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Vlasov model using kinetic phase point trajectories
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A method of solution of the collisionless Vlasov equation by following fixed collisionless phase point
(“particle™ ) trajectories(characteristicsin phase space is presented. It solves the coupled Viasov Maxwell
system self-consistently and employs the Leapfrog-Trapezoidal scheme to solve for the characteristics explic-
itly. It then uses the bilinear finite element interpolation scheme in phase space and maps vital instantaneous
phase point informatiofdistribution function to a fixed background phase space mesh while retaining it at the
phase point. The scheme is an enhanced second order one in time and fourth order in space. The code is then
used to model a thermal plasma as well as two stream instability using mobile electrons and fixed background
ions: the scheme being a momentum conserving one by construction allows energy conservation without
assignment of particle shape functions; Langmuir waves are obtained with very good agreement with the
Bohm-Gross dispersion relation; the two stream results do not show any numerically induced oscillations
attributed to the initial well-ordered velocity distributions. Retention of the characteristics also minimized
diffusion. Extensive numerical stability analysis deriving Courant condition for the scheme as well as behavior
of computational modes are done in Appendix A, as well as estimating the impact of numerical diffusion in
Appendix B. Two to five dimensional versions in phase space exist.
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[. INTRODUCTION equation “should be an approximation” to a couple of equa-
tions involving the “free-streaming” {f/9x) and “acceler-

The knowledge of the temporal evolution of the distribu-ating” [E(df/dv)] terms; the latter two involving lines of
tion function has long been a desire of plasma physicists agonstant phase space coordinates. The hevas thus ob-
well as many involved in many-body physics research. Herd@ned as an algebraic expression in terms of thefdld a
we cite a few examples where temporal evolution criticallysu'table interpolation methofll4]. There are a couple of

depends on the time dependent distribution functidrans-  ProPlems with this *approximation™(i) it was not rigor-
olusly shown under which circumstances the coupled equa-

ggrtelnn dgrz?:sem(?r;’i:nmz::etz ;;a?hsg(?rré;aer;rgsk ggrsjejsozfu?;tfrnﬁons have splutions _“approximately" consis_tent with the
depena P - . pe. YT Vlasov equation; andii) following characteristics along the
'”."p‘!”“e.s on the bulk; and |m_pact of Fhe chaot!c partlcle phase space coordinates departs one from the characteristics
distributions on the magneto-tail dynamics. The kinetic VIa-opn \hichf truly remains invariant. As such the validity of the
sov models which follow the distribution function provide fina| solutions resulting from following these coordinates
statistically acceptableéand therefore are valuable tools for \yould be debatable.
the above mentioned problems. In the present work though we directly follow the charac-
Many researchers have taken great pains with some sugeristics along whictf is constant in the collisionless case,
cess in the numerical integration of the Vlasov equation.e., the collisionless phase point trajectoridsitially f is
[1-4,6,8,9. Some sought solutions by assuming polynomialprescribed on a fixed background mesh in phase space con-
expansion of the distribution function in velocif¢0]. One  sisting of phase points. The phase points following the char-
of the main obstacles in this endeavor has been the developeteristics are advanced in time by the Leapfrog-Trapezoidal
ment of steep gradients in velocity space; i.e., a problem with15] method. Interpolation is performed between the phase
no seemingly simple cure. Partial treatments such as increag@ints and the fixed background mesh in phase space using
in velocity resolution, have sharply limited the ability to ex- the method of bilinear rectangular finite elemejit§]. From
tend the above work to higher dimensions and thus tredfe interpolated on the mesh, all the desired quantities such
realistic problems. as space charge density, electron kinetic energy density, etc.
Integration of the Vlasov equation along the collisionlessa'® then computed; and used to further advance the phase

phase point trajectorie&haracteristidshas been the most RoInts.

promising of these methods},11-13. In most of these  1\qte that[4] also attempted a similar procedure; there they did
works, a splitting scheme initially proposed in REF1] has ot appear to retain the same characteristics throughout. We believe
been employed. In this scheme, they assumed that the VIas@yat was the main cause of their observed energy nonconservation:
in section three we present results confirming this fact. Ni&in
using a similar concept while retaining characteristics though, stud-
*Present address: 4723 Avenue De Las Flores, Yorba Linda, Ched the driven impact of the VLF emissions on resonant particles in
92886 the magnetosphere.
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The organization of the paper is as follows. Section I va (a)
describes the general model. Section Ill describes the nu
merical scheme used to update the characteristics and th
interpolation scheme. Section IV includes tests of the model
via energy conservation and the linear eigenmode analysis
the energy tests include comparison between cases with an
without fixed characteristics, as well as Leapfrog versus
Leapfrog-Trapezoidal numerical schemes for updating trajec- Nx
tories in the former casefinear eigenmode tests include (b) ©)
thermal as well as streaming plasmas for confirmation with
the linear theory, as well as testing the extend of numerically (Ix-1 byx) () N, N,
induced streaming instability and diffusion in the model. .
Finally a brief conclusion with future directions is includ&d. AV (x,V) N, ()]

Ax Ixg X Ax L

Here we model a system comprised of thermal electronsllx-1slyx-1)  (xhyx-1)
and immobile ions. At timé=0, Maxwellian electrons lie ) ) )
on top of the ions in a phase space mesh. For every point in F'G: 1. (@ Atypical phase space mesh) A typical phase point
configuration space, there existx points in velocity space (X’UX.) atits host Ce";A.X and_Av °°”.e.sp°”d to the respective grid
which give rise to a discretized Maxwellian. This arrange-Spaf:'ngS' (©) One d|men_5|onal finite eleme_nt Shape factors
ment insures a Maxwellian distribution and practically to (weights of the two cell points at the phase point location.
within discretization noise zero electric field within the con-

v %

Il. THE MODEL

figuration grid space initially. As such it corresponds to par- d_X: 2
. . . S . . Ux» (2
ticle in cell codes which are initialized with “quiet starts” dt
[6]. Generalization of this model to include Maxwellian ions 2

. : d°¢
at the same phase space points with the electrqns_would also — =—4me(ng— Ne), 3
insure “quiet starts” as it will insure zero electric field and dx

related velocity distributions within that scale. This is in con- ) ) ) ] .
trast to the PIC codes which are initialized with a randomWhereno is the density of the uniform background ion dis-
velocity distribution and therefore higher initial electric field {ribution andn, corresponds to that of the electrons. As the
fluctuations. representative phase points follow their collisionless trajec-
one thus hasxx nvx grid phase points. Each phase point isinformation is however mapped into a fixed background
by definition characterized by its positionand its velocity ~Mesh; i.e., from the distribution df;'s, f, associated with
v,, and has associated with it a distribution function valueth® ph?jsellsdpac'e g‘ﬁ,sr;] is obtained by mgerpolatlon.dF‘rl%)m

