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Discrete Ginzburg-Landau solitons
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We demonstrate that discrete solitons are possible in Ginzburg-Landau lattices. As a result of discreteness,
we find that this system exhibits a host of features that have no counterpart whatsoever in either the continuous
limit or in other conservative discrete models.
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The complex Ginzburg-Landau~GL! equation is known
to play a ubiquitous role in science. This equation is enco
tered in several diverse branches of physics, such as
example, in superconductivity and superfluidity, nonequil
rium fluid dynamics and chemical systems, nonlinear opt
Bose-Einstein condensates, and in quantum field theo
@1–5#. In general, the very nature of the GL system is su
that can lead to extraordinary rich behavior ranging fro
chaos and pattern formation to self-localized solutions
solitons. In the latter regime, GL dissipative solitons~or au-
tosolitons! are possible as a result of the interplay betwe
linear and nonlinear gain, nonlinearity, and complex disp
sion @6–9#. Over the years, the soliton solutions of th
Ginzburg-Landau equation and their underlying dynam
have been the subject of intense investigation. Such pulse
soliton states were first identified with in the context of t
cubic GL model@6,7# and subsequently in the generaliz
quintic regime@4,8,9# and, typically, they represent chirpe
coherent structures~or one-dimensional defects! that are ob-
tained through heteroclinic trajectories in the phase spac
the stationary GL equation. Several types of solitary wa
solutions of the continuous GL equation have been identi
over the last years. These include flat-top solutions in
and two dimensions@10,11#, erupting and creeping soliton
@11,12#, and spiraling solitons carrying topological char
@13,14#.

In addition to the well-studied continuous GL equatio
discrete Ginzburg-Landau~DGL! models have also bee
considered in the literature@15–18#. These DGL lattices are
quite often used to describe a number of physical syst
such as Taylor and frustrated vortices in hydrodynamics@15#
and semiconductor laser arrays in optics@16,17#. In these
latter studies, the DGL model has been predominantly u
in connection with spatio-temporal chaos, instabilities, a
turbulence@18#. Nevertheless, in spite of previous resear
activity, no coherent structures such as self-localized s
tions or solitons have been identified in the DGL system. I
therefore natural for someone to ask whether such disc
Ginzburg-Landau or DGL solitons indeed exist. And, if th
is the case, what are their underlying properties and how
they differ from their continuous counterparts?

In this paper, we demonstrate that discrete solitons~DS!
are possible in Ginzburg-Landau lattices. More specifica
we show that this system exhibits unique complex dispers
properties associated with a Brillouin zone. As a result,
discrete dispersion~diffraction! behavior of a GL lattice dif-
fers substantially from that encountered in conservative
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rays@19,20#. In general, two new types of DGL solitons ca
exist under the same conditions. These solutions are loc
either at the base or at the edge of the Brillouin zone a
bifurcate at different values of the linear gain. As a result
discreteness, we find that this system exhibits features
have no counterpart whatsoever in either the continuous
limit or in other conservative discrete models@19,20# @as in
discrete nonlinear Schro¨dinger ~DNLS! chains#. These in-
clude, for example, on-site and intrasite bright DGL solito
that can both be stable as well as new bifurcation types
cannot be identified in the continuous case.

In general, the cubic-quintic DGL equation is given by

i u̇n2 i eun1a~un111un21!1puunu2un1quunu4un50,
~1!

wherep5pr1 ipi , q5qr1 iqi , a5a r1 ia i , e is a real pa-
rameter, andu̇n5dun /dz. Physically, the discretization in
Eq. ~1! occurs by applying the tight binding approximatio
~or coupled mode theory! @17,21#. The original, periodic in
space, continuous system is expanded in local modes, w
amplitudes are described by the corresponding disc
model. In Eq.~1! a r accounts for the energy tunneling b
tween adjacent elements of the lattice, while its imagin
part stands for gain~losses! due to coupling. The real parts o
p andq represent the strength of the cubic and quintic no
linearity of the system, whilee, pi , qi are the linear and
nonlinear gain~loss! coefficients.

Within the context of nonlinear optics, the DGL equatio
arises in the description of semiconductor laser arrays@17#,
where the quintic term can account for the gain and non
earity saturation of the lasing medium. The DGL equati
can also describe the dynamics of an open Bose-Eins
condensate. In this case, the lattice potential is created by
interference of two optical standing waves@22# and, thus,
solitons of the discrete nonlinear Schro¨dinger type are
known to exist@23#. The dissipation of the Bose-Einstei
condensate naturally occurs in an open condensate w
gain can result from the interaction between the conden
and the uncondensed atoms@24,25#. Notice, than in all of
these cases, it is a common practice to write the origi
saturable nonlinearity of the system in terms of a cub
quintic expansion that, in turn, conveys the fundamen
properties of the original model@17,25#.

