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Nonequilibrium relaxation analysis of Kosterlitz-Thouless phase transition
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A simple and efficient numerical analysis is proposed for the Kosterlitz-Tho(#@89sphase transition. The
nonequilibrium relaxation method is applied to it. The two-dimensional ferromagKatimodels are inves-
tigated to show the efficiency. At the KT transition point as well as inside the KT phase, the nonequilibrium
relaxation of magnetization from the all-aligned state shows an asymptotic power-law de&tgy,t (™.
Only outside the KT phase, an asymptotic single exponential decay is observed. Using a standard scaling form
m(t)=7”‘ﬁ(t/r) in this regime, wherer is the relaxation time at each temperature, we find a simple and
efficient numerical estimation of the KT transition point and dynamical exponent. This method can be applied
to various kinds of models which show the KT-like behavior.
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[. INTRODUCTION transition point, and it becomes difficult to estimate it.
Recently, efficient Monte Carlo technique is proposed to

The equilibrium Monte Carlo simulatiofEMCS) is  study critical phenomena using nonequilibrium relaxation
widely used in statistical physics. It has revealed much helpprocess[12—24. It is called the nonequilibrium relaxation
ful information on phase transitions and critical phenomena(NER) method. One may observe the relaxation of the order
In most cases, analyses are made with the finite size scalirgarametefe.qg., the magnetization in the ferromagrietthe
hypothesis and resulting scaling plots providing the transithermalization process from the complete ordered state. It
tion temperature as well as critical exponents. However, th@rovides the critical temperature and critical exponent accu-
EMCS is sometimes confronted with difficulties in the analy-rately [18,21]. This analysis has been used successfully to
sis of so-called slowly relaxing systems. In low-temperaturestudy various problems including frustrated and/or random
regime of frustrated systems or in critical regime of somesystemg15-18,22-24 The NER analysis is advantageous
low-dimensional systems, the relaxation becomes tremerpver the EMCS in two features: First, for a fixed time
dously slow, and the simulation takes much time for equili-system-size dependence of the NER function is exponen-
bration[31]. This restricts the available system sizes as todially small even at the critical point. This feature is under-
small and prevents accurate estimations for the critical poinstood from the fact that the correlation lenggfit) keeps
and critical exponents. The development and improvement dinite at finite time. So the value in the thermodynamic limit
simulation technique in past decades are mainly devoted tis easily estimated. Second, equilibration step is not neces-
overcome this difficulty. sary. Simulation is made only up to the steps when the first

The Kosterlitz-Thoules$KT) transition[1,2] is one ex- trace of equilibrium state is caught with required accuracy.
ample to show such difficulty. In two dimensions, there ex-These advantages become more effective for slowly relaxing
ists no long range order in continuous spin systEBhswhile  systems.
the KT phase appears in t&/ model. In this phase, there is In the present paper, we investigate the NER analysis of
no spontaneous magnetization but the correlation length al-
ways diverges. Since the correlation length increases expo- T
nentially asT approached 1 from the disordered phase, it Mty
is difficult to analyze large systems easily by the EMCS :
[4-8].

In the KT transition, another difficulty arises in the analy- =
sis of EMCS. Let us consider finite size scaling analyses with
the domain-wall free energjd], the Roomany-Wyld'sp \
function[10] or the Binder’s cumularitl1], which have been }
standard methods for second-order transitions. These func-
tions change the size dependence and become scale invariant
at the critical point. Therefore, data curves for several sizes 0.1 - s - AN v
plotted with respect to temperature show crossing at the tran- 110 10° 10° 10t 10> 10°
sition point, and one can estimate it. On the other hand, these t
quantities show scale invariance in the whole KT phase as FIG. 1. The relaxation of magnetization(t) for T=0.92, 0.93,
well as at the KT transition point, since the correlation lengtho.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.00, 1.01, 1.02, 1.05 in double-
always diverges there. Then, the data curves merge below they plot.
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T T TABLE I. Transition temperatur@ «; and exponents; and \
1t . for the XY model.
Ref. Tkt 7 N
= [4] 0.89
Eoat ] [5] 0.892) 0.243)
= (6] 0.8982) 0.34
[19] 0.894 0.239)
[7] 0.8938) 0.251
. A=0068 | (8] 0.89336) 0.2435)
0.0001 0.01 /1 100 10000 Result 0.8944) 0.0686)
t/T

