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Gap solitons and soliton trains in finite-sized two-dimensional periodic
and quasiperiodic photonic crystals
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We demonstrate the existence of the gap solitons and soliton trains in finite-sized two-dimensional periodic
nonlinear photonic crystals by using the mutiple-scattering approach with an iterative scheme. In 12-fold
symmetric nonlinear quasicrystals, we also demonstrated the existence of symmetric, regular gap solitons,
asymmetric single-soliton states, and two-solitons states. We revealed that the existence of symmetric, regular
gap solitons in a 12-fold quasicrystal is limited by the geometrical size of the hexagon that forms the core of
the dodecahedral cell, which is the building block of the quasicrystal.
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In past years there has been a great deal of interest isoliton, and four-soliton trains in the 2D periodic crystal. We
photonic crystals made of linear materigl3. They make the also first demonstrate the existence of the symmetric, regular
control and manipulation of light propagation possible andgap soliton, asymmetric single-soliton state, and two-soliton
therefore, can have vast implications in both quantum opticstate in 2D quasiperiodic crystals. We reveal that the exis-
and optical devices. In order to employ the high-technologytence of the symmetric, regular soliton in the 2D quasicrystal
potential of photonic crystals, it is also important to achieveis determined by the geometrical size of the unit hexagon
a dynamical tunability of their properties. This can be donethat forms the core of the dodecahedral cell, which is the
by replacing the linear materials with nonlinear ones and byouilding block of 12-fold quasicrystal®].
changing the light intensity in the photonic crystf®y. An Periodic crystal We consider the square periodic crystal
important phenomenon in the nonlinear photonic crystals iglepicted in the inset of Fig.(ft). The crystal is made of 11
the existence of the nonlinearity induced localized states< 11+ 11X 10=231 infinitely long parallel cylinders, each
with frequencies in the forbidden gaps, which are usuallypossessing Kerr nonlinearity. The period of the lattice is
called gap solitons. The term gap soliton was first introducedaken asa, and the radius of the cylinders R=0.1a. An
by Chen and Mills in their numerical study of one- s-polarized external beam, in the form of either a slit or a
dimensional1D) periodic superlatticel3]. Later, the subject plane wave at a frequency=2=f, is incident upon the
of the gap solitons in two- and three-dimensional nonlinearkrystal from the left face. The electric field obeys the Helm-
photonic crystals has been studied by John and AkogbEk holtz equation
by using the coupled-mode theory, which is valid in small
dielectric modulations. Recently, by using the numerical 5 w?

Green’s function, Mingaleev and Kivshfs] demonstrated VE(Xx,y)+ ?S(va)E(X!y):O' @

the existence of stable single-gap solitons in 2D photonic

cry_stals with large dielectric contrast rat_io. A question' ré-wheree(x,y) = &, in the background medium and

mains open, whether stable multiple-soliton states exist in

2D periodic crystals, which exhibit multistability, in analogy g(X,y)=go+N|E(X,y)|? 2)

to 1D periodic superlatticg$]. Parallel to the periodic crys-

tals, the study of light propagation in 1D and 2D quasiperi-in the Kerr nonlinear cylinders. Hees, is the linear dielec-
odic photonic crystals has also aroused significant interegtic constant and is the Kerr coefficient of the cylinders. In
[7-10Q). Kahnet al.[11] studied the nonlinear property of the this paper we will use the method of multiple scattering
1D Fibonacci quasiperiodic superlattice, and they found nd12—-14 combined with an iterative scheme to solve Ep.
evidence of gap solitons. To our knowledge, the study of thd’he multiple-scattering method is numerically exact. In or-
nonlinear property of the 2D quasicrystals is still lacking. Ander to calculates(x,y) we first consider the intensity distri-
important question is whether stable regular gap solitons cabution |E(x,y)|? inside the photonic crystal for the linear
exist in nonlinear 2D quasicrystals, so as to achieve a dyease, i.e.A=0. We have checked the intensity distribution
namical tunability of their optical properties as in 2D peri- when the crystal is illuminated by an external beam with the
odic crystals. frequency inside the pass band, at the band-edge state, and

