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Gap solitons and soliton trains in finite-sized two-dimensional periodic
and quasiperiodic photonic crystals
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We demonstrate the existence of the gap solitons and soliton trains in finite-sized two-dimensional periodic
nonlinear photonic crystals by using the mutiple-scattering approach with an iterative scheme. In 12-fold
symmetric nonlinear quasicrystals, we also demonstrated the existence of symmetric, regular gap solitons,
asymmetric single-soliton states, and two-solitons states. We revealed that the existence of symmetric, regular
gap solitons in a 12-fold quasicrystal is limited by the geometrical size of the hexagon that forms the core of
the dodecahedral cell, which is the building block of the quasicrystal.
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In past years there has been a great deal of interes
photonic crystals made of linear materials@1#. They make the
control and manipulation of light propagation possible a
therefore, can have vast implications in both quantum op
and optical devices. In order to employ the high-technolo
potential of photonic crystals, it is also important to achie
a dynamical tunability of their properties. This can be do
by replacing the linear materials with nonlinear ones and
changing the light intensity in the photonic crystals@2#. An
important phenomenon in the nonlinear photonic crystal
the existence of the nonlinearity induced localized sta
with frequencies in the forbidden gaps, which are usua
called gap solitons. The term gap soliton was first introdu
by Chen and Mills in their numerical study of one
dimensional~1D! periodic superlattices@3#. Later, the subject
of the gap solitons in two- and three-dimensional nonlin
photonic crystals has been studied by John and Akozbek@4#
by using the coupled-mode theory, which is valid in sm
dielectric modulations. Recently, by using the numeri
Green’s function, Mingaleev and Kivshar@5# demonstrated
the existence of stable single-gap solitons in 2D photo
crystals with large dielectric contrast ratio. A question
mains open, whether stable multiple-soliton states exis
2D periodic crystals, which exhibit multistability, in analog
to 1D periodic superlattices@6#. Parallel to the periodic crys
tals, the study of light propagation in 1D and 2D quasipe
odic photonic crystals has also aroused significant inte
@7–10#. Kahnet al. @11# studied the nonlinear property of th
1D Fibonacci quasiperiodic superlattice, and they found
evidence of gap solitons. To our knowledge, the study of
nonlinear property of the 2D quasicrystals is still lacking. A
important question is whether stable regular gap solitons
exist in nonlinear 2D quasicrystals, so as to achieve a
namical tunability of their optical properties as in 2D pe
odic crystals.

In this paper, different from the previous studies of in
nite 2D crystals@4,5#, we demonstrate the existence of g
solitons in a finite-sized 2D nonlinear periodic crystal
studying the multistability of the transmitted energy throu
the crystal, mimicking the experimental situations. In ad
tion to single-soliton states, for the first time to our know
edge, we demonstrate the existence of two-soliton, th
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soliton, and four-soliton trains in the 2D periodic crystal. W
also first demonstrate the existence of the symmetric, reg
gap soliton, asymmetric single-soliton state, and two-soli
state in 2D quasiperiodic crystals. We reveal that the e
tence of the symmetric, regular soliton in the 2D quasicrys
is determined by the geometrical size of the unit hexag
that forms the core of the dodecahedral cell, which is
building block of 12-fold quasicrystals@9#.

Periodic crystal. We consider the square periodic cryst
depicted in the inset of Fig. 1~b!. The crystal is made of 11
3111113105231 infinitely long parallel cylinders, eac
possessing Kerr nonlinearity. The period of the lattice
taken asa, and the radius of the cylinders isR50.1a. An
s-polarized external beam, in the form of either a slit or
plane wave at a frequencyv52p f , is incident upon the
crystal from the left face. The electric field obeys the Hel
holtz equation

¹2E~x,y!1
v2

c2
«~x,y!E~x,y!50, ~1!

where«(x,y)5«s in the background medium and

«~x,y!5«01luE~x,y!u2 ~2!

