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Discrete Ginzburg-Landau solitons
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We demonstrate that discrete solitons are possible in Ginzburg-Landau lattices. As a result of discreteness,
we find that this system exhibits a host of features that have no counterpart whatsoever in either the continuous
limit or in other conservative discrete models.
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The complex Ginzburg-Landa{GL) equation is known rays[19,20. In general, two new types of DGL solitons can
to play a ubiquitous role in science. This equation is encounexist under the same conditions. These solutions are located
tered in several diverse branches of physics, such as, f&ither at the base or at the edge of the Brillouin zone and
example, in superconductivity and superfluidity, nonequilib-bifurcate at different values of the linear gain. As a result of
rium fluid dynamics and chemical systems, nonlinear OpticsgiSCreteneSS, we find that this system exhibits features that
Bose-Einstein condensates, and in quantum field theoridd@ve no counterpart whatsoever in either the continuous GL
[1-5]. In general, the very nature of the GL system is sucHimit or in other conservative discrete mod¢lkd,2Q [as in
that can lead to extraordinary rich behavior ranging fromdiscrete nonlinear Schdinger (DNLS) chaing. These in-
chaos and pattern formation to self-localized solutions oflude, for example, on-site and intrasite bright DGL solitons
solitons. In the latter regime, GL dissipative solitajes au- that can both be stable as well as new bifurcation types that
tosolitons are possible as a result of the interplay betweerfannot be identified in the continuous case.
linear and nonlinear gain, nonlinearity, and complex disper- N general, the cubic-quintic DGL equation is given by
sion [6—9]. Over the years, the soliton solutions of the _

Ginzburg-Landau equation and their underlying dynamics iU,—i€U,+ a(Upy1+U,_1)+plup|?uy+alu,|*u,=0,

have been the subject of intense investigation. Such pulselike (1)
soliton states were first identified with in the context of the . i ) )

cubic GL model[6,7] and subsequently in the generalized Wherep=p;+ip;, q=0q,+iq;, a=a,+ia;, €is a real pa-
quintic regime[4,8,9 and, typically, they represent chirped rameter, andu,=du,/dz. Physically, the discretization in
coherent structure®r one-dimensional defegtthat are ob- Eq. (1) occurs by applying the tight binding approximation
tained through heteroclinic trajectories in the phase space @br coupled mode theojy{17,21. The original, periodic in

the stationary GL equation. Several types of solitary wavespace, continuous system is expanded in local modes, whose
solutions of the continuous GL equation have been identifie@mplitudes are described by the corresponding discrete
over the last years. These include flat-top solutions in ongnodel. In Eq.(1) «, accounts for the energy tunneling be-
and two dimension$10,11], erupting and creeping solitons tween adjacent elements of the lattice, while its imaginary
[11,12, and spiraling solitons carrying topological charge part stands for gaiflosse$ due to coupling. The real parts of
[13,14. p andq represent the strength of the cubic and quintic non-

In addition to the well-studied continuous GL equation, linearity of the system, whiles, p;, g; are the linear and
discrete Ginzburg-LandayDGL) models have also been nonlinear gainloss coefficients.
considered in the literatufd5-18. These DGL lattices are Within the context of nonlinear optics, the DGL equation
quite often used to describe a number of physical systemarises in the description of semiconductor laser arfay$
such as Taylor and frustrated vortices in hydrodynarfii&  where the quintic term can account for the gain and nonlin-
and semiconductor laser arrays in opt[d$,17. In these earity saturation of the lasing medium. The DGL equation
latter studies, the DGL model has been predominantly usedan also describe the dynamics of an open Bose-Einstein
in connection with spatio-temporal chaos, instabilities, andcondensate. In this case, the lattice potential is created by the
turbulence[18]. Nevertheless, in spite of previous researchinterference of two optical standing wavg®2] and, thus,
activity, no coherent structures such as self-localized solusolitons of the discrete nonlinear ScHioger type are
tions or solitons have been identified in the DGL system. It isknown to exist[23]. The dissipation of the Bose-Einstein
therefore natural for someone to ask whether such discregondensate naturally occurs in an open condensate while
Ginzburg-Landau or DGL solitons indeed exist. And, if thatgain can result from the interaction between the condensed
is the case, what are their underlying properties and how dand the uncondensed atorf4,25. Notice, than in all of
they differ from their continuous counterparts? these cases, it is a common practice to write the original