_ 02,2 . any and all desired higher moments can be computed. Due to
IfZFi)g (11/“7””‘ e (vyp is the thermal spegriplease see computational constraints, velocity cutoffs as in PIC models

. . . . are imposed. For examplé, at maximum(cuto in our
As the simulation begins, the representative electronsimulal,[[)ion was 101 timpeigmaximumf (Duef?ov?he con-
g-

pha;e points begin to move at their respective_ spe_eds undg"trancy of the phase density in the model, the fraction of
the influence of the resulting charge separation figld hase space initially occupied bf, should remain un-

Their trajectories are therefore advanced using the followinihanged unlest, begins to distort due to numerical errdrs

set of equations: That distortion will set limitations in the model which is
d discussed in Appendix B.
Uy e . e . .
—=——E,, ) Due to the discretization noise, the physical system con-
dt sidered maintains small amplitude collective oscillations ap-
proximately consistent with the following linearized set of

fluid equations:
2We define fixed characteristics when they are retained throughout

a simulation, in contrast to reconstructing them at each time step as——

in Ref. [4]. 'Ifh(_é energy tests are indented to_ distinguish the impact 4This condition will no longer hold

of characteristic retention f“?m the computational mo@gEpendix resulting transport correlationg]) could no longer be neglected in

A) on the energy conservation. comparison with the long range fields and result in collision integral
3The presentations outlined are in two dimensional phase spacgarms in the Vlasov equation.

This is done to aid the reader better visualize the outlined interpo- 5y here is the velocity momertaverage velocity while v, above

lations and shorten equations and function indices without any l0sgorresponds to the phase point velocities. Also for sufficiently low

of generality to higher dimensions. Where appropriate, it is ex-frequencies, the electrons remain practically isothermal and the

plained how the extension to higher dimensions has been performeglgenmode oscillations are well approximated by the noted set of

in the higher dimensional versions. fluid equations.

if micro scale fieldand the
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—iwng+ngiku=0, (4)
—iwngmu=—ikTn,—n.eE,, (5)
—ikEy=4mne, (6)
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> NOON,(v)f,
Y (x,v)
fg(lx’lvx): )
> N(X)N,(v)
Y (x,v)

(11)

which give rise to the well known Bohm-Gross dispersionWhere the summation runs over all the associated phase

relation
w?’= w§e+ kzvtzh. (7)
This equation will be used for testing the model.
I1l. NUMERICAL SCHEME

A. Interpolation procedure

As the representative phase points follow their character-
istics, they continually exchange information with the fixed
background mesh depicted in Fig. 1. In this exchange th

method of bilinear weighting is employegd 6], where at

each instance a representative phase point contributes to t6

corners of its instantaneous host déllg. 1(b)] its distribu-

tion function. The basis of this scheme is depicted in Fig

1(c): i.e., for each degree of freedofa.g.,x) a representa-
tive phase poink located within the cell I,—1,,) contrib-
utes itsf, with the weights

_X— (Iy—1)Ax

N2 =~ ®)

N1 (Xx)=1—Ny(x) 9

to the pointsl, and (,—1), respectively, an(l}\Iv2 and Ny,
[with (I, x) replaced by I, v,) in these equatiordo the

mesh pointd,, and (,,—1), respectively. In higher dimen-
sions then, a phase point,¢) [Fig. 1(b)], should make the
following contributions to (,—1l,,—1), (Iy,l,x—1), (4
=11,,), and (4.l,y), respectively,

A1=NiN,g,

A2=NoN,y,

A3=NiN,2,

As=N3N,2,

the sum of which gives

iEj NiN,;(X,v) =N1(N,1+N,2) +Na(N,1+N,y5)

:N1+N2:1, (10)

points. Likewise, extension of this procedure to include more
dimensions involves taking account of the extra dimensions’
contributions. This scheme will thus allow usage of nonuni-
form meshes in phase space as long as rectangular geometry
is maintained.

From fg4 then, any moment of the distribution function
such as electron density, can be computed; e.g.,

Follal )+ Fgll Loyt 1)
2.0

ne(lx)=% Av, (12

whereng(l,) corresponds to the electron density at the point
?X .% Using the densityl,, the potentiakp and, therefore, the
lectric fieldE, are obtained on the mesh, and used to ad-
&nce the phase points by the same interpolation procedure.
This interpolation scheme, with the numerical schemes to be
‘outlined, have ensured mass, momentum, and energy conser-
vation as will be demonstrated in the density and energy
plots.

B. Trajectory integration

The collisionless phase point trajectories and the electric
potential are advanced by finite differencing Eq$)—(3)
above. The following normalizations are employed:

X v e¢
__>X1 __)vl _ L
r T ¢

(13
D Uth

wpet—>t,

where w, and rp are the electron plasma frequency and
Debye lengths, respectively.

This results in the normalized,.=1 and reduces the
said equations to the following set:

dox_ E 14
dt - X1 ( )
dx_ 15
a_UXI ( )

d’¢ ng

— =" 16

dx? No 18

For Egs.(14) and(15), the Leapfrog-Trapezoidal scheme
is employed. There, the values®f andx need to be known

This sum corresponds to the Trapezoidal method of numerical

where the important property of these weight factors outlinedntegration off,. In higher velocity dimensions, the contributions

in Eg. (9) has been used for botthas well as\,, . Therefore,
the mesh pointl(,!,,) should receive contributions from all
its associated representative phase points as follows:

of the other dimensions are multiplied by this contribution.
"Note this normalization is henceforth also applied to all the other
equations in this article.
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TABLE |. Numerical algorithm of the kinetic trajectory Vlasov model.

Initially we havev) *,x" 2 {1 12=f (x" Y2 y07 )

1. Interpolatef) "2 to obtainfy ?=fy(x"" Y20 "") andn)” 2.

2. Solve Poisson equation to obtd# /2 from n~ /2,

3. Push the phase point velocities one time stéf=v7 *—E}~*At.
Forn=0 only computex" 1=x""Y2— [ 1+ 0.5w} "+v i ) ]At/2.
Forn=0 only determingy ™", ni™*, andE} *.

4. Push the phase point positions one time st&f; Y2=x""Y2+p*"At.

5. Trapezoidal step one; determin® Y2 x" (middle step:

@ o) Y=yt 0.5E) Y2+ ED h A2,
(b) x"=x""12+ 05w "+0ul YA)AL/2.