in the Kerr nonlinear cylinders. Here«0 is the linear dielec-
tric constant andl is the Kerr coefficient of the cylinders. In
this paper we will use the method of multiple scatteri
@12–14# combined with an iterative scheme to solve Eq.~1!.
The multiple-scattering method is numerically exact. In
der to calculate«(x,y) we first consider the intensity distri
bution uE(x,y)u2 inside the photonic crystal for the linea
case, i.e.,l50. We have checked the intensity distributio
when the crystal is illuminated by an external beam with
frequency inside the pass band, at the band-edge state
inside the band gap, but near the band edge. We noted
although the mean intensity in different cylinders can ha
large variations, the intensity distribution in each cylinder
to a very good approximation, always cylindrically sym
metrical. From Eq.~2! we thus deduce that, as we will sho
later, the intensity distributionuE(x,y)u2 in every cylinder
for lÞ0 is also, to a very good approximation, cylindrical
©2003 The American Physical Society07-1
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symmetrical. Therefore we have a very good approxim
way to calculate the distribution of«(x,y) in the cylin-
der: In performing the multiple-scattering calculation w
divide each cylinder into many cylindrical layers and assu
the electric energy in each layer to be constant and equ
the mean intensitŷ uE(x,y)u2& in that layer. The iterative
scheme is briefly as follows: From the valueEn(x,y) of the
nth step we can obtain«n11(x,y)5«01luEn(x,y)u2. With
this new «n11(x,y) we can obtainEn11(x,y) of the (n
11)th step from the multiple-scattering method. The pro
dure is repeated until the relative valueu«n11(x,y)
2«n(x,y)u/«n(x,y) is smaller than a required valued ~in this
paper we taked51024). For the sake of convergence, it
necessary to use«̃n115«n111(«n112«n)r to replace
«n11 , wherer ,1 is a constant that should be chosen app
priately in the calculation. Throughout this paper we ta

FIG. 1. ~a! Band structure of thes wave for the square lattice
with R/a50.1 and«0513. ~b! Transmission coefficient for the lin
ear crystal depicted in the inset.

FIG. 2. Transmission coefficient as a function of the incide
amplitude in the nonlinear periodic 2D crystal ford/251.414a and

the dimensionless frequencyf̃ [ f a/c50.406 ~dashed curve!, f̃

50.407~solid curve!, and f̃ 50.408~dot-dashed curve!.
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«s51 and«0513. As to the magnitude ofl, we pick the one
that is normally used in the literature, i.e.,l520.001
@2,3,14#.

Figures 1~a! and 1~b! show, respectively, the calculate
band structure and the transmission coefficient~defined in
Ref. @12#! for the case ofl50. There exists a full gap, which
extends fromf̃ [ f a/c50.405 to f̃ 50.494, wheref̃ is the
dimensionless frequency. The transmission coefficient sh
excellent agreement with the partial gap, which extends fr
f̃ 50.405 to f̃ 50.569 along theG-M direction.

To observe the gap soliton, we calculate the transmiss
coefficient as a function of the amplitudeuE0u of the incident
field for a fixed frequency inside the gap near the lower ba
edge, as shown in Fig. 2. For instance, forf̃ 50.407 ~solid
curve! we observe a hysteresis loop. As the incident am
tude increases fromA to B, the beam is in the highly reflect
ing state. AtB it jumps to the transmitting stateC. Then from
C, if we decrease the incident amplitude, a maximum of
transmission coefficient occurs atD8. Figure 3~b! shows the
intensity distribution at maximumD8, which corresponds to
a single-soliton state. To compare it with other solitons
different frequencies, in Figs. 3~a! and 3~c! we show, respec-

t

FIG. 3. Intensity distributions of the solitons in the nonline

periodic 2D crystal described in the text.~a! f̃ [ f a/c50.406, ~b!

and ~d!–~f! f̃ 50.407, and~c! f̃ 50.408.
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tively, solitons for f̃ 50.406 ~dashed curve! and f̃ 50.408
~dot-dashed curve!. As is well known, we see that the spati
size of the solitons shrinks as the frequency is moved a
from the gap edge. From Figs. 3~a!–3~c! we note that the
intensity distribution in each cylinder is cylindrically sym
metrical, although the intensity varies greatly at different c
inders. For clarity, in Fig. 4 we show the contour plots of t
intensity profile inside the five cylinders near the center
Fig. 3~b!. We have also checked that at any other state al
A to B and alongC to D8 the intensity distribution is cylin-
drically symmetrical in each cylinder. This justifies o
method of calculating«(x,y) that the intensity in each cy
lindrically layer is constant and can be taken to be the m
intensity in that layer. Here it is important to point out th
the solitons shown in Figs. 3~a!–3~c! and the ensuing Figs
3~d!–3~f! are intrinsic excitations of the system. They do n
depend on the external source. We have checked this c
by changing the width of the source slit from 0.5a to the
plane-wave source. It has been found that the shapes
energies of these solitons remain unchanged. The only
ference is that the jumping transmissionB and the maximum
D8 of the transmission coefficient occur at different incide
amplitudesuE0u for different source widths.