In this paper, different from the previous studies of infi- inside the band gap, but near the band edge. We noted that,
nite 2D crystald4,5], we demonstrate the existence of gapalthough the mean intensity in different cylinders can have
solitons in a finite-sized 2D nonlinear periodic crystal by large variations, the intensity distribution in each cylinder is,
studying the multistability of the transmitted energy throughto a very good approximation, always cylindrically sym-
the crystal, mimicking the experimental situations. In addi-metrical. From Eq(2) we thus deduce that, as we will show
tion to single-soliton states, for the first time to our knowl- later, the intensity distributiohE(x,y)|? in every cylinder
edge, we demonstrate the existence of two-soliton, thredor A #0 is also, to a very good approximation, cylindrically
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FIG. 1. (@) Band structure of thes wave for the square lattice
with R/a=0.1 ande = 13. (b) Transmission coefficient for the lin-
ear crystal depicted in the inset.

symmetrical. Therefore we have a very good approximate (

way to calculate the distribution of(x,y) in the cylin-

der: In performing the multiple-scattering calculation we

divide each cylinder into many cylindrical layers and assume

the electric energy in each layer to be constant and equal t

the mean intensity|E(x,y)|?) in that layer. The iterative

scheme is briefly as follows: From the valbg(x,y) of the

nth step we can obtaia, 1(X,y) =gq+\|E(X,y)|?. With

this new ¢, 1(X,y) we can obtainE, ,1(x,y) of the (n

+1)th step from the multiple-scattering method. The proce- (©)
C

dure is repeated until the relative valugs,,1(X,Y)
—e,(X,Y)|/eq(X,y) is smaller than a required valugin this
paper we taked=10"*). For the sake of convergence, itis "'° b -
necessary to USén+1:8n+1+(8n+l_8n)r to replace periodic 2D crystal described in the texd) f=fa/c=0.406, (b)

£n.1, Wherer <1 is a constant that should be chosen appro@"d(@~(f) f=0.407, andc) f=0.408.

riately in the calculation. Throughout this paper we take . .
priately 1 uiat ughout this paper w es=1 andey=13. As to the magnitude of, we pick the one

that is normally used in the literature, i.e\,=—0.001
[2,3,14.

Figures 1a) and Xb) show, respectively, the calculated
band structure and the transmission coeffici@dfined in
Ref.[12]) for the case ok =0. There exists a full gap, which

extends fromf=fa/c=0.405 tof=0.494, wheref is the
dimensionless frequency. The transmission coefficient shows
excellent agreement with the partial gap, which extends from

f=0.405 tof =0.569 along thd™-M direction.

To observe the gap soliton, we calculate the transmission
coefficient as a function of the amplitu¢ig,| of the incident
field for a fixed frequency inside the gap near the lower band

: L 1 edge, as shown in Fig. 2. For instance, for0.407 (solid
L R curve we observe a hysteresis loop. As the incident ampli-
0 3 1o 5 tude increases frorA to B, the beam is in the highly reflect-

Incident amplitude |E, ing state. AtB it jumps to the transmitting staté. Then from
C, if we decrease the incident amplitude, a maximum of the
FIG. 2. Transmission coefficient as a function of the incidenttransmission coefficient occurs At. Figure 3b) shows the
amplitude in the nonlinear periodic 2D crystal ®2=1.414 and  intensity distribution at maximur®’, which corresponds to
the dimensionless frequencl=fa/c=0.406 (dashed curve f  a single-soliton state. To compare it with other solitons of
=0.407(solid curve, andf=0.408(dot-dashed curye different frequencies, in Figs(8 and 3c) we show, respec-
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FIG. 3. Intensity distributions of the solitons in the nonlinear
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FIG. 5. Transmission coefficient for the linear quasicrystal de-
picted in the inset.

FIG. 4. Contour plots of the intensity profile inside the five

cylinders near the center of Fig(t8. region of the incident amplitude, multistability of the trans-

mission coefficient occurs. The intensity distributions in the
tively, solitons forf=0.406 (dashed curveand T=0.408 crystal for maxima., K, andJ are shown in Figs. (@), 3(e),
(dot-dashed curyeAs is well known, we see that the spatial 21d 3f), respectively. We see that they correspond to two
size of the solitons shrinks as the frequency is moved awa ol!tons, three SO|I't0n83 and four' SOI'tonS’.Wh'Ch are called
from the gap edge. From Figs(88-3(c) we note that the olltpn _trams[6]. It_|s evident tha’g if we continue to increase
intensity distribution in each cylinder is cylindrically sym- t_he mu_dent a_mplltude_ from_ point, we Sho‘.“d observe a
metrical, although the intensity varies greatly at different cyl-f'veTS.O“ton train and six-soliton train, etc., if the sample is
inders. For clarity, in Fig. 4 we show the contour plots of thesufﬂmenply If’;\rg_e. :
intensity profile inside the five cylinders near the center of . Qqas.'per'Od'C cryst'aIWe use thg 12-fold §ymmetr|c qua-
Fig. 3(b). We have also checked that at any other state alongPeriodic crystal depicted in the inset of Fig[$10]. The
A to B and alongC to D’ the intensity distribution is cylin- |st_ance betvvee_n two _cylmders IS tak_en to mgand the
drically symmetrical in each cylinder. This justifies our rad|u§ Qf_the cylinders is Oel The quasg:rystal IS made of
method of calculating:(x,y) that the intensity in each cy- 225 infinitely long parallel cylinders, with the size of the