We begin our analysis by considering the linear dispers
properties of the DGL equation. To do so, we writeun
}exp(ikz2iun), wherek5kr1 ik i is the complex propaga
©2003 The American Physical Society06-1
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tion wave number andu is the wave momentum inside th
lattice. The real and imaginary parts of Eq.~1! are then found
to satisfy

kr52a rcosu, ki52e12a icosu. ~2!

In Fig. 1,kr andki are depicted as a function ofu. Equa-
tion ~2! describes the dispersive properties of the latt
within the Brillouin zone as defined in the regionuuu<p.
When uuu,p/2 anda r.0, the curvature of the dispersio
relation @Eq. ~2!# implies that the effective diffraction of the
array is normal. On the other hand, whenp/2,uuu,p ~and
a r.0) the effective diffraction of the array becomes anom
lous and of course these regimes are reversed fora r,0.

The imaginary part of the propagation wave number@Eq.
~2!#, is directly related with the growth rate of the perturb
tions of the zero solution. In particular, any perturbation f
quencyu that satisfies the conditionki,0, will grow expo-
nentially with a growth rategd(u)5e22a icosu. We
emphasize that this growth rate is a periodic function ou
with period 2p, i.e., gd(u12pn)5gd(u), where n is an
integer. From all the possible frequenciesu within the Bril-
louin zone, only those that satisfy the inequalitye
.2a icosu will eventually develop instabilities. Therefore
the zero solution is absolutely stable fore,22ua i u. On the
other hand, whene.2ua i u every frequency is amplified, an
the maximum growth rate~that occurs either at the base or
the edge of the Brillouin zone! is given bye12ua i u. In the
regime between the two aforementioned cases, i.e., wh
22ua i u,e,2ua i u, only a subset of the frequencies~those
satisfying e.2a icosu) will be amplified while the rest of
them will decay. Note that the instability behavior of the ze
solution of the DGL is fundamentally different from tha
arising in the continuous GL limit where it is described
gc(u)5e81a iu

2 @26#. Apparently, in the continuous limit
the stability properties are strongly affected by the sign of
‘‘diffusion’’ term, a i , i.e., for a i.0 the zero solution will
always be unstable, regardless of the value ofe. Thus, in
order to stabilize the background of a self-localized state
is essential to havea i,0. On the other hand, the DG
model has the interesting property that the background
be stabilized for both signs ofa i by appropriately choosing
the linear gaine of the system. We would like to mentio
that, in the linear regime, Eq.~1! can be solved analytically
When only one lattice element is initially excited~say n
50 at z50), the field profile atz is given by

un~z!5u0Jn~2az!eipn/2eez, ~3!

FIG. 1. ~a! The dispersion curve of the array whena r51 and
~b! ki ~associated with the instability growth rate! as a function ofu
for a i51 ande522,0,2.
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whereJn(x) ~with complex argument! is a Bessel function of
the first kind and of integer ordern. The evolution of more
involved initial field patterns can be readily obtained
simple superposition of this impulse response. In Figs. 2~a!–
2~d! the impulse response of the lattice atz53 is depicted
for a51, 11 i , i, 2 i , respectively. In Fig. 2~c! the out-of-
phase mode is preferentially amplified, while in Fig. 2~d! the
mode is in phase at the output.

We will now investigate the structure as well as some
the basic properties of DS states existing in the GL lattice.
do so, we look for stationary localized modesun
5exp(ilz)vn of Eq. ~1! and the resulting algebraic system
solved numerically using the Newton iteration method. No
that Eq.~1! is subject to certain symmetries that can be us
to reduce the parameter space of the system in study.
notice that, by employing the phase transformationun
→unexp(ipn) along witha→2a, Eq.~1! remains invariant.
This, in turn, allows the one-to-one mappinga↔2a. Here,
without any loss of generality, we assume thata r.0. A
second symmetry also exists, i.e.,z→2z, and un
→exp(ipn)un , p→2p, q→2q, which is used by applying
the additional constraintpr.0 to the system. In doing so, w
consider immobile GL discrete solitons that reside either
the base (u50), or at the edge (u5p) of the Brillouin zone
@27#. For u50, the DS bifurcates from the zero solution
e52a i , while in the caseu5p the DS bifurcates ate5
22a i . It is important to note that the existence of these t
bifurcation points is a result of the periodicity introduced
the lattice model and is in clear contradistinction to the co
tinuous GL equation, where only one bifurcation occu
when the linear gain is zero. The connection between the
states and the solitons of the continuous GL equation is
tablished for broad enough solutions. In this regime one
apply a Taylor series expansion and, as a result, Eq.~1! can
be approximated by the continuous GL equation~see Ref.
@26#!. Then, in the linear case, the periodic diffraction re
tion of the discrete model can be approximated by a pa
bolic in the continuous case. Close to the bifurcation poi