. Obtain “improved” f§=f(x" v}~ ), ng, E} from x" andv}; . Optional: Do the same calculation usin§" instead ofv} 2.

. Push the phase point velocities in the middle time st *?=y""Y2— EJAt.

. Trapezoidal step twédetermine the “improved” updated velocitips =07 Y2~ Z(El+El V) At/2.

. Re-advance the phase point positions using the “improved” velocilEs/?=x"+ 3 (v " Y2+ M At/2.
10. Pasx"" %2 7 x", andE} to the next time step.

© 0 N O

at both time steps— At andt—(At/2) in order to advance
them to steps andt+ (At/2), respectively. In the conven-

frog scheme steps advaneg andx one time step and basi-

! cally complete one push cycle. They, however, serve as
tional Leapfrog scheme, thoughy,(t—At) and X[t  ayxiliary quantities for the trapezoidal steps which serve to
—(At/2)] are sufficient to obtain,(t) and x[t+(At/2)].  improve them iteratively. In the Leapfrog scheme steps
The Leapfrog-Trapezoidal as the Leapfrog scheme itself hagteps 3 and 4 of Tablg,Ithe time centering is performed in

a total truncation error when integrating to a fixed time pro-explicit style. The advanced quantitie@sterisk super-
portional to (At) in the limit asAt goes to zero. The trap- scripted serve as auxiliary first iterations which are “im-
ezoidal steps have two function®) the primary function is  proved” in the trapezoidal stepsteps 8 and 9 in Table);|

to eliminate the “parasitic” solution associated with the the time centering here is achieved in implicit style using the
Leapfrog scheme which results in a growing computationahuxiliary quantities. This improves the time advanced quan-
mode;(ii) as a result, the constant which multiplies the trun-tities in the advanced quantities and ends the push cycle. The
cation error[ ~(At)?] becomes smaller; i.e., the Leapfrog- outline of these procedures is given in Table I.

Trapezoidal scheme becomes an enhanced second order

scheme in timg15].8

Equation(16) is solved numerically by the inversion of
the Poisson operator matrix using the left-righR) theorem
[17]. The potential$ thus obtained is second order accurate
in Ax. They are then made fourth order accurate by the A thermal plasma is modeled by simply setting the phase
following substitution[18]: points in Fig. 1 into motion at their respective initial veloci-
ties. The round-off errors arising from finite differencing act
as initial perturbations in the system, plus constant source of
noise at any later time.

Conservation laws are the first order tests following the
construction of a simulation model. The most basic of these
are the continuity and mass conservation: Figures 2 and 3

wheredy, is the fourth order potential. The interpolated elec-show the plots of density as the first moment of the normal-
tron density’s accuracy was likewise increased. These corredzed distribution functiorf ; as obtained from the E¢12) at
tions helped enhance th¢ and E, accuracy and conse- times 50 and 10@é,., respectively, for a system 256-D
quently improve the results markedly. lengths acrossgnote: the time step in these simulations was
To summarize: At the beginning of each time step, from0.1/wy). The former corresponding to an earlier time clearly
the phase point distribution functions the charge density disshowsn,=1 across the system. The latter though indicates
tribution is obtained. With this charge density, the Poissorenhanced oscillations corresponding to the Langmuir waves
equation is solved for the electric potential. Next comes tra{following section and possesses spatial average about the

jectory advancemeifite., Eqs(14) and(15)]: here the Leap- €xpected value of one. Next Fig. 4 also displays the electron
density but at 20Qb,.; a comparison of this with Fig. 3

indicates the fluctuation levels must have saturated at
8hen the Trapezoidal steps described below are eliminated, th@ughly 25% of the background. Since we used 20 phase

IV. TESTS OF THE MODEL

A. Conservation laws

X+

o

x| 7 1
— | =5l A0+ A%+ B(x) ] = T b(x+24%)

+o(x—Ax)], 17

total electron kinetic energy begins to rise at some pgimearly in
time) and result in unphysical results.

points per configuration mesh point, we would have expected
fluctuation levels of 1y20 analytically which is about 23%.
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FIG. 2. The density versus position 80/ (plasma periods POSITION
after start of the simulation. Note the small amplitude Langmuir
oscillations. FIG. 4. The density versus position 2aQ, (plasma periods

after start of the simulation.
Here some comparison with PIC codes is in order. One of

thg most important functl_ons of the representative phasﬁavit [25] demonstrated that Vlasov model's energy plots
points in the Vlasov code is that they maintain the distribu- . =" o e I ;
. S T " maintained less “spurious” oscillationsTo see the differ-
tion function information in addition ta(t) andv,(t). In a nce, the electron density is also obtained here for the same
PIC code, the velocity moments in principle can be obtained ¢ € y .

system size and parameter range using a PIC code for com-

directly from the discrete particle distributions in space,>> . . : .
while in the Vlasov code moments are obtained from thei@rison. Figure 5 shows the density 50-plasma periods into

distribution in phase space: i.e., particles all contributethat simulation._ Cc_)mparing this with Fig. 2 indicates a much
equally to these moments regardless of their energy whil€moother density in the former. .
phase points’ contributions get weighted by their energy via One of the most important properties of the Vlasov mod-

the distribution functior{see the equation fdE, below) (De-  €ls lies in their ability to conserve the phase density
ngvAx. This conservation is most fundamental since other

15 moments conservation depends on it. The gradual distortion
of fy due to numerical errors will eventually break down a
simulation. This issue is discussed at length in Appendix B.
Next comes momentum conservation. In this scheme,
where there exists symmetry of interpolation between the
representative phase points and the phase space mesh and
centered spatial differencing is performed, there exist zero
self-forces and momentum is therefore conserved to round

1.25

E - off error [19]. Calculations ofv,), as well as the internal
Uz? 0.75 b energy serve as the best test of the momentum conservation
| i which will be discussed beloww,)=(1/ne) [ f4(v,)v«dvy
o - corresponds to the first velocity moment.
05k To determine the appropriate energy equatigkiaetic,
[ electrostatic, and total we shall make use of the Vlasov
- equation corresponding to the electrons; i.e., in our normal-
025k izations[ f=f(x,vy,t)],
i of of E of 0 18
- —+ N —=0.
ol | TN W [T WO WO W TN W N A N TN A BN A | at UX(?X X(?Ux ( )
50 100 150 200 250
POSITION

FIG. 3. The density versus position 160/ (plasma periods ~ The second moment of this equation after using the first two
after start of the simulation. Note the enhanced Langmuir oscillamoments and Poisson’s equatiidg. (16)] gives rise to the
tions. following energy equation:
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using a regular PIC code.

g1 E2
i 2 X
&t(Zf foydu,+ >

Integration of this equation over all space results in

a1Jffzo| d 1JEzol
ﬁé vXUXX+§ YadX

lf3d = 1
+& if vyduv,|=0. (19

=0. (20)

The first term on the left is identified with the kinetic and the

second with the electrostatic energy.

