal step one; determinevx
n21/2,xn ~middle step!:

~a! vx
n21/25vx

n2120.5(Ex
n21/21Ex

n21)Dt/2,
~b! xn5xn21/210.5(vx*

n1vx
n21/2)Dt/2.

6. Obtain ‘‘improved’’ f g
n5 f g(xn,vx

n21/2), ne
n , Ex

n from xn andvx
n21/2. Optional: Do the same calculation usingvx*

n instead ofvx
n21/2.

7. Push the phase point velocities in the middle time step,vx*
n11/25vx

n21/22Ex
nDt.

8. Trapezoidal step two~determine the ‘‘improved’’ updated velocities!, vx
n5vx

n21/22
1
2 (Ex

n1Ex
n21/2)Dt/2.

9. Re-advance the phase point positions using the ‘‘improved’’ velocities,xn11/25xn1
1
2 (vx*

n11/21vx
n)Dt/2.

10. Passxn11/2, vx
n , xn, andEx

n to the next time step.
-
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, t
at both time stepst2Dt and t2(Dt/2) in order to advance
them to stepst and t1(Dt/2), respectively. In the conven
tional Leapfrog scheme, though,vx(t2Dt) and x@ t
2(Dt/2)# are sufficient to obtainvx(t) and x@ t1(Dt/2)#.
The Leapfrog-Trapezoidal as the Leapfrog scheme itself
a total truncation error when integrating to a fixed time p
portional to (Dt)2 in the limit asDt goes to zero. The trap
ezoidal steps have two functions:~i! the primary function is
to eliminate the ‘‘parasitic’’ solution associated with th
Leapfrog scheme which results in a growing computatio
mode;~ii ! as a result, the constant which multiplies the tru
cation error@;(Dt)2# becomes smaller; i.e., the Leapfro
Trapezoidal scheme becomes an enhanced second
scheme in time@15#.8

Equation~16! is solved numerically by the inversion o
the Poisson operator matrix using the left-right~LR! theorem
@17#. The potentialf thus obtained is second order accura
in Dx. They are then made fourth order accurate by
following substitution@18#:

fhS x1
Dx

2 D5
7

12
@f~x1Dx!1f~x!#2

1

12
@f~x12Dx!

1f~x2Dx!#, ~17!

wherefh is the fourth order potential. The interpolated ele
tron density’s accuracy was likewise increased. These cor
tions helped enhance thef and Ex accuracy and conse
quently improve the results markedly.

To summarize: At the beginning of each time step, fro
the phase point distribution functions the charge density
tribution is obtained. With this charge density, the Poiss
equation is solved for the electric potential. Next comes
jectory advancement@i.e., Eqs.~14! and~15!#: here the Leap-

8When the Trapezoidal steps described below are eliminated
total electron kinetic energy begins to rise at some point~linearly in
time! and result in unphysical results.
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frog scheme steps advancevx andx one time step and basi
cally complete one push cycle. They, however, serve
auxiliary quantities for the trapezoidal steps which serve
improve them iteratively. In the Leapfrog scheme ste
~steps 3 and 4 of Table I!, the time centering is performed i
explicit style. The advanced quantities~asterisk super-
scripted! serve as auxiliary first iterations which are ‘‘im
proved’’ in the trapezoidal steps~steps 8 and 9 in Table. I!;
the time centering here is achieved in implicit style using
auxiliary quantities. This improves the time advanced qu
tities in the advanced quantities and ends the push cycle.
outline of these procedures is given in Table I.

IV. TESTS OF THE MODEL

A. Conservation laws

A thermal plasma is modeled by simply setting the pha
points in Fig. 1 into motion at their respective initial veloc
ties. The round-off errors arising from finite differencing a
as initial perturbations in the system, plus constant sourc
noise at any later time.

Conservation laws are the first order tests following t
construction of a simulation model. The most basic of the
are the continuity and mass conservation: Figures 2 an
show the plots of density as the first moment of the norm
ized distribution functionf g as obtained from the Eq.~12! at
times 50 and 100/vpe , respectively, for a system 256-D
lengths across~note: the time step in these simulations w
0.1/vpe). The former corresponding to an earlier time clea
showsne.1 across the system. The latter though indica
enhanced oscillations corresponding to the Langmuir wa
~following section! and possesses spatial average about
expected value of one. Next Fig. 4 also displays the elec
density but at 200/vpe ; a comparison of this with Fig. 3
indicates the fluctuation levels must have saturated
roughly 25% of the background. Since we used 20 ph
points per configuration mesh point, we would have expec
fluctuation levels of 1/A20 analytically which is about 23%

he
4-4
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Here some comparison with PIC codes is in order. One
the most important functions of the representative ph
points in the Vlasov code is that they maintain the distrib
tion function information in addition tox(t) andvx(t). In a
PIC code, the velocity moments in principle can be obtain
directly from the discrete particle distributions in spac
while in the Vlasov code moments are obtained from th
distribution in phase space; i.e., particles all contrib
equally to these moments regardless of their energy w
phase points’ contributions get weighted by their energy
the distribution function~see the equation forEk below! ~De-

FIG. 2. The density versus position 50/vpe ~plasma! periods
after start of the simulation. Note the small amplitude Langm
oscillations.

