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Universality of electromagnetic-field correlations within homogeneous and isotropic sources
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We investigate the structure of second-order correlations in electromagnetic fields produced by statistically
stationary, homogeneous, and isotropic current distributions. We show that the coherence properties of such
fields within a low-loss or nondissipative medium do not depend on the source characteristics, but are solely
determined by the propagation properties, and that the degree of coherence of the field is given by the sinc law.
Our analysis reproduces the known results for blackbody fields, but it applies to a wider class of sources, not
necessarily in thermal equilibrium. We discuss the physics behind the universal behavior of the correlations by
comparing the results with those obtained by an electromagnetic plane-wave model.
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[. INTRODUCTION source is statistically homogeneous. The approach is a full
electromagnetic analog to the method employed in R&f.

It has recently been shown that the correlations in scalain Sec. lll, the formula is applied to sources which are not
wave fields generated by statistically stationary, homogeonly homogeneous, but also isotropic. Finally, in Sec. IV, we
neous, and isotropic sources fluctuating within a medium oProvide a physical explanation of the results, and summarize
vanishingly small absorption, exhibit spatially universal the main conclusions of the work. Details of the mathemati-
structureg1,2]. More precisely, the spectral degree of coher-cal calculations are relegated to Appendixes A-D.
ence of the field is proportional to the imaginary part of the
Green function of the system, indicating that the field corre-1l. ELECTRIC CROSS-SPECTRAL DENSITY TENSOR OF
lations are determined by propagation properties only, and  THE FIELD GENERATED BY A STATISTICALLY
not by the source characteristics. This is true for the fields in HOMOGENEOUS CURRENT DISTRIBUTION
three and two dimension]. In three-dimensional space, . . .
the degree of coherence varies in space as the sinc function, 1€ Second-order spatial correlation properties of a sta-
and a superposition of isotropically distributed and angularlyionary current density distribution and of the electromag-
uncorrelated plane waves has been shown to produce thf€tic field that it generates are described in the space-
functional form for the coherence functi¢8]. Furthermore, !teguency domain in terms of the cross-spectral density
the same coherence function is found for the low-frequencyenSors(Ref.[8], Sec. 6.5
part of statistically homogeneous planar Lambertian sources

[4], and for the field within a larges-correlated primary Wij(r1,r2,0)=(j*(r,w)j(rz,0)), (1)
spherical sourcgs]. ~
Albeit various investigations on the subject matter have Wed(r1,f2,0)=(E*(ry,0)E(r,,)). 2)

been performed using scalar theory, less attention has been

paid to the coherence properties of electromagnetic fields. Amhe vectorsj(r,») and E(r,w) represent members of the
exception to this is blackbody radiation, for which the cross-statistical ensembles of monochromatic current and electric-
spectral density tensors are knof@. In particular, the elec- field realizations at the frequeney. The angle brackets and
tric cross-spectral density tensor of the blackbody field ishe asterisk {) denote ensemble averaging and complex
proportional to the imaginary part of the Green tensor of theconjugation, respectively, and, , refer to two points in
system[6,7], and thus, the normalized trace of the tensor, orspace.

the field’s degree of coherence, obtains the form of a sinc In a homogeneous, isotropic, and linear medium, the
function. In this work, we show that when the losses in themonochromatic realizations obey the inhomogeneous vector
medium are negligible, this universal character of the fieldvave equation, whicliin SI units reads as

correlations is shared by all electromagnetic fields generated

by statistically homogeneous and isotropic current distribu- VXVXE(r,w)— k*(w)E(r,0)=iouw(w)j(r,n). (3
tions, not only by thermal sources in equilibrium.

The paper is organized as follows. In Sec. Il, we derive arHere «(w)=Kkgn(w), with kg being the free-space wave
expression for the electric cross-spectral density tensor of theumber, andn(w) is the complex refractive index of the
field in terms of the corresponding source tensor when thenedium, which is expressed a®(w)= e (»)u(w) in

terms of the relative permittivity, (w) = e(w)/ ey and per-
meability u,(w)=u(w)/unq, given as ratios of the corre-
*FAX: +358 9 451 3155. Email address: tsetala@focus.hut.fi sponding value in the medium to that in vacuum. In order to
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simplify the notation we shall, from now on, drop the fre- We are now in a position to express the cross-spectral

guency dependence of the material parameters. In additiodensity tensor of the field in terms of the corresponding

the real and imaginary parts of the parameters will be indisource tensor. On inserting the inverse transform of (&p.