287.74

287.736
287.732
=
w
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287.72

rTr1tJl J7t1Tfl TrTrrfrrrrreoerorrr
[\~]

[$]]

N

| 5
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TIME STEP
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FIG. 7. The same as Fig. 6 but with reinitialized characteristics.
Note the enhanced electron heating in this case.

With these then we can clearly define the necessary quan-
tities for testing our model as follows; i.e., the following
quantities are defined as the kinetic, electrostatic, total and
internal energies:

1
Ek:j Jéfg(x,vx)vidvxdx, (21)
E,= f %Ei(x)dx, (22)
Et:Ek+ E| y (23)

Ei:J f%fg(xrvx)(vxf<UX>)2dedX_ (24)

Here as in the density, the trapezoidal numerical integrations
of these moments have been employed in the model. Exten-
sion to higher dimensions involves repetition of this proce-
dure with other velocity components with similar results.
The very first energy tests involve the cases with the
“fixed” and the “reinitialized” characteristicglast paragraph
of the introduction; these tests are intended {0: justify the
“fixed” versus the “reinitialized” characteristic approach
due the intense artificial particle heating in the latter césg;
shed light on the impact ofi) versus parasiti¢computa-
tional) modes on the energy conservation; &iid justify the
Leapfrog-Trapezoidal as opposed to the simple Leapfrog
scheme approach. The runs in these cases all correspond to
systems 256-D lengths across. Figures 6 and 7 SBg(it)
for the cases with fixed and reinitialized characteristics, re-
spectively, over a period of 16/,.. Figures 8 and 9 show
the electron kinetic energyE,(t)] and the change in it
[Ex(t)—EL(0)] versus time, respectively, when fixed char-

FIG. 6. The total electron kinetic energy versus normalized timeaCteristics were used. As Fig. 8 indicates, the rise in electron
during 10k, (plasma periods, using fixed characteristics. The kinetic energy here over 400}, periods is comparable to

system size is 256-D lengths.

that in Fig. 7 in only 10k, periods. Note that in both of
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FIG. 8. The electron kinetic energy versus time 460/ FIG. 9. Similar to Fig. 8 for the change in the electron kinetic
(plasma periods using fixed characteristi¢the simple Leapfrog energy versus normalized time. The system size is 256-D lengths in
scheme was employed here both cases.

these cases the simple Leapfrog and not the Leapfrogj es in the paper all correspond to the “fixed characteristic”

Trapezoidal scheme was employed. Clearly, characteristic rexqas where Leapfrog-Trapezoidal scheme was employed.
tention improved energy conservation and allowed longer Figures 10, 11, and 12 correspond E(t), E(t)

gme steﬁs. We therefore t_)e;uev_e the et,;ner?y nonconsevationg, () andE,(t) versus timet for a system 16-D lengths
ue to characteristic reinitialization to be of truncation nature, . oc¢ over 4064, periods. These clearly indicate that, in

on the distribution function and to thus affect its moments, ..ordance with the expectatiors, increases agE, de-

mcludcljng ge?edrgyd ”.“”; fsg\éerely_ ':;a%n t?e 'nt?rlpmat'oncreases, whil&; remains constant. The Figs. 13—-15 likewise
procedures.Indeed, in Ref[25], weight functions of linear indicate similar patterns for a system 256-D lengths across;

as well as quadratic orders in phase space when updating q|

distribution function inf i it ted and it 3., here alsdcy decreases ds, begins to rise. However, the
istribution function information were attémpted and it was, energy is not conserved as well as in the smaller system,
concluded that it was not possible to derive weight function

JPrimarily due to the usage of a coarser velocity grid;

I/fl)fi;iV\I{]htlﬁh ;llt:&e? nme:‘?imﬁ V\\/lvereirconﬁetrrve? Lo"r f[:aiesr e. there exits an error of about 1.3% here, compared to less
ch the distribution function was reconstructed” at eVery y,,, g 204 in the smaller system. However, in the larger sys-

Elme step’ ”? oth”er words, the resuliing Qn‘fusmn _from these tem one observes the saturation of both the electron as well
reconstructions” destroys too much information at the

phase point distribution functions to allow even valid second 025
moment(energy conservation. Furthermore, a comparison

of Figs. 9 and 13, where the Leapfrog scheme in the former

and the Leapfrog-Trapezoidal scheme in the latter were usec
indicate that in the former the parasiticomputationgl 02
modes begin to heat the particles after X/ (note that
Leapfrog-Trapezoidal scheme when trajectories were nol
fixed did not conserve energyUsing shorter time steps in  0.15
the Leapfrog scheme did delay this heating thotighhese
results justify more noise free and longer time steps attrib-*
uted to the Leapfrog-Trapezoidal scheme. The remaining fig-

0.1

%The energy nonconservation observed[8y is therefore more
associated with the characteristic reinitialization than the spatial 0.05
charge deposition.

Opage 80 of the cited reference, paragraph one.

The Appendix A includes extensive numerical analysis of both ) S S —— "
the Leapfrog versus Leapfrog-Trapezoidal schemes. There Courar
conditions show much longer allowed time steps in the latter. The
origin of the parasitic modes are shown. It is shown the latter FIG. 10. The total electrostatic energf,(t)] versus normal-
scheme to damp these modes much better. ized time in 400k, periods; the system size is 16-D lengths.

M L
2000 3000 4000
TIME STEP
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FIG. 11. The change in the total electron kinetic endrgy(t)
—Ex(0)] versus normalized time in 406}, periods; the system

size is 16-D lengths.