FIG. 3. The density versus position 100/vpe ~plasma! periods
after start of the simulation. Note the enhanced Langmuir osc
tions.
02670
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navit @25# demonstrated that Vlasov model’s energy plo
maintained less ‘‘spurious’’ oscillations!. To see the differ-
ence, the electron density is also obtained here for the s
system size and parameter range using a PIC code for c
parison. Figure 5 shows the density 50-plasma periods
that simulation. Comparing this with Fig. 2 indicates a mu
smoother density in the former.

One of the most important properties of the Vlasov mo
els lies in their ability to conserve the phase dens
f gDvDx. This conservation is most fundamental since oth
moments conservation depends on it. The gradual distor
of f g due to numerical errors will eventually break down
simulation. This issue is discussed at length in Appendix

Next comes momentum conservation. In this schem
where there exists symmetry of interpolation between
representative phase points and the phase space mes
centered spatial differencing is performed, there exist z
self-forces and momentum is therefore conserved to ro
off error @19#. Calculations of̂ vx&, as well as the interna
energy serve as the best test of the momentum conserv
which will be discussed below,̂vx&5(1/ne)* f g(vx)vxdvx
corresponds to the first velocity moment.

To determine the appropriate energy equations~kinetic,
electrostatic, and total!, we shall make use of the Vlaso
equation corresponding to the electrons; i.e., in our norm
izations@ f 5 f (x,vx ,t)#,

] f

]t
1vx

] f

]x
2Ex

] f

]vx
50. ~18!

The second moment of this equation after using the first
moments and Poisson’s equation@Eq. ~16!# gives rise to the
following energy equation:

r

-

FIG. 4. The density versus position 200/vpe ~plasma! periods
after start of the simulation.
4-5
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]

]t S 1

2E f vx
2dvx1

Ex
2

2 D 1
]

]x S 1

2E f vx
3dvxD50. ~19!

Integration of this equation over all space results in

]

]t F1

2E E f vx
2dvxdx1

1

2E Ex
2dxG50. ~20!

The first term on the left is identified with the kinetic and t
second with the electrostatic energy.

FIG. 5. The density versus position at 50/vpe ~plasma! periods
using a regular PIC code.

FIG. 6. The total electron kinetic energy versus normalized ti
during 10/vpe ~plasma! periods, using fixed characteristics. Th
system size is 256-D lengths.
02670
With these then we can clearly define the necessary qu
tities for testing our model as follows; i.e., the followin
quantities are defined as the kinetic, electrostatic, total
internal energies:

Ek5E E 1

2
f g~x,vx!vx

2dvxdx, ~21!

El5E 1

2
Ex

2~x!dx, ~22!

Et5Ek1El , ~23!

Ei5E E 1

2
f g~x,vx!~vx2^vx&!2dvxdx. ~24!

Here as in the density, the trapezoidal numerical integrati
of these moments have been employed in the model. Ex
sion to higher dimensions involves repetition of this proc
dure with other velocity components with similar results.

The very first energy tests involve the cases with
‘‘fixed’’ and the ‘‘reinitialized’’ characteristics~last paragraph
of the introduction!; these tests are intended to:~i! justify the
‘‘fixed’’ versus the ‘‘reinitialized’’ characteristic approach
due the intense artificial particle heating in the latter case;~ii !
shed light on the impact of~i! versus parasitic~computa-
tional! modes on the energy conservation; and~iii ! justify the
Leapfrog-Trapezoidal as opposed to the simple Leapf
scheme approach. The runs in these cases all correspo
systems 256-D lengths across. Figures 6 and 7 showEk(t)
for the cases with fixed and reinitialized characteristics,
spectively, over a period of 10/vpe . Figures 8 and 9 show
the electron kinetic energy@Ek(t)# and the change in it
@Ek(t)2Ek(0)# versus time, respectively, when fixed cha
acteristics were used. As Fig. 8 indicates, the rise in elec
kinetic energy here over 400/vpe periods is comparable to
that in Fig. 7 in only 10/vpe periods. Note that in both o