Again, we come back to the solid curve in Fig. 2 forf̃
50.407. At pointC, if we do not decrease, but continue
increase the incident amplitude, we find that the transmiss
coefficient jumps fromD to E. A further increase in the in-
cident amplitude leads to another jump atF. If we further
increase the incident amplitude, another jump fromH to I
occurs. Then fromI, if we decrease the incident amplitud
there occurs a maximum of the transmission coefficient aJ.
A further decrease in the incident amplitude leads to ano
maximum K of the transmission coefficient and anoth
maximumL. It should be mentioned that if we decrease t
incident amplitude fromG, we will directly arrive at the
maximumK, and if we decrease the incident amplitude fro
E, we directly reach maximumL. Thus we see that, in som

FIG. 4. Contour plots of the intensity profile inside the fiv
cylinders near the center of Fig. 3~b!.
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region of the incident amplitude, multistability of the tran
mission coefficient occurs. The intensity distributions in t
crystal for maximaL, K, andJ are shown in Figs. 3~d!, 3~e!,
and 3~f!, respectively. We see that they correspond to t
solitons, three solitons, and four solitons, which are cal
soliton trains@6#. It is evident that if we continue to increas
the incident amplitude from pointI, we should observe a
five-soliton train and six-soliton train, etc., if the sample
sufficiently large.

Quasiperiodic crystal. We use the 12-fold symmetric qua
siperiodic crystal depicted in the inset of Fig. 5@9,10#. The
distance between two cylinders is taken to bea, and the
radius of the cylinders is 0.1a. The quasicrystal is made o
225 infinitely long parallel cylinders, with the size of th
crystal being 7.3a37.3a. The linear dielectric constant«0
and the Kerr coefficientl of the cylinder material are the
same as those in the periodic case. Ans-polarized beam from
a slit source or a plane-wave source at a frequencyv
52p f is incident upon the crystal from the left face. Th
transmission coefficient for the linear quasicrystal is sho
in Fig. 5. There exists a gap, which extends approximat
from f̃ 50.393 to f̃ 50.525. This is a full gap, which is veri
fied by the calculated radiation power in all direction from
line source positioned near the center of the crystal@10#.

Using a similar procedure to that used in the perio
case, we obtain a gap soliton forf̃ 50.3945@Fig. 6~a!# and
that for f̃ 50.396 @Fig. 6~b!# when all cylinders are Kerr
nonlinear. It is interesting to see that a gap soliton with sy
metric, regular envelopes occurs in the 2D quasicrystal.
electric energy prefers to accumulate in the six cylinders t
form a hexagon located at the center of the sample, as sh
in the inset of Fig. 5, whereas the energy in the center c
inder within the six hexagonal cylinders is very small.
should be pointed out that the hexagon is the core of
dodecahedral cell, which is the building block of the 12-fo
quasicrystals. The energy distribution of the soliton shown
Figs. 6~a! or 6~b! is different from that in the 2D periodic
crystal where the energy in every cylinder inside the loc
ized region of the soliton is very high~see Fig. 3!. It should

FIG. 5. Transmission coefficient for the linear quasicrystal d
picted in the inset.
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be mentioned that symmetric gap solitions do not exist in
quasiperiodic superlattices@11#.

Besides the existence of the type of the symmetric, re
lar gap solitons given in Figs. 6~a! and 6~b!, we also find
other types of gap solitons in 2D quasicrystals, as show
Figs. 6~c!–6~f!. It is seen that the electric energy again p
fers to accumulate in the six cylinders that form the u
hexagon located at other positions of the sample. The as
metric solitons shown in Figs. 6~c! and 6~d! are particularly
interesting. They originate from the nontranslational inva
ance of the quasicrystal and are intrinsic excitations of
system. In a periodic photonic crystal, asymmetric intens
profiles can also be excited in a finite-sized sample whene
the transmission is not at the local maximum of a hystere
loop. For example, in Fig. 2, only the excitations at poin
D8, L, K, and J produce intrinsic solitons with symmetri
intensity profiles. All other excitations at other points on t
hysteresis produce asymmetric intensity profiles. Unlike s
tons, the shapes and energies of these excitations depe
the intensity profile of the incident wave. In one-dimension
periodic systems, asymmetric intensity profiles exist wh
ever the transmission is not unity. They do not repres