FIG. 13. The change in the total electron kinetic energy
[Ex(t) —E(0)] versus normalized time in 400}, periods; the
system size is 256-D lengths.

as the electric field energies much better. When the Leapfro
instead of the Leapfrog-Trapezoidal scheme was used, i9grq within the simulation period. Indeed it was also ob-
both the small and the large system, after about &g/ Ex ~  served thatv,) when computed for all the grid points, was
reversed its decrease and began to rise till the end of thgite negligible even at the end of the simulations. Negli-
S|mulat|ons;_ i.e., it grew due to the computational m(_)de_dls—gib|e (v,) indicates momentum to be conserved within the
cussed earlier. The rise iy was followed by a larger rise in 5 nqoff errors. Momentum conservation implies no self-
Ei, and neither quantity indicated any saturation; a clearlyorces on the phase points, and further support the interpola-
unphysical behavior. _ tion procedures employed. Also, when the Leapfrog instead
Figure 16 shows the time history of the internal eneEgy  of the |eapfrog-Trapezoidal scheme was used, it was ob-
versus time for the same system size as Figs. 13-15. He@ e thafv,) began to rise about the same time as when
one observes an oscillatory behavior to appear aboutQ0/ g reversed ‘its decrease. Comparing the results of both
into 'Fhe simulations and to pers_ist With roughly the SaMeschemes, we observed that the valuegiugh at the end of
amplitude throughout the simulation; i.&;(t) tends t0 0S-  he simulations in the simple Leapfrog scheme were orders

Billate aboutE;(0). This simply implies(v,) to average to

20 5

| sl
15 B
| sl
o 10 _— ur R
| s
5 [
| 1k

0 [ L L L L I L L L L I L L L L I L L L 1 0 [ 1 I L L 1 1 I L L 1 1 I L L 1 1

1000 2000 3000 4000 1000 2000 3000 4000
TIME STEP TIME STEP

FIG. 12. The total energyE;(t) versus normalized time in
400/w, periods; the system size is 16-D lengths.

FIG. 14. The total electrostatic ener@i,(t)] versus normal-
ized time in 400k, periods; the system size is 256-D lengths.
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FIG. 16. The total electron internal energyversus normalized

FIG. 15. The total ener t) versus normalized time in . o
9E(1) time; the system size is 256-D lengths.

400w, periods; the system size is 256-D lengths.

of magnitude larger than the corresponding ones in th%ould resemble a set of cold *

: . beams.” The results of the
Leapfrog-Trapezoidal scheme case; i.e., the latter scheme : . . - . -
conserves momentum much better preceding section did not indicate any such instability to take

place in the thermal case, as the energy as well as power
B. Linear eigenmode analysis spectra plots indicated.

Therefore, in order to trigger the instability, the initial
distribution was changed to allow the so-called equal density
“beams” with infinitesimal perturbations from the equilib-
rium as in Ref[25]; i.e., the phase points distribution were
herefore changed as follows:

The next test was checking for the dispersion of the Lang
muir waves or Bohm-Gross relatigiq. (7)] discussed ear-
lier.

The fields and densities from the simulations were store
as the simulations of the thermal c¥severe proceeding;
later their corresponding correlation functions as well as
power spectra were determined by the techniques outlined in fo(X,0,t=0)=—
Refs.[20,21). Figures 17 and 18 show two typical power UinV2T
spectra of the electric field corresponding to the modes one (29
and seventeen, respectivelyi.e, k,=27/L, and Kk,
=[(2)(17)=]/L,}. HereL, represents the system size which 4.0x10%
in this case was 256-D lengths. Clear sharp peaks about th
analytically expected valuepEq. (7)] correspond to the
Langmuir waves. Figure 19 gives the simulation versus ana: -
lytic results for twenty five modes. This plot shows very 3.2x10
good agreement between theory and the simulationsk for
<20 (for k>20 the simulation results appear slightly non-
linean and therefore demonstrates that the overall construc2.4x10®
tion of the code(phase point interpolations, push schemes, g
Poisson solveris working correctly and in good harmony.  »
This figure does not show that much numerical dispersion; iny gy10
a very dispersive code generally the simulation dispersion
relation lies below the analytic one and for lardgethe dif-
ference tends to get largEz2)].

v2e V24 14 26 cog 2mx) ],

8.0x10

C. Impact of the initial conditions on the beaming instability

The well-ordered discretized velocity distributions could 0 — /| ) M
give rise to beaming instabilitj23]; i.e., the velocity mesh Frquency

'
[\
[

FIG. 17. The power spectrum for thg(k=1) mode; the sys-
2When the phase point velocities were initialized to a Maxwell- tem size is 256-D lengths. The zero frequency mode could indicate
ian distribution. nonlinear behavior.
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FIG. 18. The power spectrum for ttig (k= 17) mode; the sys- FIG. 20. The electrostatic energy in the first mode versus nor-
tem size is 256-D lengths. Different heights could arise from theMalized time later in the simulation; i.eEx(k,=1t) versus time
numerical noise. step.

where, v,,=0.3/r, €=0.0025, and the system size was oscillations(i.e., oscillations with no physical origin and of
256-D lengths. The linear growth rates according[24]  purely numerical natupgi.e., peaks resulting from the pre-
show only the first mode to be unstable. So here plots ofumed numerical instability. Indeg@5] while comparing
E2(k,,t) and the velocity of the central “beanfi.e., where  the results of these simulations from PIC versus Vlasov mod-
the phase points initially have velocity, e (0,Av)] should €IS did show that the PIC simulations possess such oscilla-
reveal if such instability can take place. tions.

Indeed, Denavif25] shows that at the onset of the insta-  There are reasons why the Viasov solvers can prevent
bility the electric field locally would grow gently first, then Numerical beaming instability when quiet starts are imple-
drop suddenly only to reach later a maximum 23 times itsnented. Denavil25] claims that the constancy of the phase
initial value. He also showed that the central “beam” veloc- density prevents the phase points from moving into regions
ity followed a similar pattern. Here, the results of the simu-Where the “distribution function is zero initially” and that
lations are shown in Figs. 20—22. Neither one of these figWould in turn prevent spurious charge densities and numeri-
ures shows these patterns. The electrostatic mode ener§9l instabilities to arise. Another important factor could arise
(Fig. 20 simply indicates normal growth in the amplitudes
of the Langmuir waves some 15-plasma periods into the
simulations followed by saturation. The central “beam” ve-
locity plot in Fig. 22 shows a similar pattern as the energy
plot, and they both rule out the beaming instability of the 3.2x10
nature predicted by Ref23]. Another interesting point is
that the energy plotFig. 20 does not show any spurious

2.1&0‘“'\ h
5 e
0
4
4 g
1.8%10% |1
3 I
3 [
2 R 8.1x10% |-
LLL‘*J_;_*_A_*—u;*’/ [ U
1 *k k k k k & % Kk Xk s 1
0 I T B BT BT
10 20 0 50 100 150 200 250
k Time Step
FIG. 19. The simulatiorfasterisk$ versus analyti¢solid curve FIG. 21. The electrostatic energy in the first mode versus nor-
Bohm-Gross dispersion relation for the first twenty five harmonics.malized time early in the simulation; i.eE)z((kX=1,t) versus time
Nonlinear effects could be the cause of discrepancie&fe20. step.
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0.01 with relative ease by the moments of the distribution func-
tion.
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CENTRAL BEAM VELOCITY
o

APPENDIX A: NUMERICAL STABILITY ANALYSIS

In this appendix we shall derive the Courant condition
and physical as well as computational modes of Leapfrog as
well as Leapfrog-Trapezoidal schemes for our Vlasov-
Maxwell system. Here we followed the methods in R&8].