cated by primed and double-primed symbols, respectively. into Eq. (2), we obtain

Since the source fluctuations are assumed to be statisti-

cally homogeneous, it is advantageous to transfer into the - d3k, d3k,

Fourier space by introducing the spatial Fourier transforms (r1.rz2,0) f (2 3f 3
. , m)*J) (2m)

of the current density and of the field as

(E*(ky,0)E(ky,0))

Xefikl-r1+ik2~r2_ (13)
T — 3D —ik-R
J(k"")_f d°Rj(R,w)e" "7, 4 Furthermore, using Eq8), we get
2
E(k,w)zf d3rE(r,w)e %, 5 (E*(ky,0)E(ky,0))=—5——— 7702 2_ 2
k0|€r| (k1= x%)* (k53— &%)

For later convenience, we have here adopted a notation in X[Keky— (£2)* U1 (7* (kq, @)
which a capitalized spatial vector refers to a source point.
From the wave equation, E@3), we find that the Fourier XT(kz,w)>-[k2k2—(K2)G],

transforms satisfy the equation
fy q (14)

kX [kXE(k, )]+ K*E(k,0)=—iopj(k,w),  (6) which, when substituted together with E¢kl) and(12) into

or equivalently Eq. (13), yields

[kk_(kz_Kz)G]E(k,w):_leT(k,w), (7) WEe(riw)

- dk 1
wherek=|k| andU is the unit tensor. Since E{) is linear, 5 j f
kolerl2 (2m)3 [P = k72

it can straightforwardly be solved f&(k, ) and the result

'S X[kk — (k2)* U]-W,; (R, ) -[kk — k20 ]e' R-D,
~ i -~ 1
E(ko)=— ——2— (kk—x20) T(k,w), (8 49
Koer (K“— ) wherer=r,—r,. Thus, we see that the field generated by a

\/—_ ) . homogeneous source distribution is also homogeneous, as
where 7=\ uo/ € is the impedance of vacuum. Equation gynected. Equatiofil) can be developed further by noting
(8) is central in our analysis, as it expresses the Fourier COMpat

ponents of the field in terms of the corresponding compo-

nents of the source distribution that produces the field. kelk RN =jy glk-(R=n) (16)
For a statistically homogeneous source, the cross-spectral
density tensor is of the form whereV, operates on the vector We use this to rewrite Eq.
~ ~ (15) in the form
W”(Rl,Rz,(l))EW“(R,(l)), (9)

- B 5 -
whereR=R;— R,. We can then directly write in the Fourier ~ Wed T, @)= 1 oﬂrf d°Rj U _(Kz)* Vivi |- Wi (R, )
space

1 d3k eik-(R—r)
~ ~ . . +—=VV f —_—. 1
G (. 0)Tkz o) = | Ry [ PR(1* (Ry)i(Ry.) 2] e
x e'k1-Ri~ikz Ry (10)  In this formula we have assumed, as we shall also do later

on, that the orders of integration and differentiation can be

. 3 R interchanged. The integration oviein Eq. (17) can be car-
=(2m) a(k; —ka)Wjj(—ky, @), @D tied out analytically by applying the residue theorem as is
where shown in Appendix A. Making use of E¢A3), we have
. d3k eik-(R—r)
W,-,-(k.w)=f d*RW;(R,w)e kR, (12) f (2m)? |k2_K2|2 3 -IM[G(R-r,0)], (18

Equation(11) states that the different Fourier components ofwhere Im denotes the imaginary part, @8¢R—r,w) is the
an infinite homogeneous source areorrelated. (scalay Green function of the system given by
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el kIR=T1] Applying Eg. (18), the cross-spectral density tensor in Eqg.
G(R-r,w)= TaR=T] (19 (17) takes on the form
|
2
oMy | < 1 30T - 1
Wedr, @)= Ut ——VV | | &°RWj(Rw) | U+ = ViV |IM[G(R-T,0)]. (20
6;’ (K )* K2

We note that the integral in E¢R0) contains a term that resembles the imaginary part of the Green te@mAppendix B
but strictly is not sincex, here, is a complex quantity. In the limit of small absorption, howexeavjll become(almos) purely
real, and to good approximation, the tensor in the brackets in the integrand (@Itgecomes equal to the imaginary part of
the Green tensor, i.e.,