In this paper, we demonstrate that discrete solit@sS) saturable nonlinearity of the system in terms of a cubic-
are possible in Ginzburg-Landau lattices. More specificallyquintic expansion that, in turn, conveys the fundamental
we show that this system exhibits unique complex dispersioproperties of the original mod¢l7,25.
properties associated with a Brillouin zone. As a result, the We begin our analysis by considering the linear dispersion
discrete dispersiofdiffraction) behavior of a GL lattice dif- properties of the DGL equation. To do so, we wriig
fers substantially from that encountered in conservative ar<exp(kz—i#n), wherek=k, +ik; is the complex propaga-

1063-651X/2003/6(2)/0266065)/$20.00 67 026606-1 ©2003 The American Physical Society



N. K. EFREMIDIS AND D. N. CHRISTODOULIDES PHYSICAL REVIEW E7, 026606 (2003

4

el (c) I o=i
o _.III III._ _____
-T O0g T -7 Og T _
—40 0 10
FIG. 1. (a) The dispersion curve of the array whepn=1 and n
(b) k; (associated with the instability growth rates a function o 3 (b) =1 +i 4 d .
for ;=1 ande=—2,0,2. (d) o=-l
=
tion wave number and is the wave momentum inside the = -
lattice. The real and imaginary parts of Efj) are then found
to satisfy q
-10 0 10 |
k,=2a,c0s6, k;=—¢e+2a;c0S6. (2 n q g 10

In Fig. 1,k, andk; are depicted as a function éf Equa-
tion (2) describes the dispersive properties of the lattice FIG.2. Field profil_e o_falinear impulse response of the lattice at
within the Brillouin zone as defined in the regidgj<z.  2=3. In (@ =0, while in (b)—(d) e=—1.
When | 0| < w/2 anda,>0, the curvature of the dispersion
relation[Eq. (2)] implies that the effective diffraction of the whereJ,(x) (with complex arguments a Bessel function of
array is normal. On the other hand, whef2<|6|<m (and  the first kind and of integer order. The evolution of more
a,>0) the effective diffraction of the array becomes anoma-involved initial field patterns can be readily obtained by

lous and of course these regimes are reversedfer0. simple superposition of this impulse response. In Figa.-2
The imaginary part of the propagation wave numfigs.  2(d) the impulse response of the latticeza 3 is depicted
(2)], is directly related with the growth rate of the perturba-for a=1, 1+i, i, —i, respectively. In Fig. @) the out-of-

tions of the zero solution. In particular, any perturbation fre-phase mode is preferentially amplified, while in Figd2the
quencyé that satisfies the conditiok <0, will grow expo-  mode is in phase at the output.

nentially with a growth rategqy(6#)=e—2a;cosf. We We will now investigate the structure as well as some of
emphasize that this growth rate is a periodic functiordof the basic properties of DS states existing in the GL lattice. To
with period 2, i.e., g4(6+2mn)=gy(0), wherenis an do so, we look for stationary localized modes,
integer. From all the possible frequencig¢svithin the Bril- =expir2v, of Eq. (1) and the resulting algebraic system is
louin zone, only those that satisfy the inequality solved numerically using the Newton iteration method. Note
>2a;cosé will eventually develop instabilities. Therefore, that Eq.(1) is subject to certain symmetries that can be used
the zero solution is absolutely stable forx —2|«;|. On the to reduce the parameter space of the system in study. We
other hand, wher>2|qa;| every frequency is amplified, and notice that, by employing the phase transformatiopn

the maximum growth ratéhat occurs either at the base or at — u,exp{n) along witha— — «, Eq.(1) remains invariant.