FIG. 2. Field profile of a linear impulse response of the lattice
z53. In ~a! e50, while in ~b!–~d! e521.
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DISCRETE GINZBURG-LANDAU SOLITONS PHYSICAL REVIEW E67, 026606 ~2003!
the solutions become very broad and, therefore, can be
proximated by the soliton states of the continuous GL eq
tion @6,9,26#. For example, for the continuous cubic GL sy
tem ~see Ref. @26#! the maximum intensity of a broa
discrete soliton is related toe8 in a linear fashion

u0
25

23m~a r
21a i

2!e8

a@2ma r1a i~12m2!#
, ~4!

wherem5(3b6A9b218a2)/2a, a5pra i2pia r , b5pra r
2pia i . On the other hand, when the solution is highly co
fined inside the lattice (uu61u/uu0u!1), one can accurately
estimate its maximum amplitude to be

u0
25SA e

pi
2Api

e

2pra ra i1pi~a i
22a r

2!

e~pr
21pi

2!
D 2

, ~5!

while similar expressions are obtained for the soliton pro
gation numberl as well as foru61 for both the cubic and
the quintic models. Again, for asymptotically large values
the maximum intensity,uu0u2 is linearly related toe. In gen-
eral, these highly confined modes are accurately describe

u5u0exp~2sunu1 ilz!, ~6!

where the parameters of the solution satisfyl1 i e
52a coshs and sinhs5u0

2(p1qu0
2)/(2a). In addition, one can

FIG. 3. Typical codimension one bifurcation diagrams of t
cubic DGL model. In all bifurcation figures, solid and dash-dott
curves represent stable and unstable branches, respectively.

FIG. 4. ~a! A highly confined DS solution in the normal diffrac
tion regime and~b! the corresponding DS that resides at the edge
the Brillouin zone, when a50.120.2i , p512 i0.8, q50.1
10.1i , u052.1.
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obtain valuable information from the DS tails since loca
un}exp(ilz2sunu) is satified. In this case, the relations~con-
straints! l52@a rcosh(sr)cos(si)2aisinh(sr)sin(si)# and e
52@a rsinh(sr)sin(si)1aicosh(sr)cos(si)# hold true.

In Fig. 3, typical codimension one bifurcation diagrams
the cubic DGL model are depicted. Figures 3~a! and 3~c!
show bifurcations for DS located at the base of the Brillou
zone whereas the curves of Fig. 3~b! and ~d! correspond to
the edge of the zone. As in the continuous GL case, th
bifurcations are supercritical whenpi.0 and subcritical
whenpi,0. In all bifurcation figures, solid and dash-dotte
curves represent stable and unstable branches, respecti

Close to the bifurcation point, the DS are quite broa
and, as a result, the numerically found curves shown in F
3 ~with eitheru50 or u5p) are well approximated by Eq
~4!. Also, when the maximum intensity becomes relative
high, the solutions residing in the normal diffraction regim
become highly localized inside the lattice. Fig. 4~a! depicts
such a highly confined DS~at the base of the Brillouin zone!,
which is in excellent agreement with the analytical results
Eq. ~6!. On the other hand, in the anomalous discrete diffr
tion regime~at the edge of the Brillouin zone!, a rather pe-
culiar feature arises; the amplitude profile becomes broa
and flatter with stronger chirp. We attribute this property
the rather involved energy flow within the GL DS und
anomalous diffraction conditions. As an example, Fig. 4~b!
shows the field of a high-intensity DS in the anomalous d
fraction regime that extends over seven lattice points. Sim
types of solutions~flat top! can also be found in the continu
ous Ginzburg-Landau model@10,11#. On the other hand
these discrete flat-top solutions exist when the maximum
tensity of the solutions is above a certain threshold, and t
stability properties may be relevant to the modulational
stability of the corresponding continuous-wave solutio
However, the possible bifurcation of these solutions is
issue that merits further investigation.

f

FIG. 5. Bifurcation diagrams of the quintic DGL equation~a! at
the base and~b! at the edge of the Brillouin zone.