G+ %V,Vr) | R (R.0) MG (R 1)), D

"
Er

We stress that in the limit of vanishing losses the imaginary

2
part e, approaches zero, and thus the elements of the cross- W@e(r,w)= 770:‘:% U+ %V,V,) . f d°RA(R, w)
spectral density tensor diverge. This divergence, however, € K
disappears for normalized quantities such as the degree of o
coherenceor if the current source is restricted to a large but XIM[G(R—T,0)], (29

flnlte.volume). Since we are also mtereste_d in the exphcnwhich can also be expressed as

functional form of the cross-spectral density tensor, we do

not, at this stage, perform any normalization, but keep these 2

facts in mind. WA(T, w) = okt
’

.1 .1
U+ —ZV,Vr) 1T+ —Zvrvr)
] K K
I1l. ELECTRIC CROSS-SPECTRAL DENSITY TENSOR OF
THE FIELD GENERATED BY A STATISTICALLY X j dsRA(R,w)Im[G(R—I’,a))]. (26)
HOMOGENEOUS AND ISOTROPIC

CURRENT DISTRIBUTION This equation can be simplified further by performing the

We next apply Eq.(21) to sources which are not only angular integrations as outlined in Appendix C. Making use
homogeneous, but also statistically isotropic. The generd?f EQ. (C3) in the low-loss limit, we obtain
form for the cross-spectral density tensor of such a source is

explicitly given by[9,10] f d*RAR,0)IM[G(R—r,w)]=kCa(®)jo(kr)
Wj;(R,0)=A(R,0)U+B(R,0)RR, (22) =47Cp(w)IM[G(r,0)], (27)

where A(R,w) and B(R,w) are scalar functions, an&  Where

=R/R with R=|R|. In fact, the functionsA(R,») and .

B(R,w) are not entirely independent, but are connected by a CA(U‘)):J dRRA(R,w)jo(kR), (28)
continuity equation. Furthermore, E@®2) is symmetric and 0

its form is invariant under rotation of the coordinate system. S
For convenience, we set and consequently E@26) simplifies to

- - - A
Wi(R,0)=A(R,w)U, 23 WA(rw)= 770Mr Cal0)
r

.1 -
U+EVrVr> Am[E(r,w)].

WB(R,0)=B(R,®)RR, (24) 29
As is demonstrated in Appendix B, in the low-loss limit we

and treat the tensonglﬁ-(R,w) andVT/jE}(R,w) separately. have
A. Field correlations generated by the tensoﬁvﬁ(R,w) Vi Im[G(r, )] =0. (30
On substituting Eq(23) into Eq.(21) we obtain Making use of this relation, we end up with the expression
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7/0Mr

Wa(r, )= Cal@)MG(r,w)] (31

I’

for the cross-spectral density tensor of the field, when the B. Field correlations generated by the tenso

source correlations are of the forWA(R w)=A(R, w)U
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of the Green tensor with the proportionality factor depending
on the source characteristics and on the medium.

WE(R, w)

The tensoNVB(R w) defined in Eq.24), when inserted

We see thaWee(r w) is proportional to the imaginary part into Eq.(21), y|elds

- nom
WE(r,w)= ——

er

Making use of the fact the®R- V.V, =
as

770/-Lr

er

VV

WE(r,w)=

{

u+—vv> fd3RB(R,w)ﬁzﬁz-|m[é’(R—r,w)]. (32)

QA IQIQ)T, where the superscrift denotes the transpose, E§2) can be expressed

T

+izvrvr).fdSRB(R,w)IiF“Um[G(R—r,w)] . (33
K

The angular integrations can again be performed analyticallyelation jo(«R)+j,(xR)=3j1(xR)/xR for the spherical

as outlined in Appendix D. In the low-loss limit, EGD10)
implies that

fdSRB(R,w)IiﬁUm[G(R—r,w)]:g[cBl(w)jo(Kr)

— Cga(@)ja(kr)]U+ kCpal @) kT)IT

- 4
=477-CBQ(w)lm[G(r,w)]+?[CBl(w)
—2Cgy(w)JIM[G(r, )]0, (34)
where
Cpi(w)= fodeRzB(R,w)jo(KR), (35)
Cpo(w)= fodeRzB(R,w)jz(KR). (36)

The last expression in E¢34) is obtained with the help of
the explicit form for the imaginary part of the Green tensor,
Eq. (B5). Substituting Eq(34) into Eq.(33), and making use

Bessel functions, and we find that

o A i,
WE(r,0)=

Ca(0)IM[G(r,0)], (39

f

where

o ] R
CB(w):CBl(w)+CBZ(w):f0 dRR?B(R,w)JlE(II; )

(39
Thus, also for the source tené&ﬁ-(R,w), the spatial corre-

lation properties of the field are described by the imaginary
part of the Green tensor.

