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Nonequilibrium relaxation analysis of Kosterlitz-Thouless phase transition
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A simple and efficient numerical analysis is proposed for the Kosterlitz-Thouless~KT! phase transition. The
nonequilibrium relaxation method is applied to it. The two-dimensional ferromagneticXY models are inves-
tigated to show the efficiency. At the KT transition point as well as inside the KT phase, the nonequilibrium
relaxation of magnetization from the all-aligned state shows an asymptotic power-law decay,m(t);t2l(T).
Only outside the KT phase, an asymptotic single exponential decay is observed. Using a standard scaling form

m(t)5t2lm̄(t/t) in this regime, wheret is the relaxation time at each temperature, we find a simple and
efficient numerical estimation of the KT transition point and dynamical exponent. This method can be applied
to various kinds of models which show the KT-like behavior.
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I. INTRODUCTION

The equilibrium Monte Carlo simulation~EMCS! is
widely used in statistical physics. It has revealed much he
ful information on phase transitions and critical phenome
In most cases, analyses are made with the finite size sca
hypothesis and resulting scaling plots providing the tran
tion temperature as well as critical exponents. However,
EMCS is sometimes confronted with difficulties in the ana
sis of so-called slowly relaxing systems. In low-temperat
regime of frustrated systems or in critical regime of so
low-dimensional systems, the relaxation becomes trem
dously slow, and the simulation takes much time for equ
bration @31#. This restricts the available system sizes as
small and prevents accurate estimations for the critical p
and critical exponents. The development and improvemen
simulation technique in past decades are mainly devote
overcome this difficulty.

The Kosterlitz-Thouless~KT! transition @1,2# is one ex-
ample to show such difficulty. In two dimensions, there e
ists no long range order in continuous spin systems@3#, while
the KT phase appears in theXY model. In this phase, there i
no spontaneous magnetization but the correlation length
ways diverges. Since the correlation length increases e
nentially asT approachesTKT from the disordered phase,
is difficult to analyze large systems easily by the EMC
@4–8#.

In the KT transition, another difficulty arises in the anal
sis of EMCS. Let us consider finite size scaling analyses w
the domain-wall free energy@9#, the Roomany-Wyld’sb
function@10# or the Binder’s cumulant@11#, which have been
standard methods for second-order transitions. These f
tions change the size dependence and become scale inv
at the critical point. Therefore, data curves for several si
plotted with respect to temperature show crossing at the t
sition point, and one can estimate it. On the other hand, th
quantities show scale invariance in the whole KT phase
well as at the KT transition point, since the correlation leng
always diverges there. Then, the data curves merge below
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transition point, and it becomes difficult to estimate it.
Recently, efficient Monte Carlo technique is proposed

study critical phenomena using nonequilibrium relaxati
process@12–24#. It is called the nonequilibrium relaxation
~NER! method. One may observe the relaxation of the or
parameter~e.g., the magnetization in the ferromagnet! in the
thermalization process from the complete ordered state
provides the critical temperature and critical exponent ac
rately @18,21#. This analysis has been used successfully
study various problems including frustrated and/or rand
systems@15–18,22–24#. The NER analysis is advantageou
over the EMCS in two features: First, for a fixed timet,
system-size dependence of the NER function is expon
tially small even at the critical point. This feature is unde
stood from the fact that the correlation lengthj(t) keeps
finite at finite time. So the value in the thermodynamic lim
is easily estimated. Second, equilibration step is not ne
sary. Simulation is made only up to the steps when the fi
trace of equilibrium state is caught with required accura
These advantages become more effective for slowly relax
systems.

In the present paper, we investigate the NER analysis

FIG. 1. The relaxation of magnetizationm(t) for T50.92, 0.93,
0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.00, 1.01, 1.02, 1.05 in dou
log plot.
©2003 The American Physical Society02-1
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the KT transition. A similar analysis has already been
tempted@19,20# in a different manner. Our method is simp
and easy to apply to various systems. Here, we propo
scaling analysis to estimate accurate transition point and
ponent with a simple and systematic procedure for very la
systems. In the following section, the method is explain
and is applied to theXY ~plane rotator! model in two dimen-
sions@1,2,4–8# to check the efficiency. It is also applied t
the six-state clock model@8,25–28# in Sec. III, in which the
ferromagnetic~FM!-KT transition appears, as well as th
paramagnetic~PM!-KT one. Section IV is devoted to
remarks.