the edge of the Brillouin zonds given bye+2|q;|. Inthe  This, in turn, allows the one-to-one mapping- — a. Here,
regime between the two aforementioned cases, i.e., whewithout any loss of generality, we assume that>0. A
—2|aj|<e<2|aj|, only a subset of the frequenciéhose second symmetry also exists, i.ez——z, and u,
satisfying e>2a;cosd) will be amplified while the rest of —exp{mn)u,, p— —p, g— —q, which is used by applying
them will decay. Note that the instability behavior of the zerothe additional constrairg, >0 to the system. In doing so, we
solution of the DGL is fundamentally different from that consider immobile GL discrete solitons that reside either at
arising in the continuous GL limit where it is described by the base §=0), or at the edged= ) of the Brillouin zone
gc(0) =€’ + ;6% [26]. Apparently, in the continuous limit, [27]. For #=0, the DS bifurcates from the zero solution at
the stability properties are strongly affected by the sign of thee=2«,, while in the cased= = the DS bifurcates at=
“diffusion” term, «;, i.e., for ;>0 the zero solution will —24;. Itis important to note that the existence of these two
always be unstable, regardless of the valueeofThus, in  bifurcation points is a result of the periodicity introduced by
order to stabilize the background of a self-localized state, ithe lattice model and is in clear contradistinction to the con-
is essential to haver;<0. On the other hand, the DGL tinuous GL equation, where only one bifurcation occurs
model has the interesting property that the background cawhen the linear gain is zero. The connection between the DS
be stabilized for both signs af; by appropriately choosing states and the solitons of the continuous GL equation is es-
the linear gaine of the system. We would like to mention tablished for broad enough solutions. In this regime one can
that, in the linear regime, Eq1) can be solved analytically. apply a Taylor series expansion and, as a result,(Bocan
When only one lattice element is initially excitdday n  be approximated by the continuous GL equatisee Ref.

=0 atz=0), the field profile at is given by [26]). Then, in the linear case, the periodic diffraction rela-
. tion of the discrete model can be approximated by a para-
Un(2)=Ugdn(2az)e' ™%, 3 bolic in the continuous case. Close to the bifurcation points
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of o= 0.6+i0.1 of. o = 0.6-0.1 3 (a) 3 (b)
p=1+ “'~\~ p=1-i
o o ’\\ _ .,I. . e [ 3-2 7] q‘l
=3 [=3 c o = /
=l =) =) i 2
0 &  / 0 (c) ,
A8 2 B,
- 0,1t 2 2 -1 0 A 5 10, 15 20 5 10,15 20
= 0.64i01 o = 0.6-0.1 FIG. 5. Bifurcation diagrams of the quintic DGL equatit at
2 p=1d p=1-i the base andb) at the edge of the Brillouin zone.
o~ N
= = obtain valuable information from the DS tails since locally
() 0 (d) u,>xexpirz—gn|) is satified. In this case, the relatiofmon-
0 strainty N\ =2[ a,cosh§)cosE)—q;sinh@)sins)] and e
-1 0 . 1 2 -2 -1 c 0 1 =2[ a,sinh()sin(s) + ¢;cosh§)cosE)] hold true.

In Fig. 3, typical codimension one bifurcation diagrams of
FIG. 3. Typical codimension one bifurcation diagrams of thethe cubic DGL model are depicted. Figureg)3and 3c)

cubic DGL model. In all bifurcation figures, solid and dash-dottedShow bifurcations for DS located at the base of the Brillouin
curves represent stable and unstable branches, respectively. ~ zone whereas the curves of FighbBand (d) correspond to