FIG. 6. Intensity distributions of the solitons in 12-fold nonlin

ear quasicrystal described in the text.~a! f̃ [ f a/c50.3945,~b! f̃

50.396,~c! f̃ 50.396,~d! f̃ 50.4, ~e! f̃ 50.396, and~f! f̃ 50.397.
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intrinsic soliton solutions. Solitions appear only when t
transmission becomes unity. At these excitations, the in
sity profiles are always symmetric. In order to confirm th
the asymmetric solitons shown in Figs. 6~c! and 6~d! are
intrinsic states of the quasicrystal, not because of the as
metry of the incident beam relative to the quasicrystal,
have used two external beams of the same frequency
same beam width incident upon the crystal from the left a
right faces simultaneously. Although the system now b
comes symmetrical, we have obtained the same asymm
solutions as in Fig. 6~c! and 6~d!, including the same sym
metric solutions as in Figs. 5~a!, 5~b!, 5~e!, and 5~f!. It
should be emphasized that, similar to the periodic case
solitons can be excited by use of the slit source of any wi
or plane-wave source, with the only difference being tha
soliton occurs at different incident intensities for differe
widths. However, their shapes and energies are indepen
of the width. It is interesting to mention that, for the sam
frequency and beam width, the asymmetric type of solito
in Fig. 6~c! or 6~d! occurs at larger incident intensity tha
that of the symmetric solitons in Fig. 6~a! or 6~b!, and the
type of soliton trains in Fig. 6~e! or 6~f! occurs at larger
incident intensity than that of the single solitons in Fig. 6~c!

or 6~d!. For example, for frequencyf̃ 50.396 and half slit
width d/255.2a, the solitons in Figs. 6~b!, 6~c!, and 6~e!
occur atuE0u50.366, 1.142, and 1.81, respectively. Thus,
contrast to the periodic case where only one type of
single-soliton state exists for a fixed frequency, in the 12-f
quasiperiodic case, there exist two types of the single-sol
state for our sample. One is central symmetrical@Fig. 6~b!#,
and the other one is asymmetrical@Fig. 6~c!#. The difference
is due to the absence of the translation symmetry in qua
eriodic crystal. It should be mentioned that solitons in Fi
6~e! and 6~f! belong to the same type of the solitons, whi
corresponds to the two-soliton states in the periodic case
the frequency is moved into the gap center, the two solit
become apart.

Similar to the periodic case, Fig. 6 shows that, as
frequency is moved away from the gap edge, the spatial
of the solitons shrinks. Here we reveal that, in sharp cont
to the 2D periodic photonic crystal discussed above, the
istence condition of the type of the gap solitons shown
Figs. 6~a! and 6~b! is determined by the geometrical size
the hexagon at the center of the quasicrystal. In other wo
as the frequency is moved into the gap, the spatial size of
type of the soliton is reduced, and when the size of the s
ton becomes smaller than the geometrical size of the he
gon, the soliton cannot exist. This assertion is consolida
by our careful numerical analysis. In our sample, the soli
becomes nonexistent whenf̃ is larger than;0.3962. How-
ever, for the gap solitons in the periodic case shown in Fig
and those in the quasiperiodic case shown in Figs. 6~c!–6~f!,
the geometry of the crystal has no constraint on the existe
of the soliton. For the frequency far away from the gap ed
the existence of the stable gap solitons is determined by t
stability requirements~see, e.g., Ref.@5#!. In our sample, we
see that forf̃ 50.4 the stable soliton of type shown in Fig
6~d! still exists.
7-4
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In conclusion, by using the multiple-scattering approa
in conjunction with an iterative scheme, we demonstrated
existence of stable gap solitons and soliton trains in fin
sized 2D nonlinear periodic photonic crystals. In 12-fo
symmetric nonlinear photonic quasicrystals, we also fou
stable symmetric, regular gap solitons, which is in contras
1D Fibonacci quasiperiodic superlattices. In addition,
found asymmetric single-soliton states and two-soliton sta
.
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which are due to the absence of the translation invarianc
the quasiperiodicity. It is revealed that the existence con
tion of the symmetric, regular gap solitons in a 2D quas
rystal is determined by its geometrical size of the unit he
gon that forms the core of dodecahedral, which is
building block of 12-fold symmetric quasicrystals.
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