C. Degree of coherence
When combining Eqs(31) and(38), we find that

7701“4

- 41 -
Wedl,w)= [Ca(w)+Cr(w)]IM[G(r,w)].

r

of Eq. (30) and the symmetry of the Green tensor, i.e., the (40)

fact that@(r,w) =§(r,w)T, the cross-spectral density tensor

of the field reduces to

770/-Lr

WE(r, )= [Ca1(®)+Caa( @) IIM[E(r,0)].

37

I'

Hence the spatial correlation properties of a fluctuating field,
generated by any statistically homogeneous and isotropic
current distribution within an infinite low-loss or nondissipa-

tive medium, are determined by the imaginary part of the
Green tensor of the system. In particular, the normalized
trace of the electric cross-spectral density tensor, commonly

This formula can further be simplified by combining the regarded as the electromagnetic field’s degree of spatial co-

spectral coefficient€Cg;(w) and Cgy(w) in terms of the

herencd 4], acquires the universal form
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<T*(K,w)T(K,w)>=J d3le d3R2\7\7“(R,w)eix~R,
(44)

where, as befordR=R;—R,. Since the source is confined
to a finite volume, its cross-spectral density tensor is of the
form

W;j(R,0)=[A(R,®)U+B(R,0)RRIB(R) B(Ry),
(45)
FIG. 1. lllustration of notations for analyzing the far-field polar- . . . .
ization. The field emitted by a spherical source occupying the voI-V_VhereB(Ri) IS a blockm_g function .def!n_ed such thﬁ(R_i)
umeSis studied at the distaneefrom the originO in the direction ~ — 1if RjeS, and5(R;)=0 otherwise (=1,2). By setting

t origi N , _ 2 L .
specified by the unit vectar. The vectorsl,, u,, andu constitute B'(R,®)=B(R, )/R*, transforming mt(.) the variable®
an orthonormal set of vectors. =R;—R, andR.=(R;+R,)/2, and making use of the fact

thatRe'* R=—iV,e* R Eq.(44) assumes the form
t'Woo(r,w) sinkr 4 0% (k,0)] (16,0)) =Bg(x,0) T~ V.V Bk, 0). (46)
eI w) =~ — == = —IM[G(r,0)], ’ ’
rWed 0, ) In this formula
(41)
A — 3 —ik-R
where tr denotes the trace operation. This equation shows AB(K"”)_f d°RAR, )1 5(R)e™, (47)

that when the conditions assumed for the random source cur-

rents and the medium hold, the degree of coherence of the ~, 3 o kR
electromagnetic field does not depend on the source charac- BB(K'“’)ZJ d°RB'(R,0)I5(R)e (48)
teristics, but only on the propagation properties of the me-

dium. We emphasize that owing to the small but nonzercare the Fourier transforms ofA(R,w)l5(R) and
absorbtion by the medium, the result is valid even for fullyB’ (R, )l 5(R), respectively, and

coherent current distributions.

| s(R) = f dPR.B(R+RI2)B(R,—~R/2), (49
D. Polarization of the far field radiated by finite, statistically
homogeneous, and isotropic spherical source which depends only on the magnitud® for a spherical

We next show that the far field radiated by a finite, statis-Source region. In Eqs47) and(48) we also have made use
tically homogeneous, and isotropic spherical source is fullyf the spherical symmetry of the integrands in order to get, in
unpolarized in all directions. This result will be useful in the @ccordance with Eq(12), a negative sign in the exponent.
following section where we discuss the universal behavior oBY Performing the derivations in E¢46), we find that
the correlations. Consider the field generated by a source