[ T T T
750 1000

TR W W SR [N TR WO WO T [N N T 1
-0.01 500
TIME STEP

FIG. 22. The central beam velocity versus normalized time. 1. Leapfrog scheme

from the fact that the density here results from moments of The basic equations of the Vlasov-Maxwell system are
the distribution functiofEqg. (12)] and not just interpolations

in configuration space as in the PIC codes. The contributions do =— EEX, (A1)

of the phase points are therefore weighted by the factor dt m

e*”z’”tzh which substantially reduces the impact of the phase dx

points withv>uvy, on charge density. — =0, (A2)
The results here as well as Sec. IlIB above also do not dt

indicate any significant diffusion. As Fig. 21 shows, the

mode energy versus time early in these simulations do not ﬁzmre(n “ny) (A3)

show a systematic decrease and flattening; i.e., signatures of dx 0 ek

diffusion in the scheme and in particular in the distribution
function. Denavif25] shows examples of diffusive schemes The difference versions of the EqéAl) and (A2) when
(i.e., when the distribution function is remapped in everyLeapfrog scheme is usddteps 3 and 4 of Tablg bre

time step, where the electrostatic mode energy flattens very

: ! o -1
quickly after a few Langmuir oscillations. vy Uy B EEn*l/Z (Ad)
At mx
V. CONCLUSION N+ 12_ yn—1/2
=vy (A5)
It was shown that, by extending interpolation in configu- At Ux-

ration space to one in phase space, one can enhance PIC

simulation results to include the knowledge of distributionLet (x"*2u%) denote the numerical andX{*¥2V}) the
function. Retaining characteristics at the phase points miniexact solution of the phase space coordinates at time 1Bvel
mized diffusion, while reconstructing the distribution func- gnd (52+1/2152+1/2) the corresponding errors between them,
tion at a fixed phase space mesh eliminated spurious beame,,

ing instability which could arise from the quiet starts.

Excellent energy conservation resulted without employing el=v— V7, (A6)
particle shape functions.
The applications of this model are countless. Here we cite N2 yn+12_ yn+1/2 (A7)
o .

a few: initialization of each species to any distribution within
any given scale; imposition of quiet starts with relative €asqJsing Eqs.(A6) and (A7) in Egs.(A4) and (A5) will result
as a result of the preceding item; the temporal knowledge of, the following pair, respectively:

the distribution function with applications to transport and

when chaotic and or ambient particle fluxes impact plasmas eN— N1 e gEN12

in equilibrium; and the impact of particle and or heat fluxes S ——— = w7, (A8)
from boundaries into bounded plasmas. The PIC simulation At m X

results can, therefore, be considerably enriched and one can n412  n—1/2

also reduce the fluid from the kinetic results as well as pro- Ex  T& & (A9)
vide accurate descriptions of the macroscopic parameters At v
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Combining these equations gives rise to the following equaThis then simply rules out EqA20) or w,.At;=1 and the

tion:

+ - -

EQ 1/2 262 1/2 62 3/2 1

= T WnhHE .
pe©x

a0 (A10)

Courant stability criterion for the Leapfrog scheme case is
therefore
wpelty<1. (A22)

However, even here we have two solutions and\ , . It

This equation simply corresponds to the phase points undegan pe seen though that, corresponds to the physical so-
going oscillations atvpe. In order to carry out the stability |ytion and\ _ is nowhere close to the behavior of the ana-

iwAt

analysis, the amplification factor=e™ is assumed in

advancinge,; i.e.,

E;H— 1/2: )\62_1/2 (All)
with the constraint
n+1/2
6)(
=<1 (A12)
EX
Using Eq.(A1l) in (A10) gives
e—iwAt_2+eiwAt__ 5 AL3
(At)2 = T Wpe- ( )
This equation is identical to
e*imAt/Z_ ei wAt/2
=*iwpe, (A14)

At

which simply gives rise to a first order difference equation in

e, as follows:

n+1/2_ n-1/2
€x €x

X (A15)

==+j n.
Fiwpeey;

lytic solution. Such an unphysical solution is termed “com-
putational” or “parasitic.” The cause of the “parasitic”
mode is due to the usage of a two time level scheme for a
first order differential equation,15]. (This reference also
refers to others emphasizing this pojnt.

The computational mode causes eventual deviation of the
numerical solution from the analytic one. The main remedy
to counter this effect is to devise schemes which damp these
modes. In this example we can clearly see that

INe[=IN]=1, (A23)
i.e., in the Leapfrog scheme, computational modes have the
same unitary amplification factors as the physical modes.
The general solution though is determined from a linear
combination ofA , and A_, and the unphysical part will
contribute to errors in each time step which will accumulate
in time.

We shall next show how computational modes can cause
deviations from correct ones even when they are initialized
at a small value and assumed not to grow relatively to the
physical modes with time. Consider=e "' and Egs.
(A17) and(A18); i.e., we obtain p=wr+iw),

in principle this equation should therefore posses only one

physically admissible solution.
To determine the numerical solutions fram usingAt,

=At/2 in Eq.(Al4) results in the following quadratic equa-

tion:
A+ 2wyt —1=0, (A16)
whose solutions are
A= (1-wiAL), (A17)
Ni=— wpelty, (A18)
for wpeAt;<1, and
A, =0, (A19)
Ni=— wpelty + R A1, (A20)

for w,eAt;=1. In each case then we have two solutians
and A, . Courant condition demands both, and A\ _ to
obey

IN.|<1. (A21)

wgpAt;=*tan ! _opell (A24)
RAL=E ’—1—w,236At% ,
(,U|Atl:O, (A25)

with the plus and minus corresponding to the physical and
computational solutions, respectively. Equati&25) simply
indicates that neither mode grows as expected since other-
wise numerical instabilities will result; they are not damped
either. So if wgAt; represents the physical solution,