FIG. 6. A cusplike DS solution fora50.422i , p50.120.4i ,
q50.43i ande520.4.
6-3
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In general, the stability properties of the cubic DGL so
tons can be identified from the corresponding bifurcat
diagrams. A subcritical DS will be unstable, whereas an
stable background can destabilize a supercritical DS.
properties of the bifurcation diagrams can be modified wh
the quintic term in Eq.~1! is nonzero. In fact, a saddle-nod
bifurcation emerges if the conditionpiqi,0 is satisfied. It is
then of interest to determine the parameter space where
solutely stable DS exist. To realize this, it is necessary
the zero background on which these discrete modes resi
stable for any perturbation frequency, i.e.,e,22ua i u. By
taking this into account and knowing from standard bifurc
tion theorems that stable and unstable manifolds altern
one can then conclude that necessary conditions for DS
bility are pi,0 andqi.0. In Fig. 5 such bifurcation dia
grams of the quintic model satisfying the necessary stab
conditions are depicted. The curves shown in Figs. 5~a! and
5~b! correspond to the base and the edge of the Brillo
zone, respectively. The stability of these solutions was t
investigated by performing numerical simulations. The D
shown in Fig. 4~a! lies on the upper branch of the bifurcatio
diagram and was also verified numerically to be stable.
the other hand, the solution shown in Fig. 4~b! happens to be
unstable.

We would also like to mention that in certain range
parameters the DS solutions of the DGL equation can exh
interesting behavior; the tails of the DS become very bro
~occupying many lattice sites!, whereas the central part of
is confined and displays a cusplike feature as shown in
6. Note that no such cusp soliton structures are possibl
either the continuous GL regime or in DNLS lattices.
understand this behavior one may use the relationl1 i e
52a coshs, from where the rate of decay,sr , of the soliton
tails in Eq. ~6! can be determined. In the case of Fig. 6,sr
50.2 which indeed justifies the slow field decay at the ta

More complicated bifurcation diagrams that have no a
log in the continuous GL case also appear in the disc
model. For example, in Fig. 7~normal diffraction regime! we

FIG. 7. A subcritical bifurcation followed by three successi
saddle-node bifurcations atu50.
ce
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can observe a subcritical bifurcation that is followed fro
three successive saddle-node bifurcations. As a result,
different branches of nonzero solutions exist allowing up
two stable DS for the same value ofe.

Except from the DS that are centered on a single lat
point ~on site!, two different types of DS that are centere
between two lattice points~intrasite! exist. These are charac
terized by the phase difference between the two central
tice points that can be either 0 orp when the solutions are
highly confined. In the DNLS regime, thep-out-of-phase
intrasite DS are known to be stable@28# for relatively strong
nonlinearities, whereas, the in-phase intrasite DS are alw
unstable because of oscillatory instabilities. Yet, in the DG
lattice system, we have identified regimes where both ty
of DS solutions are stable. In Fig. 8 such a stable intra
in-phase state is depicted. For these values of the param
both the in-phase and the out-of-phase DS are stable. T
intensity profiles are almost identical, and their main diffe
ence is in the relative phase between the high-intensity lat
sites, which is 0 orp. The stability of these DS was checke
dynamically against symmetry breaking perturbations.
more detailed stability analysis of these DS will be presen
elsewhere.

In conclusion, we have demonstrated that discrete solit
are possible in Ginzburg-Landau lattices. As a result of d
creteness, this system exhibits several features that hav
counterpart whatsoever in either the continuous limit or
other conservative discrete models. Before closing,
would like to mention that there are still several issues t
may merit further investigation. These include, for examp
the existence of other DGL coherent structures, such
fronts, sources, as well as sinks. Finally, we mention tha
may also be of interest to investigate the effect of high
order discrete diffraction effects that can appear, for
ample, in a discretized version of the complex Swi
Hohenberg equation. Physically, this is possible by using
zigzag configuration suggested in Ref.@29#.

This work was supported by an ARO MURI and by th
Pittsburgh Supercomputer Center.

FIG. 8. In-phase stable intrasite DS fora50.12 i0.1, p50.2
2 i6, q50.21 i , ande528.
ce
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