FIG. 2. Scaling plot of magnetization curves for all the tempera-Model, calculations are carried out mainly on the 1001
tures in 1.05T=0.92 to Eq.(2) with appropriately chosem(s) <1000 square lattice with the screw boundary condition up
(see Fig. 3and\. to the observation time 1:510° MCS. About 192—640 in-

dependent runs are performed for averaging. The size depen-
the KT transition. A similar analysis has already been atd€nce is checked to be negligible when we compare the data

tempted 19,20 in a different manner. Our method is simple With those for 150X 1500 for some temperatures.
and easy to apply to various systems. Here, we propose a A. NER function of XY model
scaling analysis to estimate accurate transition point and ex- '

ponent with a simple and systematic procedure for very large First, we show the analysis of theY model. The transi-
systems. In the following section, the method is explainedion of the PM and KT phases occurs Bt Tyy. For effi-

and is applied to th&Y (plane rotatormodel in two dimen- ~ ¢iency of calculation, we discretize the spin state and use the
sions[1,2,4—§ to check the efficiency. It is also applied to 1024-states clock model. This discretization is checked to be
the six-state clock modéB,25—24 in Sec. IlI, in which the ~Negligible when we compare the data with the 2048-state
ferromagnetic(FM)-KT transition appears, as well as the M0del. The result for 1.05T=0.92 is plotted in Fig. 1;

: ) : : hereafter, we measure the temperafiia the unit ofJ/kg.
E:r:grlggnetm(PM) KT one. Section IV is devoted to Similar to the scaling analysis in the EMCS, we cannot dis-

tinguish the transition point and the KT regime from the
relaxation behavior directly, since it is always power-law in-
Il. NER ANALYSIS OF KT TRANSITION side the KT phase. It is much different from the NER analy-
ses for standard second-order-transition systems. Due to the
critical relaxation in the KT phase, it is not apparent whether
the observed power-law behavior stays in a longer time
H=—-J3, cog 6, — 6;), (1)  scale. In fact, in 0.94T=0.92 in Fig. 1, which is higher
(n than the expectedl;, the relaxation behavior keeps an al-
most power law within the observed tinie 1.5X 10°.

The Hamiltonian of both models is written as

where the variabled;, takes any values if0,27) for the
former case and(nw/3) n=0,1, ..., for the latter case. B. Scaling form
We observe the relaxation of magnetization from the all-

aligned state as in the analysis of the FM case. For each !N Fig. 1, one can see a coherent behavior of the relax-
ation functionm(t) in the regime ofT>Ty;. After some

(T) 1

;' = é)expl(u/\l/g) _ T ‘[ i
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FIG. 4. The relaxation of magnetization(t) for T=0.60, 0.61,
FIG. 3. Relaxation times(e) in a unit of r at T=1.05. The  0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, and for 0.93, 0.94, 0.95,
curve fitted to Eq(3) with Tx+=0.894 is shown. 0.96, 0.97, 0.98, 0.99, 1.00, 1.01 in double-log plot.
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FIG. 5. Scaling plot of magnetization curves for all the tempera-
tures in 1.0T=0.93 to Eq.(2) with appropriately chosen(e)
(see Fig. and\.

FIG. 7. Scaling plot of magnetization curves for all the tempera-
tures in 0.68=T=0.60 to Eq.(2) with appropriately choser(e)
(see Fig. 8andA\.

initial relaxation time which is about 100 MCS, it decays like mined by minimizing the total amount of fitting residual. The
in a power law up to a finite time, then a crossover occurs result with\ =0.068(6) is shown in Fig. 2. The estimated
and it changes to decay exponentially. The time seale  gre plotted in Fig. 3.

called the relaxation time depending on the temperature.
Therefore, it is natural to expect the scaling fdrb] for the

PM regime, Next, we estimateT; from the estimatedr(g). As T
approacheslyr, the correlation length diverges exponen-
tially as é~exp@'/\e) [1,2]. We expect that the relaxation
time diverges in the same way;

r(e)=bexpale), (3

C. Estimation of Tyy

|T—Tkrl

m(t,S)ZT(S)_)\E(t/T(S)) (SET—KT), (2

where\ is the dynamic exponent. We use this scaling form
to estimateTyy precisely from the NER function. ThiS jngieaq of power-law divergence in standard second-order
method is 5|m||§1r to 'that used in onv-dlmen§lonal quantuMyansitions. It is reasonable if one assumes the relation
systemg29,30, in which the correlation function and result- ~ & with a definite value ofz. Using the y? fitting with