lindrically layer is constant and can be taken to be the meaﬁryjtag b(la;ing 7.a>f<f.7..3a. Thfe Ainearlld(ijelectric C.O'?Stamoh
intensity in that layer. Here it is important to point out that and the Kerr coefficienh of the cylinder material are the

the solitons shown in Figs.(8—3(c) and the ensuing Figs. same as those in the periodic case.sypolarized beam from

3(d)—3(f) are intrinsic excitations of the system. They do not® Slit source or a plane-wave source at a frequeacy

depend on the external source. We have checked this claifi 27 iS incident upon the crystal from the left face. The

by changing the width of the source slit from 8.50 the transmission coefficient for the linear quasicrystal is shown
plane-wave source. It has been found that the shapes affy Fig- 5- There exists a gap, which extends approximately
energies of these solitons remain unchanged. The only diffom f=0.393 tof =0.525. This is a full gap, which is veri-
ference is that the jumping transmissiBrand the maximum fied by the calculated radiation power in all direction from a
D’ of the transmission coefficient occur at different incidentline source positioned near the center of the cryst@].
amplitudes E,| for different source widths. Using a similar procedure to that used in the periodic

Again, we come back to the solid curve in Fig. 2 for case, we obtain a gap soliton fbr=0.3945[Fig. 6] and
=0.407. At pointC, if we do not decrease, but continue to that for f=0.396 [Fig. 6(b)] when all cylinders are Kerr
increase the incident amplitude, we find that the transmissiononlinear. It is interesting to see that a gap soliton with sym-
coefficient jumps fronD to E. A further increase in the in- metric, regular envelopes occurs in the 2D quasicrystal. The
cident amplitude leads to another jumpFatif we further  electric energy prefers to accumulate in the six cylinders that
increase the incident amplitude, another jump fréihto | form a hexagon located at the center of the sample, as shown
occurs. Then from, if we decrease the incident amplitude, in the inset of Fig. 5, whereas the energy in the center cyl-
there occurs a maximum of the transmission coefficieldt at inder within the six hexagonal cylinders is very small. It
A further decrease in the incident amplitude leads to anotheshould be pointed out that the hexagon is the core of the
maximum K of the transmission coefficient and another dodecahedral cell, which is the building block of the 12-fold
maximumL. It should be mentioned that if we decrease thequasicrystals. The energy distribution of the soliton shown in
incident amplitude fromG, we will directly arrive at the Figs. §a) or 6(b) is different from that in the 2D periodic
maximumK, and if we decrease the incident amplitude fromcrystal where the energy in every cylinder inside the local-
E, we directly reach maximurh. Thus we see that, in some ized region of the soliton is very higtsee Fig. 3. It should
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intrinsic soliton solutions. Solitions appear only when the
transmission becomes unity. At these excitations, the inten-
sity profiles are always symmetric. In order to confirm that
the asymmetric solitons shown in Figs(cp and Gd) are
intrinsic states of the quasicrystal, not because of the asym-
metry of the incident beam relative to the quasicrystal, we
have used two external beams of the same frequency and
same beam width incident upon the crystal from the left and
right faces simultaneously. Although the system now be-
comes symmetrical, we have obtained the same asymmetric
solutions as in Fig. @ and &d), including the same sym-
metric solutions as in Figs.(&, 5(b), 5(e), and 5f). It
should be emphasized that, similar to the periodic case, all
solitons can be excited by use of the slit source of any width
or plane-wave source, with the only difference being that a
soliton occurs at different incident intensities for different
widths. However, their shapes and energies are independent
of the width. It is interesting to mention that, for the same
frequency and beam width, the asymmetric type of solitons
in Fig. 6(c) or 6(d) occurs at larger incident intensity than
that of the symmetric solitons in Fig(® or 6(b), and the
type of soliton trains in Fig. @ or 6(f) occurs at larger
incident intensity than that of the single solitons in Fi¢c)6