occupying a spherical volume denoted by the synthdee ~ ~ _|% _1 dBy(x,0) | ..
Fig. 1). The far-field realization of the electric field at dis- (7 (k 0) (1,0)) =| As(k,0) K dx
tancer in the direction specified by unit vectaris given by ~, o=,
(Ref.[11], Sec. 2.8; see also Ré1L0]) Lt dBy(k,w)  d"By(x, @) o
_ . K dx dx? '
~ ikmpop € o .. o
E(ru,w)~T(U—uu)-J(K,w), (42 (50)
which, when substituted into E§43) gives
where k= ku. Using Eq.(42), the 3Xx3 coherence tensor , ~,
®,(ru, ), which contains all information about the polar- B y(rd w):('“?oﬂr) Bl w)_l dBg(k, @) J—di)
ization state of the fieldat the pointri), takes the form A dk 51
2 -~ hd ~ had ~ ~ . . .
53(rﬁ,w)=vvee(rﬁ,rﬁ,w)=(Knom) We see that- ®;(ru,w) =d5(ru,w)-u=0, i.e., the fleldAm
4mr the far zone is transverse with respect to the direction

This, of course, is as expected since the far field in the di-

rection ofu behaves locally as a plane wave propagating in
(43 that direction. Hence, we may describe the polarization prop-
erties of the far field locally in terms of thexX22 coherence
Making use of Eq(10), we obtain tensor associated with the two orthogonal transverse compo-

X (U—00) - (7* (k,0)] (1,0)) - (U - ud).
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nents Ga and ab (see Fig. 1 The elements of this 22 thus the field shares its coherence properties with that pro-

o . . . duced by a statistically homogeneous and isotropic current
coherence tensor, denoted dy(ru, ), are explicitly given A o .
by distribution in a low-loss or nondissipative medium.

Since the medium has a small but nonzero absorbtion, in
R (K%Mr)z the neighborhood of a given source point the field correla-

®yji(ru, @) =u;- ®3(ru,) - u;= tions extend effectively over a finite region. Therefore, we
may think of the whole infinite source as being divided into
finite, uniformly distributed, and mutually uncorrelated do-
(52 mains whose dimensions depend on the correlation length.
As in Ref. [3], we may refer to these domains as source
o . correlation regions. Each source correlation region produces
where (,j) =(a,b). Hence the diagonal elements, ,, and an electromagnetic field, which at large distances behaves

[} are equal, i.e., the spectral densities of the transvers - . )
2bb qual, 1.€., P Spproximately as a plane wave. Thus, in any observation
components are the same. Furthermore, the transverse coni-

ponents are mutually uncorrelated Singg ,o— D ,p.= 0 region, the contrik_)utions from th(e_y/e_ry) distant parts of_t_he
These two facts indicate that the far field rgaiateébgy a.finit source can bg v!ewed as consisting of a superposition of

o . ; . eisotr0p|cally distributed and angularly uncorrelated plane
statistically homogeneous and isotropic spherical so(te waves. For source regions containing statistically homoge-
any radiug is fully unpolarized in every direction. Math- '

. oo . _neous and isotropic current distributions, these plane waves
ematically, the degree of polarization of plane waves, deflne%re also fullv unpolarized as was shown in Sec. Il D
by (Ref.[8], Sec. 6.3 y unp ) )

Hence, the model and calculations show that the field cor-
= relations in any observation region, given by the imaginary
P(rG )= \/1_ 4deth(ru, ) 53 part of the infinite-domain Green tensor in E40), are de-
’ tr2<52(rl],w) ’ termined by the distant contributions. Although the local cur-
rents at every point also generate a near field, with the asso-

where tr and det stand for the trace and the determinangiated correlation tensor having both real and imaginary
respectively, assumes the vaIBerﬁ):O for all U. part_s(;ee, for example, Re[13]), this _contrlbutlo.n fro'”.” a.

If the source is finite but nonspherical, the functigfiR) statistically homogenepus andllsot.ropu: c.ur'rent in an infinite
characterizing the source domain in E49) will, in general, low-loss or non_absorbmg med'“m |s_negllg|ble as Compared
depend not only on the magnitude but also on the directiortio the propagating far-zone contributions. Thus, despite local

of the vectorR. In such a case the Eourier transformscurrent sources, the field at any point behaves effectively as
~ ~, ) a free electromagnetic field. We note that these remarks are
Ag(k,w) andBy(k,w) in Egs.(47) and(48) are not neces-