e

FIG. 7. The same as Fig. 6 but with reinitialized characterist
Note the enhanced electron heating in this case.
4-6
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these cases the simple Leapfrog and not the Leapf
Trapezoidal scheme was employed. Clearly, characteristic
tention improved energy conservation and allowed lon
time steps. We therefore believe the energy nonconserva
due to characteristic reinitialization to be of truncation nat
on the distribution function and to thus affect its mome
including energy more severely than the interpolat
procedures.9 Indeed, in Ref.@25#, weight functions of linear
as well as quadratic orders in phase space when updatin
distribution function information were attempted and it w
concluded that it was not possible to derive weight functio
for which all these moments were conserved for cases
which the distribution function was ‘‘reconstructed’’ at eve
time step.10 In other words, the resulting diffusion from thes
‘‘reconstructions’’ destroys too much information at th
phase point distribution functions to allow even valid seco
moment ~energy! conservation. Furthermore, a comparis
of Figs. 9 and 13, where the Leapfrog scheme in the form
and the Leapfrog-Trapezoidal scheme in the latter were u
indicate that in the former the parasitic~computational!
modes begin to heat the particles after 150/vpe ~note that
Leapfrog-Trapezoidal scheme when trajectories were
fixed did not conserve energy!. Using shorter time steps in
the Leapfrog scheme did delay this heating though.11 These
results justify more noise free and longer time steps att
uted to the Leapfrog-Trapezoidal scheme. The remaining

9The energy nonconservation observed by@4# is therefore more
associated with the characteristic reinitialization than the spa
charge deposition.

10Page 80 of the cited reference, paragraph one.
11The Appendix A includes extensive numerical analysis of b

the Leapfrog versus Leapfrog-Trapezoidal schemes. There Co
conditions show much longer allowed time steps in the latter. T
origin of the parasitic modes are shown. It is shown the la
scheme to damp these modes much better.

FIG. 8. The electron kinetic energy versus time 400/vpe

~plasma! periods using fixed characteristics~the simple Leapfrog
scheme was employed here!.
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ures in the paper all correspond to the ‘‘fixed characterist
cases where Leapfrog-Trapezoidal scheme was employe

Figures 10, 11, and 12 correspond toEl(t), Ek(t)
2Ek(0), andEt(t) versus timet for a system 16-D lengths
across over 400/vpe periods. These clearly indicate that,
accordance with the expectations,Ek increases asEl de-
creases, whileEt remains constant. The Figs. 13–15 likewi
indicate similar patterns for a system 256-D lengths acro
i.e., here alsoEk decreases asEl begins to rise. However, the
total energy is not conserved as well as in the smaller syst
primarily due to the usage of a coarser velocity gr
i.e.,there exits an error of about 1.3% here, compared to
than 0.2% in the smaller system. However, in the larger s
tem one observes the saturation of both the electron as

al

h
ant
e
r

FIG. 9. Similar to Fig. 8 for the change in the electron kine
energy versus normalized time. The system size is 256-D length
both cases.

FIG. 10. The total electrostatic energy@El(t)# versus normal-
ized time in 400/vpe periods; the system size is 16-D lengths.
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KAZEMINEZHAD, KUHN, AND TAVAKOLI PHYSICAL REVIEW E 67, 026704 ~2003!
as the electric field energies much better. When the Leap
instead of the Leapfrog-Trapezoidal scheme was used
both the small and the large system, after about 150/vpe , Ek
reversed its decrease and began to rise till the end of
simulations; i.e., it grew due to the computational mode d
cussed earlier. The rise inEk was followed by a larger rise in
El , and neither quantity indicated any saturation; a clea
unphysical behavior.

Figure 16 shows the time history of the internal energyEi
versus time for the same system size as Figs. 13–15. H
one observes an oscillatory behavior to appear about 100vpe
into the simulations and to persist with roughly the sa
amplitude throughout the simulation; i.e.,Ei(t) tends to os-

FIG. 11. The change in the total electron kinetic energy@Ek(t)
2Ek(0)# versus normalized time in 400/vpe periods; the system
size is 16-D lengths.

FIG. 12. The total energyEt(t) versus normalized time in
400/vpe periods; the system size is 16-D lengths.
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cillate aboutEi(0). This simply implies^vx& to average to
zero within the simulation period. Indeed it was also o
served that̂ vx& when computed for all the grid points, wa
quite negligible even at the end of the simulations. Neg
gible ^vx& indicates momentum to be conserved within t
roundoff errors. Momentum conservation implies no se
forces on the phase points, and further support the interp
tion procedures employed. Also, when the Leapfrog inst
of the Leapfrog-Trapezoidal scheme was used, it was
served that̂ vx& began to rise about the same time as wh
Ek reversed its decrease. Comparing the results of b
schemes, we observed that the values of^vx& at the end of
the simulations in the simple Leapfrog scheme were ord

FIG. 13. The change in the total electron kinetic ener
@Ek(t)2Ek(0)# versus normalized time in 400/vpe periods; the
system size is 256-D lengths.

FIG. 14. The total electrostatic energy@El(t)# versus normal-
ized time in 400/vpe periods; the system size is 256-D lengths.
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of magnitude larger than the corresponding ones in
Leapfrog-Trapezoidal scheme case; i.e., the latter sch
conserves momentum much better.

B. Linear eigenmode analysis

The next test was checking for the dispersion of the La
muir waves or Bohm-Gross relation@Eq. ~7!# discussed ear
lier.