ing correlation length are used instead of the relaxation funcbarametera b, andTyr, we oBtain the best fitting as shown
tion and the relaxation time. First, we estimaf@) at each ' rig 3 ith T,;=0.8944). Theresult is summarized in
';emp.eratufri U.S'nr? tge Elcalllng for(lﬁ). \/\:}e_ p(let 4 n; as a | Table | together with those obtained so far. The transition
_unct|on oft/7in the dou e-log scale V‘_"t indepenaent sca “temperature is estimated with high accuracy and is consistent
ing parametera andr. In this fitting, it is somehow €asy 10 5 hoge obtained by the EMCS. Assuming the dynamic scal-
decide the best fitting parameters, since changing the pararn]—g hypothesis, the exponeit is related to other standard
eter  causes just the parallel translation of curve. Precisel)éxponents as
speaking, sinca is a constant independent of temperature,

we first fix A, and estimater at each temperature. It is re-

peated for several values bf The best value ok is deter- A= nl2z. 4
) 7(T) . . :
T T T = 3
T =bexp(a/+/E) o T = bexp(a/Ve)
10}
1031
102}
10 }
L . . . . 4 1L L L L L 4
092 094 09 098 100 1.02 0.60 062 064 066 068
T T
FIG. 6. Relaxation times(g) in a unit of r at T=1.01. The FIG. 8. Relaxation times(e) in a unit of  at T=0.60. The
curve fitted to Eq(3) with Tx+=0.899 is shown. curve fitted to Eq(3) with Tx+=0.704 is shown.
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TABLE Il. Transition temperatures and exponents for the six-state clock model.

Ref. Ters " Y Ter 7 A
[26] 0.6 0.10 1.3

[27] 0.692) 0.1002) 0.921) 0.27525)

[28] 0.75 0.15 0.90 0.26

[28] 0.701411) 0.1133) 0.90086) 0.2434)

Result 0.7045) 0.0293) 0.8995) 0.0676)

If one assumes the KT’s predictiom=1/4, this reveals the tained by the EMCS. If one assumes the expected vajues
estimation for the dynamical exponent 1.84(17). =1/4 atT=Tyr; andp=1/9 atT =Ty, [25] with Eq. (4), it
is provided that the estimations for the dynamical exponent
Il SIX-STATE CLOCK MODEL arez=1.87(18) and 1.922), respectively.

The same analysis is applied to the six-state clock model, IV. REMARKS
which is a discrete-state version of tiY model. In the

g-state clock model in two dimensions with=5, it is We propose a nonequilibrium relaxation analysis of the

ng transition. The scaling relationgEgs. (2) and (3)] are

pointed out that there exist successive phase transitions . . .
PM-KT-FM phase$25] at T=Tyq; andT=Tyrp<Tyr1. TO qsed. It provides e}.systematm procedure for accurate estima-
analyze both transitions, we calculate the relaxation of ma tions of the transition temperature and exponent. One can
netization in 1.0&T=0.60. The results are plotted in Fig. 4. aﬂa'yze very'llarge. SIZes even 1n slowly relaxing systems
For the higher transition poifE=T the scaling plot of since the equilibration is no_t necessary. We apply the method
the data in 1.05T>0.93 fittedKT%[c; Eq. (2 with A to the FM XY model and six-state clock model and obtain

=0.067(6) is shown in Fig. 5. The estimated relaxation'.[lt]ebltr"’l?s't'gnII tenr?lpiratures and dynghmlc;al ex%on'entj n
times are plotted in Fig. 6. The? fitting to Eq. (3) is also ables I and Il, which are consistent with those obtained so
ShOWN With Tw-r—0 8991.5). ' far. It is remarkable that the simulated size 18AD00 is

Itis noted ﬁl]-lat thé scalir;g relatigq. (2)] can be applied much larger than those calculated in equilibrium simulations.
to the FM-KT transition point as well as to the PM-KT one This method is simple and it can be applied to various kinds

Thus, we analyze the lower transition pointTat Tk, . The of models which show the KT-like behavior.
scaling plot of the data in 0.68T=0.60 fitted to Eq.(2)
with A=0.029(3) is shown in Fig. 7. The estimated relax-
ation times are plotted in Fig. 8. The fitting to Eq. (3) is The authors thank Dr. K. Okamoto for helpful discussion.
also shown withTy,=0.7045). Theresults are summa- They also thank the Supercomputer Center, Institute for
rized in Table Il. The transition temperatures are also estiSolid State Physics, and University of Tokyo for the facilities
mated with high accuracy and are consistent with those oband the use of the SGI 2800.
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