y : 1= consistent with the earlier result that a homogeneous free
sarily spherically symmetric inc space, and consequently fie|d can be expressed in terms of angularly uncorrelated
the 2x2 coherence tensob,(ru,w) need not be propor- plane waved14|. Besides unbounded current sources, our
tional to a unit tensor, i.e., the field in the directioris not ~ analysis and arguments should, to a good approximation,
unpolarized. However, if the source domain is sufficient|yh0|d also for an electromagnetic field well inside a finite, but
large (in relation to important values oR), the quantity large, source region.
IB(R) is approximate|y equa] to the volume of the source When the losses are Signiﬁcant, the correlations do not
and the field is unpolarized. Hence, for large statistically hoshow universal behavior as noted in RE2]. This can be
mogeneous and isotropic current distributiqspherical or ~ physically explained using the plane-wave model discussed
otherwise, the far field is fully unpolarized in every direc- above. In the presence of losses, the contribution to the field
tion. from the distant source correlation regions weakens in rela-
tion with that from the nearby regions. Consequently, the
plane-wave model no longer describes the physical situation,
and no universality is found. Finally, we also note that when
The universal behavior of correlations in electromagnetidhe losses in an infinite source region decrease, the intensity
fields that we found above can physically be justified byof the field at a certain observation point increases, since
arguments which are parallel to those presented in B¢f. more waves can reach that point, i.e., waves from distant
for the scalar case, but which go somewhat beyond it. Irsource regions start to dominate. This explains physically the
analogy with the field that consists of angularly uncorrelateddivergent behavior of the cross-spectral density tensor of Eq.
and isotropically distributed scalar plane waves, i.e., a scaldi20), in the limit e/ —0.
field whose spatial correlations obey the sinc IE8y, we To summarize, we have investigated the structure of spa-
may construct a full vectorial counterpart in terms oftial (spectral correlations in the electromagnetic fields pro-
electromagnetic-plane waves within a nonabsorbing mediurduced by stationary, statistically homogeneous and isotropic
[12]. In addition to directional isotropy and angular noncor-current distributions. We showed that for any such field,
relation, the vectorial plane waves in the electromagnetic enwithin a medium of vanishingly small losses, the coherence
semble are taken to be fully unpolarized. For this particulaiproperties are determined by the imaginary part of the Green
(free) field, the electric cross-spectral density tensor is protensor of the system, i.e., solely by the propagation proper-
portional to the imaginary part of the Green tengl2], and  ties of waves in the medium. This demonstrates that the

IV. DISCUSSION AND CONCLUSIONS
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field’s correlation properties are independent of the source APPENDIX B: SOME PROPERTIES
characteristics, and that the degree of coherence is of a uni- OF THE GREEN TENSOR

versal form. Our analysis covers the known results of black- - ) o ]
body radiation fields, but it applies to a wider class of The Green tensor, denoted t(x,w), is explicitly writ-
sources, without requiring thermal equilibrium. We also dis-ten as(Ref.[11], Sec. 4

cussed the physics behind the universal behavior of the cor-
relations by comparing the results with those obtained by an
electromagnetic plane-wave model. Our results generalize
the scalar analysis of Refgl,2] to homogeneous and isotro-

pic electromagnetic fields. whereG(x, ) is the scalar Green function presented in Eq.
(A4). The Green tensor satisfies the wave equation

G(x,w)= G(X ), (B1)

- 1
U+—2VV
K
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APPENDIX A: CALCULATION OF THE INTEGRAL V- G(X,w)= ——ZV[5(X)]. (B3)
IN EQ. (17) K
Consider the integral Thus, when the losses are negligible, we have
dk  elkx V- Im[G(x,0)]=0. B4
I(x)=j . (A1) [G(X,0)] (B4)
(2m)* |K?= 22

Furthermore, in this low-loss case, the imaginary part of the

By performing the angular integrations we obt&as in the Green tensor is explicitly written as

Appendix of Ref.[2]) « (k) B
Im[G(x,w)]zE( jo(kX)— le U+j2(;<x)xx),

1 (= ksink
I(x)= f dk sin(k|x) (BS)
27%|x|Jo |k?— k2|2

iKIx] wherex=x/x. It is straightforward to verify that this form
* ke satisfies Eq(B4).