The fields and densities from the simulations were sto
as the simulations of the thermal case12 were proceeding;
later their corresponding correlation functions as well
power spectra were determined by the techniques outline
Refs. @20,21#. Figures 17 and 18 show two typical pow
spectra of the electric field corresponding to the modes
and seventeen, respectively$i.e, kx52p/Lx and kx
5@(2)(17)p#/Lx%. HereLx represents the system size whi
in this case was 256-D lengths. Clear sharp peaks abou
analytically expected values@Eq. ~7!# correspond to the
Langmuir waves. Figure 19 gives the simulation versus a
lytic results for twenty five modes. This plot shows ve
good agreement between theory and the simulations fok
,20 ~for k.20 the simulation results appear slightly no
linear! and therefore demonstrates that the overall const
tion of the code~phase point interpolations, push schem
Poisson solver! is working correctly and in good harmony
This figure does not show that much numerical dispersion
a very dispersive code generally the simulation dispers
relation lies below the analytic one and for largerk the dif-
ference tends to get larger@22#.

C. Impact of the initial conditions on the beaming instability

The well-ordered discretized velocity distributions cou
give rise to beaming instability@23#; i.e., the velocity mesh

12When the phase point velocities were initialized to a Maxwe
ian distribution.

FIG. 15. The total energyEt(t) versus normalized time in
400/vpe periods; the system size is 256-D lengths.
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could resemble a set of cold ‘‘beams.’’ The results of t
preceding section did not indicate any such instability to ta
place in the thermal case, as the energy as well as po
spectra plots indicated.

Therefore, in order to trigger the instability, the initia
distribution was changed to allow the so-called equal den
‘‘beams’’ with infinitesimal perturbations from the equilib
rium as in Ref.@25#; i.e., the phase points distribution wer
therefore changed as follows:

f p~x,v,t50!5
1

v th
3 A2p

v2e2v2/2v th
2

@112e cos~2px!#,

~25!

-

FIG. 16. The total electron internal energyEi versus normalized
time; the system size is 256-D lengths.

FIG. 17. The power spectrum for theEx(k51) mode; the sys-
tem size is 256-D lengths. The zero frequency mode could indic
nonlinear behavior.
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KAZEMINEZHAD, KUHN, AND TAVAKOLI PHYSICAL REVIEW E 67, 026704 ~2003!
where, v th50.3/p, e50.0025, and the system size w
256-D lengths. The linear growth rates according to@24#
show only the first mode to be unstable. So here plots
Ex

2(kx ,t) and the velocity of the central ‘‘beam’’@i.e., where
the phase points initially have velocityvxP(0,Dv)] should
reveal if such instability can take place.

Indeed, Denavit@25# shows that at the onset of the inst
bility the electric field locally would grow gently first, the
drop suddenly only to reach later a maximum 23 times
initial value. He also showed that the central ‘‘beam’’ velo
ity followed a similar pattern. Here, the results of the sim
lations are shown in Figs. 20–22. Neither one of these
ures shows these patterns. The electrostatic mode en
~Fig. 20! simply indicates normal growth in the amplitude
of the Langmuir waves some 15-plasma periods into
simulations followed by saturation. The central ‘‘beam’’ v
locity plot in Fig. 22 shows a similar pattern as the ene
plot, and they both rule out the beaming instability of t
nature predicted by Ref.@23#. Another interesting point is
that the energy plot~Fig. 20! does not show any spuriou

FIG. 18. The power spectrum for theEx(k517) mode; the sys-
tem size is 256-D lengths. Different heights could arise from
numerical noise.

FIG. 19. The simulation~asterisks! versus analytic~solid curve!
Bohm-Gross dispersion relation for the first twenty five harmon
Nonlinear effects could be the cause of discrepancies fork.20.
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oscillations~i.e., oscillations with no physical origin and o
purely numerical nature!; i.e., peaks resulting from the pre
sumed numerical instability. Indeed@25# while comparing
the results of these simulations from PIC versus Vlasov m
els did show that the PIC simulations possess such osc
tions.

There are reasons why the Vlasov solvers can prev
numerical beaming instability when quiet starts are imp
mented. Denavit@25# claims that the constancy of the pha
density prevents the phase points from moving into regi
where the ‘‘distribution function is zero initially’’ and tha
would in turn prevent spurious charge densities and num
cal instabilities to arise. Another important factor could ar

e

.

FIG. 20. The electrostatic energy in the first mode versus n
malized time later in the simulation; i.e.,Ex

2(kx51,t) versus time
step.

FIG. 21. The electrostatic energy in the first mode versus n
malized time early in the simulation; i.e.,Ex

2(kx51,t) versus time
step.
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VLASOV MODEL USING KINETIC PHASE POINT TRAJECTORIES PHYSICAL REVIEW E67, 026704 ~2003!
from the fact that the density here results from moments
the distribution function@Eq. ~12!# and not just interpolations
in configuration space as in the PIC codes. The contributi
of the phase points are therefore weighted by the fa

e2v2/v th
2

which substantially reduces the impact of the pha
points withv@v th on charge density.