II. NER ANALYSIS OF KT TRANSITION

The Hamiltonian of both models is written as

H52J(̂
i j &

cos~u i2u j !, ~1!

where the variableu i takes any values in@0,2p) for the
former case and$(np/3) n50,1, . . . ,5% for the latter case.
We observe the relaxation of magnetization from the
aligned state as in the analysis of the FM case. For e

FIG. 2. Scaling plot of magnetization curves for all the tempe
tures in 1.05>T>0.92 to Eq.~2! with appropriately chosent(«)
~see Fig. 3! andl.

FIG. 3. Relaxation timest(«) in a unit of t at T51.05. The
curve fitted to Eq.~3! with TKT50.894 is shown.
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model, calculations are carried out mainly on the 10
31000 square lattice with the screw boundary condition
to the observation time 1.53105 MCS. About 192–640 in-
dependent runs are performed for averaging. The size de
dence is checked to be negligible when we compare the
with those for 150131500 for some temperatures.

A. NER function of XY model

First, we show the analysis of theXY model. The transi-
tion of the PM and KT phases occurs atT5TKT . For effi-
ciency of calculation, we discretize the spin state and use
1024-states clock model. This discretization is checked to
negligible when we compare the data with the 2048-st
model. The result for 1.05>T>0.92 is plotted in Fig. 1;
hereafter, we measure the temperatureT in the unit ofJ/kB .
Similar to the scaling analysis in the EMCS, we cannot d
tinguish the transition point and the KT regime from th
relaxation behavior directly, since it is always power-law i
side the KT phase. It is much different from the NER ana
ses for standard second-order-transition systems. Due to
critical relaxation in the KT phase, it is not apparent wheth
the observed power-law behavior stays in a longer ti
scale. In fact, in 0.94>T>0.92 in Fig. 1, which is higher
than the expectedTKT , the relaxation behavior keeps an a
most power law within the observed timet51.53105.

B. Scaling form

In Fig. 1, one can see a coherent behavior of the re
ation functionm(t) in the regime ofT.TKT . After some

-

TABLE I. Transition temperatureTKT and exponentsh and l
for the XY model.

Ref. TKT h l

@4# 0.89
@5# 0.89~2! 0.24~3!

@6# 0.898~2! 0.34
@19# 0.894 0.238~4!

@7# 0.893~8! 0.251
@8# 0.8933~6! 0.243~5!

Result 0.894~4! 0.068~6!

FIG. 4. The relaxation of magnetizationm(t) for T50.60, 0.61,
0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, and for 0.93, 0.94, 0
0.96, 0.97, 0.98, 0.99, 1.00, 1.01 in double-log plot.
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initial relaxation time which is about 100 MCS, it decays lik
in a power law up to a finite timet, then a crossover occur
and it changes to decay exponentially. The time scalet is
called the relaxation time depending on the temperat
Therefore, it is natural to expect the scaling form@18# for the
PM regime;

m~ t,«!5t~«!2lm̄„t/t~«!… S «[
uT2TKTu

TKT
D , ~2!

wherel is the dynamic exponent. We use this scaling fo
to estimateTKT precisely from the NER function. This
method is similar to that used in low-dimensional quant
systems@29,30#, in which the correlation function and resul
ing correlation length are used instead of the relaxation fu
tion and the relaxation time. First, we estimatet(«) at each
temperature using the scaling form~2!. We plot tlm as a
function of t/t in the double-log scale with independent sc
ing parametersl andt. In this fitting, it is somehow easy to
decide the best fitting parameters, since changing the pa
etert causes just the parallel translation of curve. Precis
speaking, sincel is a constant independent of temperatu
we first fix l, and estimatet at each temperature. It is re
peated for several values ofl. The best value ofl is deter-

FIG. 5. Scaling plot of magnetization curves for all the tempe
tures in 1.01>T>0.93 to Eq.~2! with appropriately chosent(«)
~see Fig. 6! andl.

FIG. 6. Relaxation timest(«) in a unit of t at T51.01. The
curve fitted to Eq.~3! with TKT50.899 is shown.
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e.

c-

-

m-
ly
,

mined by minimizing the total amount of fitting residual. Th
result withl50.068(6) is shown in Fig. 2. The estimatedt
are plotted in Fig. 3.