(2w)2|x|ifmdk|k2—;<2|2' (A2)
APPENDIX C: ANGULAR INTEGRATIONS IN EQ. (26)

Since the integrand in EGA2) is an analytic function ev-
erywhere in the upper half of the complkyplane, except for
the two poles ak=Kky(=n’+in"), and it decays more rap-
idly than 1k? for |k| —2 (with O<argk<), we may apply ,A(r)zf PRAR.0)IM[G(R—1.0)]
the residue theorem to evaluate it. Since the medium is as-
sumed to be lossy, the poles are not on the real axis, and we ik|R—r|
may choose the contour of integration to be a semicircle in :f d°RA( R,w)lm(—), (C1
the upper half of the complek plane. By performing the 4m|R—r|
integration find that

The angular integrations in the expression

where k may, in general, be complex, can be performed by
making use of the expansidnof. Eq. 8.5381) of Ref.[15]]

I(X)= — = IM[G(X,®)], (A3) ‘ , " |
(K )" eIK\r—r | . - "
=ik, ik )hMkrs) X
2yn imadai 2 4a|r—r’| = M=
where (°)" is the imaginary part ok, and
iclx| XY™ (0", 0")Y"(8,0), (C2
eK

S G A9 where r_=min{f| |r'[}, r-=maxfrl|r'l}. () and

h(Y(x) are spherical Bessel and spherical Hankel functions
Thus, we see thdt(x) is proportional to the imaginary part of the first kind and of ordet, and Y["(6,¢) are spherical
of the diverging spherical wave, or the scalar Green functiorharmonics. The angular integration in E§2) leads to the
of the system. Kronecker deltas, o, and consequently

026613-7



SETALA et al. PHYSICAL REVIEW E 67, 026613 (2003

|A(r):f:dRR?A(R,wnm[iKjo(Kr<)hgl>(Kr>)]. TB(r)=JodeRZB(R,w)/\Z(R,r), (D2)
(C3)

In the low-loss limit, the imaginary part in the integrand of Where
Eq. (C3) is obtained directly by noting thai(™(x)=j,(x)

+in;(x), wheren(x) is spherical Neumann function of or- '
derl. M(R,r)= IKE ji(kr )hM(kr - 2 Y™ (6, 0")
APPENDIX D: ANGULAR INTEGRATIONS IN EQ. (33 (21+1) (I—-m)!
Cm N
The integration over the angular coordinates in the inte- x(=1) (I+m)! } (O3

gral

. ~ A with

IB(r)=f d°RB(R,0)RRIM[G(R—r,0)]

Rl N= f%d(pfwdﬁeim"’P{n(COSG)ﬁ(0,<p)Sin 6. (D4)
0 0

|> (D1)

_ 3 »]®
—f d RB(R,w)RRIm(—47T|R_r

can be carried out analogously to that in Appendix C. Mak-
ing use of Eq(C2), and expressing the componentsfoin N Eq. (D4), P"(cosy) are associated Legendre functions,

a spherical polar coordinate system, we obtain and the angular tensd2 (6, ¢) has the form

sifdcose  sirfdsing cose sinf cosd cose
0(0,0)=| sirfdsinpcose  sirfdsirfe  sindcosdsing | (D5)
sinfcosfcose sinfdcoshsine cosé.

The angular integrations in E¢D4) are performed by mak- i
ing use of the orthogonality properties of Legendre func-Mpp(R,1)= |m[—[lo(KF<)ho (kr=) = ja(xr NS (kr )

tions, and we find that the elements gfare of the form

Ao Ao 8 x(l—srprp)]], (D7)
Nxxz?tsm,o&,o— 715 9modi 2t £~ 0m20 2T 7 5m 2012,
4 e 8 - MR =Imfikjo(kr NS (kr)rrg},  when p#q.
Nyy="30m08,0~ 75 Omodi 2~ 5 Om202~ 750m 2012, (D8)
4 8w Here,r, (p=X,y,z) are the components of the unit vector
= — + — ~ P A
Nzz 3 omodiot 75 omodi2, (D8) r=r/r. The elements in Eq$D7) and(D8) can be expressed
compactly in a tensorial form
8 i i
M(y:Nyx:? 5m,25I,2_ 1_55m,725|,21 i
< K
MR =Imj = [jo(kr )h(xr )
3 _47Ti i
Nyz_Nzy_Tam,lgl,z"' 1_55m,715I,2: —jz(Kr<)h(21)(Kr>)]U
47 27 +ikjo(kr)hS(kro)rr. (D9)
A[xz:Nzx:?5m,15I,2_ 1_55m,—15I,2- e -
Substituting these into E¢D3), we get Substituting this into Eq(D2), we obtain
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TB(r)=JodeRZB(R,w)Im{%([jo(xr<)hgl)(:<r>)—jZ(Kr<)h(21)(;<r>)]lj+isz(xr<)h(21)(xr>)Ff . (D10
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