The results here as well as Sec. III B above also do
indicate any significant diffusion. As Fig. 21 shows, t
mode energy versus time early in these simulations do
show a systematic decrease and flattening; i.e., signatur
diffusion in the scheme and in particular in the distributi
function. Denavit@25# shows examples of diffusive schem
~i.e., when the distribution function is remapped in eve
time step!, where the electrostatic mode energy flattens v
quickly after a few Langmuir oscillations.

V. CONCLUSION

It was shown that, by extending interpolation in config
ration space to one in phase space, one can enhance
simulation results to include the knowledge of distributi
function. Retaining characteristics at the phase points m
mized diffusion, while reconstructing the distribution fun
tion at a fixed phase space mesh eliminated spurious be
ing instability which could arise from the quiet start
Excellent energy conservation resulted without employ
particle shape functions.

The applications of this model are countless. Here we
a few: initialization of each species to any distribution with
any given scale; imposition of quiet starts with relative ea
as a result of the preceding item; the temporal knowledge
the distribution function with applications to transport a
when chaotic and or ambient particle fluxes impact plasm
in equilibrium; and the impact of particle and or heat flux
from boundaries into bounded plasmas. The PIC simula
results can, therefore, be considerably enriched and one
also reduce the fluid from the kinetic results as well as p
vide accurate descriptions of the macroscopic parame

FIG. 22. The central beam velocity versus normalized time.
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with relative ease by the moments of the distribution fun
tion.
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APPENDIX A: NUMERICAL STABILITY ANALYSIS

In this appendix we shall derive the Courant conditi
and physical as well as computational modes of Leapfrog
well as Leapfrog-Trapezoidal schemes for our Vlaso
Maxwell system. Here we followed the methods in Ref.@19#.

1. Leapfrog scheme

The basic equations of the Vlasov-Maxwell system are

dvx

dt
52

e

m
Ex , ~A1!

dx

dt
5vx , ~A2!

dEx

dx
54pe~n02ne!. ~A3!

The difference versions of the Eqs.~A1! and ~A2! when
Leapfrog scheme is used~steps 3 and 4 of Table I! are

vx
n2vx

n21

Dt
52

e

m
Ex

n21/2, ~A4!

xn11/22xn21/2

Dt
5vx

n . ~A5!

Let (xn11/2,vx
n) denote the numerical and (Xn11/2,Vx

n) the
exact solution of the phase space coordinates at time levtn

and (ex
n11/2,ev

n11/2) the corresponding errors between the
i.e.,

ev
n5vx

n2Vx
n , ~A6!

ex
n11/25xn11/22Xn11/2. ~A7!

Using Eqs.~A6! and ~A7! in Eqs.~A4! and ~A5! will result
in the following pair, respectively:

ev
n2ev

n21

Dt
52

e

m

]Ex
n21/2

]x
ex

n21/252vpe
2 ex

n21/2, ~A8!

ex
n11/22ex

n21/2

Dt
5ev

n . ~A9!
4-11
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Combining these equations gives rise to the following eq
tion:

ex
n11/222ex

n21/21ex
n23/2

~Dt !2
52vpe

2 ex
n21/2. ~A10!

This equation simply corresponds to the phase points un
going oscillations atvpe . In order to carry out the stability
analysis, the amplification factorl5e2 ivDt is assumed in
advancingex ; i.e.,

ex
n11/25lex

n21/2 ~A11!

with the constraint

Uex
n11/2

ex
n21/2U<1. ~A12!

Using Eq.~A11! in ~A10! gives

e2 ivDt221eivDt

~Dt !2
52vpe

2 . ~A13!

This equation is identical to

e2 ivDt/22eivDt/2

Dt
56 ivpe , ~A14!

which simply gives rise to a first order difference equation
ex as follows:

ex
n11/22ex

n21/2

Dt
56 ivpeex

n ; ~A15!

in principle this equation should therefore posses only
physically admissible solution.

To determine the numerical solutions froml, usingDt1
5Dt/2 in Eq. ~A14! results in the following quadratic equa
tion:

l212ivpeDt1l2150, ~A16!

whose solutions are

l r56A~12vpe
2 Dt1

2), ~A17!

l i52vpeDt1 , ~A18!

for vpeDt1<1, and

l r50, ~A19!

l i52vpeDt16Avpe
2 Dt1

221, ~A20!

for vpeDt1>1. In each case then we have two solutionsl2

and l1 . Courant condition demands bothl1 and l2 to
obey

ul6u<1. ~A21!
02670
-
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e

This then simply rules out Eq.~A20! or vpeDt1>1 and the
Courant stability criterion for the Leapfrog scheme case
therefore

vpeDt1<1. ~A22!

However, even here we have two solutionsl2 and l1 . It
can be seen though thatl1 corresponds to the physical so
lution andl2 is nowhere close to the behavior of the an
lytic solution. Such an unphysical solution is termed ‘‘com
putational’’ or ‘‘parasitic.’’ The cause of the ‘‘parasitic’
mode is due to the usage of a two time level scheme fo
first order differential equation,@15#. ~This reference also
refers to others emphasizing this point.!