— wrAt, will correspond to the computational one and the
general solution can be written as follows:

AN=pPiAL+PoA_= plefi‘”RAtl_i_ pzeinAtl

— pl( e_inAtl-l- %einAtl> , (A26)

1
assumingp,<<p; with p;+p,=1. Now using Eq(All), it
follows by induction that ifp; and p, do not change with
time, we have

n
- i P2 o -
E;H 12_ )\nex 12_ pge |anAt1( 1+ _eZ|wRAt1 € 12
1

~ pgefinnAtl (A27)

np; .. _
1+_ezume1) e 12
P1
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In that case since the correct solution is e 10(At2) _ o | giw(At/2)
n
€
& 2_ e 1oty ¢ w2 (A28) (At2/4) X
2
the percentage error can be determined to be roughly - %«‘[efiw(mm”2+eiw(mlz)]62 (A35)
4
6n+ 1/2 np,
——5=hi 1+ p_) (A29)  from which the following dispersion relation is obtained:
€xc ! o i(wAtd) _ giodtia)
- pe[efi(wAt/4)+ei(wAt/4)]
For example ifp;=0.9999 andp,=0.0001, then from this At/2 - '
equation one can see that one will have 5.3% error in 10 000 (A36)

time steps. This error will certainly rise [, rises relative to

p, in time: i.e., the computational mode grows relative to theNoW if we multiply both sides of this equation by

physical mode. These results then demonstrate how the corft “*""e; we obtain the following difference equation in
putational mode can cause substantial deviations of the soli§x-

tions after some time even under the most ideal circum- n+12 .n .

stances. Therefore, any scheme which damps would € & _  '@pe eMtl2y ony (A37)
improve the outcome by lessening those errors. At/2 T2 0 *

Another remedy is the usage of the backward biasing in

the Leapfrog scheme. Using the same methods as in thi20 here also the main trapezoidal steps reduce to an ordinary
section and the following, one can show that the corresponddifférence equation too. So the combined Leapfrog scheme
ing Courant condition in this case is more restrictive Ed- (A15)] and its associated Trapezoidal s{ém. (A37)]

(wpeAt;=<0.8) than both this case as well as Leapfrog-Will give rise to the following pair:

Trapezoidal scheme to be discussed next. N+12_ n—12
. Hlope, (A38)
2. Leapfrog-Trapezoidal scheme
From steps 8 and 9 in Table I, the following pair of equa- entiz_en iWpe 11
tions are obtained after following the procedures of the last A2 T o (ex "+ ey), (A39)

section(note that asterisks used for clarity are dropped here
with the understanding that thé "2 obtained from the first

2
63_62—1/2: _ w_'wﬂ(62+62—1/2), (A30) equat@on is to be used on the right-hand side of the second
2 2 equation.
A Here again using the same procedures as in the Leapfrog
1 t scheme we arrive at the following equation for the amplifi-
K GQZE(ESHIZJF B (A3D) ation factork: v P
From Eq.(A31) we obtain L TiepAly o Twpll
A—1 o wpAL] > (A40)
GSZE(EQHQ— e —ey (A32)  Direct numerical solution of this equation with the constraint
IN|<1 also gives the following Courant condition:
Using EQ.(A32) in Eq. (A30) results in
9 Eq.(A32) in Eq. (A30) wpelt =<2 (A41)
i(6n+ V2_pgny =12 (N+12_ 0y Table Il clearly illustrates this among other things. Here as in
At X X X v v H
the Leapfrog scheme cada,, | corresponds to the physical
2 A while |\ _| to the computational modes.
__ %pe _t(6n+€n—1/2)_ (A33) As we see from the table, up t0,.At;<1.4 we get ad-
2 2 missible solutions; fowm,eAt;=1.5,|A_|>1 and|w, At| is

incorrect. For almost all the modes algo |<|\ ,|; i.e., the
Now using Eq.(A30) in Eq. (A33) results in one equation computational mode is damped and this is more the case for
involving e, only, i.e., the smaller time steps where damping is substantial. This is
to be contrasted with the Leapfrog scheme case where these

At amplification factors were equal for all allowed modes
n+1/2_262+62—1/2):_w2 —(EQ+1/2+262+6271/2). p q :

E(Ex pe 4 Therefore, Leapfrog-Trapezoidal scheme allows longer time
(A34) steps and considerably smaller computational modes com-
pared to the Leapfrog scheme. These should justify the added

Using ef = 2= = (T10AU2)¢l in Eq. (A34) results in computational effort.
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TABLE Il. The physical versus computational modes eigenvalues for different time steps.

prtl |)\+| (1)+At1 |)\,| (,(),Atl PEa
0.1 1.0000 —0.0999 0.0500 —1.4710 1.00
0.2 0.9996 —0.1995 0.1000 —1.3720 0.25
0.3 0.9983 —0.2985 0.1503 —1.2722 0.50
0.4 0.9953 —0.3974 0.2009 —1.1733 0.65
0.5 0.9901 —0.4969 0.2525 —1.0740 0.62
0.6 0.9821 —0.5975 0.3055 —0.9730 0.42
0.7 0.9708 —0.7003 0.3605 —0.8710 0.04
0.8 0.9559 —0.8059 0.4184 —0.7650 0.73
0.9 0.9368 —0.9154 0.4804 —0.6552 1.71
1.0 0.9124 —1.0299 0.5480 —0.5410 2.29
11 0.8814 —1.1504 0.6240 —0.4204 4.58
1.2 0.8415 —1.2782 0.7130 —0.2926 6.52
13 0.7889 —1.4133 0.8239 —0.1575 8.72
14 0.7187 —1.5520 0.9739 —0.0191 10.85
15 0.7726 —0.7648 1.8202 +0.1184 48.87

®P.E.: Percentage error betweenAt; and|w  At,| (the physical mode

APPENDIX B: DISTORTION OF THE DISTRIBUTION
FUNCTION f1=vz Nifp, (B1)
p

This phenomenon is attributed to the process of diver-
gence of characteristics due to the scatter gather operations f :z N.f (B2)
in the force equatioriinvolving f's indirectly) with the net 2 Vp 2'pe

long term impact of numerical diffusion déf; in phase space. ) , i
This process gives rise to the phase density nonconservatidpl the accompanying gather operati@ng., in force calcula-
on), an arbitrary phase point in that cell should receive the

and thus results in the numerical heating of the phase points. ; . . L
The PIC models also experience numerical hedti®j (see ollowing contributions from those two grid points:

the sectic_m on heating tin)1e]n this a.ppendi.x we obtai_n a f; =N, fq+Nyf,. (B3)
gross estimate of the numerical heating attributed to this pro-
cess in phase space and suggest ways to improve. In practice then the associated gathered force at that phase