or 6(d). For example, for frequenc§=0.396 and half slit
width d/2=5.2a, the solitons in Figs. ®), 6(c), and &e)
occur at|Ey|=0.366, 1.142, and 1.81, respectively. Thus, in
contrast to the periodic case where only one type of the
single-soliton state exists for a fixed frequency, in the 12-fold
quasiperiodic case, there exist two types of the single-soliton
state for our sample. One is central symmetr|€ad). 6(b)],
and the other one is asymmetri¢&lg. 6(c)]. The difference
S ) _ ~is due to the absence of the translation symmetry in quasip-
FIG. 6. Intensity distributions of the Eolltons in 12-fold noDIm- eriodic crystal. It should be mentioned that solitons in Figs.
ear quasicrystal described in the tetd) f=fa/c=0.3945,(b) f  6(e) and &f) belong to the same type of the solitons, which
=0.396,(c) f=0.396,(d) f=0.4,(e) f=0.396, andf) f=0.397. corresponds to the two-soliton states in the periodic case. As
the frequency is moved into the gap center, the two solitons
be mentioned that symmetric gap solitions do not exist in 10°€COmMe apart. o _
quasiperiodic superlatticd41]. Similar j[o the periodic case, Fig. 6 shows that, as the
frequency is moved away from the gap edge, the spatial size

Besides the existence of the type of the symmetric, regu- _ i ;
lar gap solitons given in Figs.(® and @b), we also find of the solitons shrinks. Here we reveal that, in sharp contrast

other types of gap solitons in 2D quasicrystals, as shown iﬁo the 2D per_iqdic photonic crystal discussed. above, the ex-
Figs. 6c)—6(f). It is seen that the electric energy again pre_|stence condition of the type of the gap solitons shown in

fers to accumulate in the six cylinders that form the unitFigS' 4a) and @b) is determined by thg geometrical size of

hexagon located at other positions of the sample. The asyrﬁbe hexagon at th_e center c.’f the quasicrystal. In_ oth_er Word_s,
metric solitons shown in Figs.(6) and &d) are particularly ~ 35 the frequenf:y |s_moved into the gap, the spgnal size of th_'s
interesting. They originate from the nontranslational invari-YP€ ©f the soliton is reduced, and when the size of the soli-

ance of the quasicrystal and are intrinsic excitations of thdon become; smaller than.the g?ome”""’?" size of the_hexa-
system. In a periodic photonic crystal, asymmetric intensit)gon' the soliton cannot exist. T.hIS assertion is consolldgted
profiles can also be excited in a finite-sized sample whenevap/ OUr careful numerical analysis. In our sample, the soliton
the transmission is not at the local maximum of a hysteresi§ecomes nonexistent whehnis larger than~0.3962. How-
loop. For example, in Fig. 2, only the excitations at pointseVver, for the gap solitons in the periodic case shown in Fig. 3
D’, L, K, andJ produce intrinsic solitons with symmetric and those in the quasiperiodic case shown in Figs-&(f),
intensity profiles. All other excitations at other points on thethe geometry of the crystal has no constraint on the existence
hysteresis produce asymmetric intensity profiles. Unlike soliof the soliton. For the frequency far away from the gap edge,
tons, the shapes and energies of these excitations depend ¢ existence of the stable gap solitons is determined by their
the intensity profile of the incident wave. In one-dimensionalStability requirementssee, e.g., Ref5]). In our sample, we
periodic systems, asymmetric intensity profiles exist whensee that forf =0.4 the stable soliton of type shown in Fig.
ever the transmission is not unity. They do not represené(d) still exists.
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In conclusion, by using the multiple-scattering approachwhich are due to the absence of the translation invariance of
in conjunction with an iterative scheme, we demonstrated th#éhe quasiperiodicity. It is revealed that the existence condi-
existence of stable gap solitons and soliton trains in finitetion of the symmetric, regular gap solitons in a 2D quasic-
sized 2D nonlinear periodic photonic crystals. In 12-fold rystal is determined by its geometrical size of the_unit_hexa-
symmetric nonlinear photonic quasicrystals, we also foun?o.” that forms the core of dodecahedral, which is the
stable symmetric, regular gap solitons, which is in contrast t uilding block of 12-fold symmetric quasicrystals.
1D Fibonacci quasiperiodic superlattices. In addition, we This work was supported by Hong Kong Research Grants
found asymmetric single-soliton states and two-soliton state€ouncil Grant No. HKUST 6163/01P.
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