The computational mode causes eventual deviation of
numerical solution from the analytic one. The main reme
to counter this effect is to devise schemes which damp th
modes. In this example we can clearly see that

ul1u5ul2u51, ~A23!

i.e., in the Leapfrog scheme, computational modes have
same unitary amplification factors as the physical mod
The general solution though is determined from a line
combination ofl1 and l2 , and the unphysical part wil
contribute to errors in each time step which will accumula
in time.

We shall next show how computational modes can ca
deviations from correct ones even when they are initializ
at a small value and assumed not to grow relatively to
physical modes with time. Considerl5e2 ivDt and Eqs.
~A17! and ~A18!; i.e., we obtain (v5vR1 iv I),

vRDt156tan21S vpeDt1

A12vpe
2 Dt1

2D , ~A24!

v IDt150, ~A25!

with the plus and minus corresponding to the physical a
computational solutions, respectively. Equation~A25! simply
indicates that neither mode grows as expected since ot
wise numerical instabilities will result; they are not damp
either. So if vRDt1 represents the physical solution
2vRDt1 will correspond to the computational one and t
general solution can be written as follows:

l5p1l11p2l25p1e2 ivRDt11P2eivRDt1

5p1S e2 ivRDt11
p2

p1
eivRDt1D , ~A26!

assumingp2!p1 with p11p251. Now using Eq.~A11!, it
follows by induction that ifp1 and p2 do not change with
time, we have

ex
n11/25lnex

21/25p1
ne2 ivRnDt1S 11

p2

p1
e2ivRDt1D n

ex
21/2

.p1
ne2 ivRnDt1S 11

np2

p1
e2ivRDt1D ex

21/2. ~A27!
4-12
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In that case since the correct solution is

exc
n11/25e2 ivRnDt1ex

21/2, ~A28!

the percentage error can be determined to be roughly

ex
n11/2

exc
n11/2

5p1
nS 11

np2

p1
D . ~A29!

For example ifp150.9999 andp250.0001, then from this
equation one can see that one will have 5.3% error in 10
time steps. This error will certainly rise ifp2 rises relative to
p1 in time; i.e., the computational mode grows relative to t
physical mode. These results then demonstrate how the c
putational mode can cause substantial deviations of the s
tions after some time even under the most ideal circu
stances. Therefore, any scheme which dampsl2 would
improve the outcome by lessening those errors.

Another remedy is the usage of the backward biasing
the Leapfrog scheme. Using the same methods as in
section and the following, one can show that the correspo
ing Courant condition in this case is more restricti
(vpeDt1<0.8) than both this case as well as Leapfro
Trapezoidal scheme to be discussed next.

2. Leapfrog-Trapezoidal scheme

From steps 8 and 9 in Table I, the following pair of equ
tions are obtained after following the procedures of the
section~note that asterisks used for clarity are dropped he!:

ev
n2ev

n21/252
vpe

2

2

Dt

2
~ex

n1ex
n21/2!, ~A30!

ex
n11/22ex

n5
1

2
~ev

n11/21ev
n!

Dt

2
. ~A31!

From Eq.~A31! we obtain

ev
n5

4

Dt
~ex

n11/22ex
n!2ev

n11/2. ~A32!

Using Eq.~A32! in Eq. ~A30! results in

4

Dt
~ex

n11/222ex
n1ex

n21/2!2~ev
n11/22ev

n!

52
vpe

2

2

Dt

2
~ex

n1ex
n21/2!. ~A33!

Now using Eq.~A30! in Eq. ~A33! results in one equation
involving ex only, i.e.,

4

Dt
~ex

n11/222ex
n1ex

n21/2!52vpe
2 Dt

4
~ex

n11/212ex
n1ex

n21/2!.

~A34!

Using ex
n61/25e6(2 ivDt/2)ex

n in Eq. ~A34! results in
02670
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e2 iv(Dt/2)221eiv(Dt/2)

~Dt2/4!
ex

n

52
vpe

2

4
@e2 iv(Dt/2)121eiv(Dt/2)#ex

n ~A35!

from which the following dispersion relation is obtained:

e2 i (vDt/4)2ei (vDt/4)

Dt/2
56

ivpe

2
@e2 i (vDt/4)1ei (vDt/4)#.

~A36!

Now if we multiply both sides of this equation b
e(2 ivDt/4)ex

n we obtain the following difference equation i
ex :

ex
n11/22ex

n

Dt/2
56

ivpe

2
~ex

n11/21ex
n!. ~A37!

So here also the main trapezoidal steps reduce to an ordi
difference equation too. So the combined Leapfrog sche
@Eq. ~A15!# and its associated Trapezoidal step@Eq. ~A37!#
will give rise to the following pair:

ex
n11/22ex

n21/2

Dt
56 ivpeex

n , ~A38!

ex
n11/22ex

n

Dt/2
56

ivpe

2
~ex

n11/21ex
n!, ~A39!

with the understanding that theex
n11/2 obtained from the first

equation is to be used on the right-hand side of the sec
equation.