C. Estimation of TKT

Next, we estimateTKT from the estimatedt(«). As T
approachesTKT , the correlation length diverges expone
tially as j;exp(a8/A«) @1,2#. We expect that the relaxatio
time diverges in the same way;

t~«!5b exp~a/A«!, ~3!

instead of power-law divergence in standard second-o
transitions. It is reasonable if one assumes the relatiot
;jz with a definite value ofz. Using thex2 fitting with
parametersa, b, andTKT , we obtain the best fitting as show
in Fig. 3 with TKT50.894(4). Theresult is summarized in
Table I together with those obtained so far. The transit
temperature is estimated with high accuracy and is consis
to those obtained by the EMCS. Assuming the dynamic s
ing hypothesis, the exponentl is related to other standar
exponents as

l5h/2z. ~4!

-
FIG. 7. Scaling plot of magnetization curves for all the tempe

tures in 0.68>T>0.60 to Eq.~2! with appropriately chosent(«)
~see Fig. 8! andl.

FIG. 8. Relaxation timest(«) in a unit of t at T50.60. The
curve fitted to Eq.~3! with TKT50.704 is shown.
2-3
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TABLE II. Transition temperatures and exponents for the six-state clock model.

Ref. TKT2 h l TKT1 h l

@26# 0.6 0.10 1.3
@27# 0.68~2! 0.100~2! 0.92~1! 0.275~25!

@28# 0.75 0.15 0.90 0.26
@28# 0.7014~11! 0.113~3! 0.9008~6! 0.243~4!

Result 0.704~5! 0.029~3! 0.899~5! 0.067~6!
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If one assumes the KT’s prediction,h51/4, this reveals the
estimation for the dynamical exponentz51.84(17).

III. SIX-STATE CLOCK MODEL

The same analysis is applied to the six-state clock mo
which is a discrete-state version of theXY model. In the
q-state clock model in two dimensions withq>5, it is
pointed out that there exist successive phase transition
PM-KT-FM phases@25# at T5TKT1 andT5TKT2,TKT1 . To
analyze both transitions, we calculate the relaxation of m
netization in 1.01>T>0.60. The results are plotted in Fig.
For the higher transition pointT5TKT1 , the scaling plot of
the data in 1.01>T>0.93 fitted to Eq. ~2! with l
50.067(6) is shown in Fig. 5. The estimated relaxati
times are plotted in Fig. 6. Thex2 fitting to Eq. ~3! is also
shown withTKT150.899(5).

It is noted that the scaling relation@Eq. ~2!# can be applied
to the FM-KT transition point as well as to the PM-KT on
Thus, we analyze the lower transition point atT5TKT2 . The
scaling plot of the data in 0.68>T>0.60 fitted to Eq.~2!
with l50.029(3) is shown in Fig. 7. The estimated rela
ation times are plotted in Fig. 8. Thex2 fitting to Eq. ~3! is
also shown withTKT250.704(5). The results are summa
rized in Table II. The transition temperatures are also e
mated with high accuracy and are consistent with those
. B

nt
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tained by the EMCS. If one assumes the expected valueh
51/4 atT5TKT1 andh51/9 atT5TKT2 @25# with Eq. ~4!, it
is provided that the estimations for the dynamical expon
arez51.87(18) and 1.92~22!, respectively.

IV. REMARKS

We propose a nonequilibrium relaxation analysis of t
KT transition. The scaling relations@Eqs. ~2! and ~3!# are
used. It provides a systematic procedure for accurate est
tions of the transition temperature and exponent. One
analyze very large sizes even in slowly relaxing syste
since the equilibration is not necessary. We apply the met
to the FM XY model and six-state clock model and obta
the transition temperatures and dynamical exponents
Tables I and II, which are consistent with those obtained
far. It is remarkable that the simulated size 100131000 is
much larger than those calculated in equilibrium simulatio
This method is simple and it can be applied to various kin
of models which show the KT-like behavior.
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equilibration one. The equilibration from a fixed nonequili
rium state is achieved when the spin correlation grows up
the scale of the equilibrium correlation length or the syst
size. In the critical regime, since the correlation length b
comes larger than simulated sizes, the equilibration time
comes longer as the system size is larger. Therefore, avail
sizes of system are reduced in slowly relaxing systems.
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