The process is attributed to the combined gather-scattgroint will depend on this quantity and nét. To obtain a
operations in interpolating, to its host cell for the charge gross estimate df’; , we observdplease see belogvthat this
calculation in the force equation. Therefore, althodghas-  error is most severe whel; =N,=1/2; i.e., when a phase
sociated with the phase points does not change with time, itgoint is exactly half way inside a cell. At that location,
mere interpolation to a fixed meghcatter operation ant,

calculation and gathering the electric field in the force cal- f* :fl+f2 +f —f =f + m

culation (which depends orfg through the charge density P 2 PP 2

ne) will have the impact of smearing, at that phase point 1/ Ax\ 252f

for that calculation. To see this, note that the actual force at =f,+ 5 7) a_ZPJFO(AXZ)_ (B4)
X

the phase point should be proportionalftg\t in principle,

; L . *
but.m practice it becomes proportional t@At whe'refp 'S It can be shown that for other phase point locations, the 1/2
deflned to resul'_[ from the scaftter gathe_r operatlons‘_rp.n in front of the second quantity on the right-hand side should
This causes trajectory errors in each time step which cagg replaced by X,/AX), wherex, is the distance of the
result in the divergence of characteristics with a net Iongphase point to its nearest grid p%int. This reg@. (B4)]
term diffusive impact orf,. . can be generalized tod2in phase space if one considers a
Therefore, in order to determine its impact, one shouldphase point at the center of the square cell in Fig. 1 (mrt

estimate the net smearing impact of the scatter gather opergny compute the net impact of the scatter-gather operations
tions on the force for each phase point by obtaining an exzg apove: ie.. in @:

pression forf* . In order to see this please refer to Fig. 1 part
(c). The phase points within such a cell assign their associ-

2 2 2 2
atedf's to this cell’'s grid pointd,— 1 andl, by the weights £X—f (ﬂ) E fp (A_U) } ITp +O(AX?AL?).
N; andN,, respectively; those grid points receive the fol- P P | 2] 2 %2 2] 2 g2
lowing contributions respectivelgscatter operation (B5)
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FIG. 24. (a) The f, at one spatial grid for the system 256-D
FIG. 23. Spatially averagetl; for the system 256-D lengths |engths across withv = 0.4 at normalized time 10Qu,.. (b) The
across withAv=0.4 at normalized times 100 and 2004, re-  f; at one spatial grid for the system 16-D lengths across with
spectively. =0.16 at normalized time 10Quh.

Sakanakeet al. [4] also reported errors of the same order From Eq.(B5) one can prove by induction that i, re-

which they termed numerical “diffusion.” mains unchanged with tim@ixed characteristigs then after
From these results, we conclude the following maximumn time steps one has

limits of the error of gatherind, per time step; i.e.,

. Ax\21 *f, [Av\?1 #*f,
fo(nAt)=f,+(n—1) = =

R + -
(T Ax 2} 9*f, (86) 2] 2 gx2 2] 2 g2
X/max 2 ’ 2 &Xz ’
+O(AX?Av?) |. (B8)
Av\ 21 9°f . . .
| ==} z-ZP One of the first observations here is that for the cdses
(I'y ) max : (B7) ) >
2] 2 52 =f,(t) (i.e., when characteristics are not retaijeshore
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terms will appear on the right-hand side of EBS8) which  point with v=1.84 in the figure. However, as one examines
can contribute to greater errors. fq at a given spatial grid for this case, one observes that it
Equations(B6) and (B7) then give valuable insights on has ceased its Maxwellian profile at that grid pojfig.
characteristic divergence due to this type of numerical diffu24(q)]; i.e., the trajectory errors have destroyed the system’s
sion and can be used to determine when trajectory errofgitial quiet start profile, while the overall system is still
exceed aI_Io_wabIe limits at which point a simulati(_)n_ will \axwellian. Figure 24b) though which corresponds thy
cease validity. For example from Eq®36) and (B7), itis  —q 1), still maintains its Maxwellian quiet start profile at
evident thatl", should be Iarggr thailr, initially for quiet 00 1= 100 1hvpe. Examining the data more closely indi-
start runs. However, &, gets distorted to scales larger than 4teq that in the former, the initial quiet start was maintained
Ax due to velocity diffusion, it can result in nonzelg in ;15 250 time steps, while in the latter it was maintained up
such a way thal’, may eventually become dominant. Sec-y, 1400 time steps which is 5.6 times longsame time steps

ond,'l“v IS d";ferg;‘;fa}ad'f;?re”“’ f'rom thehqur:st(atl;( andllt 'S were used in both casedhis indicates close agreement with
maximum where3“fp/dv= is maximum(which takes place Eq. (B7) for it shows that aav—2.5Av, I'y)—6.29",, and

atv= ‘/3_/21“")'. . . . the duration of quiet start in principle should be reduced by
Therefore, in each force calculation trajectdmelocity) roughly 1T, which is 6.25

. o
errors can be_determlned fronfi( fP)At' For the two sets These results indicate that the length of a simulation to be
of the simulations performed for this paper we then have . LT .

a function of bothl", andI', while its time step is governed

5= 1o _ () max 3 by the Courant condition discussed in Appendix A. There-
—_— At= At| v="\/zv|=0.36% f ) h P ¢ | ¥
fp max fp 2 ore, to improve the performance of a Vlasov code we make
(B9) the following suggestions:

when Av=0.4, and equal to 0.06% wheAv=0.16, as (1) Make the mesh nonuniform along,, choosing finest
the maximum percentage of trajectafyelocity) errors per ~esolution wherel’, is highest. This is possible when one
time step for each case. The actual observed trajectory errof@plements a finite element scheme as here.

were far smaller though since these calculations corre- (2) Estimate analytically how long quiet starts will last by
sponded to the points of maximulf, in phase space. For making spatial average &f, at an arbitrary cell.

example Fig. 23 displays two snapshots of the spatially av- (3) Determine how long the overall system remains Max-
eragedf, at 100, 200 lb,., respectively, for the system wellian by repeating the preceding step but usihg Note
256-D lengths across withv=0.4. These results indicate thatI’y increases the scale of the quiet start.

accumulative errors of roughly 10% in 1000 time steps at the (4) One can attempt adding antidiffusion terms to offset
point v/vy,= \/3/2 which corresponds to the ordinate grid the impact ofl", andT,.
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