Here again using the same procedures as in the Leap
scheme we arrive at the following equation for the ampl
cation factorl:

l215
2 ivpeDt1

2l
2vpe

2 Dt1
22

ivpeDt1

2
. ~A40!

Direct numerical solution of this equation with the constra
ulu<1 also gives the following Courant condition:

vpeDt1<A2. ~A41!

Table II clearly illustrates this among other things. Here as
the Leapfrog scheme case,ul1u corresponds to the physica
while ul2u to the computational modes.

As we see from the table, up tovpeDt1<1.4 we get ad-
missible solutions; forvpeDt151.5, ul2u.1 anduv1Dtu is
incorrect. For almost all the modes alsoul2u,ul1u; i.e., the
computational mode is damped and this is more the case
the smaller time steps where damping is substantial. Thi
to be contrasted with the Leapfrog scheme case where t
amplification factors were equal for all allowed mode
Therefore, Leapfrog-Trapezoidal scheme allows longer ti
steps and considerably smaller computational modes c
pared to the Leapfrog scheme. These should justify the ad
computational effort.
4-13
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TABLE II. The physical versus computational modes eigenvalues for different time steps.

vpDt1 ul1u v1Dt1 ul2u v2Dt1 P.E.a

0.1 1.0000 20.0999 0.0500 21.4710 1.00
0.2 0.9996 20.1995 0.1000 21.3720 0.25
0.3 0.9983 20.2985 0.1503 21.2722 0.50
0.4 0.9953 20.3974 0.2009 21.1733 0.65
0.5 0.9901 20.4969 0.2525 21.0740 0.62
0.6 0.9821 20.5975 0.3055 20.9730 0.42
0.7 0.9708 20.7003 0.3605 20.8710 0.04
0.8 0.9559 20.8059 0.4184 20.7650 0.73
0.9 0.9368 20.9154 0.4804 20.6552 1.71
1.0 0.9124 21.0299 0.5480 20.5410 2.29
1.1 0.8814 21.1504 0.6240 20.4204 4.58
1.2 0.8415 21.2782 0.7130 20.2926 6.52
1.3 0.7889 21.4133 0.8239 20.1575 8.72
1.4 0.7187 21.5520 0.9739 20.0191 10.85
1.5 0.7726 20.7648 1.8202 10.1184 48.87

aP.E.: Percentage error betweenvpDt1 and uv1Dt1u ~the physical mode!.
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APPENDIX B: DISTORTION OF THE DISTRIBUTION
FUNCTION

This phenomenon is attributed to the process of div
gence of characteristics due to the scatter gather opera
in the force equation~involving f p’s indirectly! with the net
long term impact of numerical diffusion off g in phase space
This process gives rise to the phase density nonconserv
and thus results in the numerical heating of the phase po
The PIC models also experience numerical heating@19# ~see
the section on heating time!. In this appendix we obtain a
gross estimate of the numerical heating attributed to this p
cess in phase space and suggest ways to improve.

The process is attributed to the combined gather-sca
operations in interpolatingf p to its host cell for the charge
calculation in the force equation. Therefore, althoughf p as-
sociated with the phase points does not change with time
mere interpolation to a fixed mesh~scatter operation andf g

calculation! and gathering the electric field in the force ca
culation ~which depends onf g through the charge densit
ne) will have the impact of smearingf p at that phase poin
for that calculation. To see this, note that the actual force
the phase point should be proportional tof pDt in principle,
but in practice it becomes proportional tof p* Dt where f p* is
defined to result from the scatter gather operations onf p .
This causes trajectory errors in each time step which
result in the divergence of characteristics with a net lo
term diffusive impact onf g .

Therefore, in order to determine its impact, one sho
estimate the net smearing impact of the scatter gather op
tions on the force for each phase point by obtaining an
pression forf p* . In order to see this please refer to Fig. 1 p
~c!. The phase points within such a cell assign their ass
atedf p’s to this cell’s grid pointsl x21 andl x by the weights
N1 and N2, respectively; those grid points receive the fo
lowing contributions respectively~scatter operation!:
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f 15(
;p

N1f p , ~B1!

f 25(
;p

N2f p . ~B2!

In the accompanying gather operation~e.g., in force calcula-
tion!, an arbitrary phase point in that cell should receive
following contributions from those two grid points:

f p* 5N1f 11N2f 2 . ~B3!

In practice then the associated gathered force at that p
point will depend on this quantity and notf p . To obtain a
gross estimate off p* , we observe~please see below! that this
error is most severe whenN15N251/2; i.e., when a phase
point is exactly half way inside a cell. At that location,

f p* 5
f 11 f 2

2
1 f p2 f p5 f p1

f 122 f p1 f 2

2

5 f p1
1

2 S Dx

2 D 2]2f p

]x2
1O~Dx2!. ~B4!

It can be shown that for other phase point locations, the
in front of the second quantity on the right-hand side sho
be replaced by (xp /Dx), where xp is the distance of the
phase point to its nearest grid point. This result@Eq. ~B4!#
can be generalized to 2d in phase space if one considers
phase point at the center of the square cell in Fig. 1 part~b!
and compute the net impact of the scatter-gather operat
as above; i.e., in 2d:

f p* 5 f p1S Dx

2 D 2 1

2

]2f p

]x2
1S Dv

2 D 2 1

2

]2f p

]v2
1O~Dx2Dv2!.

~B5!
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Sakanakaet al. @4# also reported errors of the same ord
which they termed numerical ‘‘diffusion.’’

From these results, we conclude the following maximu
limits of the error of gatheringf p per time step; i.e.,

~Gx!max5S Dx

2 D 21

2

]2f p

]x2
, ~B6!

~Gv!max5S Dv
2 D 21

2

]2f p

]v2
. ~B7!

FIG. 23. Spatially averagedf g for the system 256-D length
across withDv50.4 at normalized times 100 and 200 /vpe , re-
spectively.
02670
r From Eq.~B5! one can prove by induction that iff p re-
mains unchanged with time~fixed characteristics!, then after
n time steps one has

f p* ~nDt !5 f p1~n21!F S Dx

2 D 2 1

2

]2f p

]x2
1S Dv

2 D 2 1

2

]2f p

]v2

1O~Dx2Dv2!G . ~B8!

One of the first observations here is that for the casesf p
5 f p(t) ~i.e., when characteristics are not retained!, more

FIG. 24. ~a! The f g at one spatial grid for the system 256-
lengths across withDv50.4 at normalized time 100 /vpe . ~b! The
f g at one spatial grid for the system 16-D lengths across withDv
50.16 at normalized time 100 /vpe .
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terms will appear on the right-hand side of Eq.~B8! which
can contribute to greater errors.

Equations~B6! and ~B7! then give valuable insights o
characteristic divergence due to this type of numerical dif
sion and can be used to determine when trajectory er
exceed allowable limits at which point a simulation w
cease validity. For example from Eqs.~B6! and ~B7!, it is
evident thatGv should be larger thanGx initially for quiet
start runs. However, asf p* gets distorted to scales larger tha
Dx due to velocity diffusion, it can result in nonzeroGx in
such a way thatGx may eventually become dominant. Se
ond, Gv is different at differentv from the outset; and it is
maximum where]2f p /]v2 is maximum~which takes place
at v5A3/2v th).

Therefore, in each force calculation trajectory~velocity!
errors can be determined from (f p* 2 f p)Dt. For the two sets
of the simulations performed for this paper we then have

S f p* 2 f p

f p
D

max

Dt5
~Gv!max

f p
DtS v5A3

2
v thD 50.36%

~B9!

when Dv50.4v th and equal to 0.06% whenDv50.16, as
the maximum percentage of trajectory~velocity! errors per
time step for each case. The actual observed trajectory e
were far smaller though since these calculations co
sponded to the points of maximumGv in phase space. Fo
example Fig. 23 displays two snapshots of the spatially
eraged f g at 100, 200 1/vpe, respectively, for the system
256-D lengths across withDv50.4. These results indicat
accumulative errors of roughly 10% in 1000 time steps at
point v/v th5A3/2 which corresponds to the ordinate gr
hy
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point with v51.84 in the figure. However, as one examin
f g at a given spatial grid for this case, one observes tha
has ceased its Maxwellian profile at that grid point@Fig.
24~a!#; i.e., the trajectory errors have destroyed the syste
initial quiet start profile, while the overall system is st
Maxwellian. Figure 24~b! though which corresponds toDv
50.16v th still maintains its Maxwellian quiet start profile a
time t5100 1/vpe . Examining the data more closely ind
cated that in the former, the initial quiet start was maintain
up to 250 time steps, while in the latter it was maintained
to 1400 time steps which is 5.6 times longer~same time steps
were used in both cases!. This indicates close agreement wi
Eq. ~B7! for it shows that asDv→2.5Dv, Gv→6.25Gv , and
the duration of quiet start in principle should be reduced
roughly 1/Gv which is 6.25.

These results indicate that the length of a simulation to
a function of bothGv andGx while its time step is governed
by the Courant condition discussed in Appendix A. The
fore, to improve the performance of a Vlasov code we ma
the following suggestions:

~1! Make the mesh nonuniform alongvx , choosing finest
resolution whereGv is highest. This is possible when on
implements a finite element scheme as here.

~2! Estimate analytically how long quiet starts will last b
making spatial average ofGv at an arbitrary cell.

~3! Determine how long the overall system remains Ma
wellian by repeating the preceding step but usingGx . Note
that Gx increases the scale of the quiet start.

~4! One can attempt adding antidiffusion terms to offs
the impact ofGv andGx .
,
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