the edge of the zone. As in the continuous GL case, these
the solutions become very broad and, therefore, can be apifurcations are supercritical whep,>0 and subcritical
proximated by the soliton states of the continuous GL equawhenp;<0. In all bifurcation figures, solid and dash-dotted
tion [6,9,2G. For example, for the continuous cubic GL sys- curves represent stable and unstable branches, respectively.
tem (see Ref.[26]) the maximum intensity of a broad  Close to the bifurcation point, the DS are quite broad,
discrete soliton is related t' in a linear fashion and, as a result, the numerically found curves shown in Fig.
3 (with either 6=0 or 6= =) are well approximated by Eq.
(4). Also, when the maximum intensity becomes relatively
high, the solutions residing in the normal diffraction regime
become highly localized inside the lattice. Figajdepicts
where u=(3b=* \9b%+8a?)/2a, a=p,a;—pia;, b=p,a, such a highly confined D&t the base of the Brillouin zone
—pi«;. On the other hand, when the solution is highly con-which is in excellent agreement with the analytical results of
fined inside the lattice|(.1|/|up|<1), one can accurately Eg.(6). On the other hand, in the anomalous discrete diffrac-

) —3u(a’+ad)e
UO: 2 )
a[2pa;+ ai(1—p)]

(4)

estimate its maximum amplitude to be tion regime(at the edge of the Brillouin zonea rather pe-
5 culiar feature arises; the amplitude profile becomes broader
) \F \/EZpraraﬁ— pi(aiz— arz) and flatter with stronger chirp. We attribute this property to
Uo= E_ € e(p2+p?) (5 the rather involved energy flow within the GL DS under
r |

anomalous diffraction conditions. As an example, Fith)4

while similar expressions are obtained for the soliton propashows the field of a high-intensity DS in the anomalous dif-
gation numben as well as foru. , for both the cubic and fraction regime that extends over seven lattice points. Similar
the quintic models. Again, for asymptotically large values oftyPes of solutionsflat top) can also be found in the continu-
the maximum intensityu,|? is linearly related tce. In gen-  OUS Ginzburg-Landau modgli0,11). On the other hand,

eral, these highly confined modes are accurately described Byese discrete flat-top solutions exist when the maximum in-
tensity of the solutions is above a certain threshold, and their

u=ugexp(—s|n|+irz), (6)  stability properties may be relevant to the modulational in-

) ) ] stability of the corresponding continuous-wave solution.

where the pargmeterzs of the solution satisittie  However, the possible bifurcation of these solutions is an
=2a coshs and sints=ug(p+qug)/(2«). In addition, one can  jssye that merits further investigation.

10 10
(a) (b) 4
o / . / E
[=} o=0.1-i0.2 =] o=0.1-i0.2 "
=1 p=1-i0.8 =1 p=1-i0.8 = N
Mo, G=0.1400.1 Tl g =0.1+i0.1 = 5-1
0—». ................. 0 R - pom
-2 -1 . 0 1 -2 -1 . 0 1 ,,;A‘ %
0,
FIG. 4. (a) A highly confined DS solution in the normal diffrac- 20 n 40
tion regime andb) the corresponding DS that resides at the edge of
the Brillouin zone, whena=0.1-0.2, p=1-i0.8, q=0.1 FIG. 6. A cusplike DS solution for=0.4—2i, p=0.1-0.4,
+0.1i, ug=2.1. g=0.43 ande=—-0.4.
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FIG. 7. A subcritical bifurcation followed by three successive ~_FIG- 8. In-phase stable intrasite DS far=0.1-i0.1, p=0.2
saddle-node bifurcations @t=0. —i6,q=0.2+i, ande=—8.

can observe a subcritical bifurcation that is followed from

In general, the stability properties of the cubic DGL soli- three successive saddle-node bifurcations. As a result, four
tons can be identified from the corresponding bifurcationdifferent branches of nonzero solutions exist allowing up to
diagrams. A subcritical DS will be unstable, whereas an untwo stable DS for the same value ef
stable background can destabilize a supercritical DS. The Except from the DS that are centered on a single lattice
properties of the bifurcation diagrams can be modified wherpoint (on site, two different types of DS that are centered
the quintic term in Eq(1) is nonzero. In fact, a saddle-node between two lattice pointntrasite exist. These are charac-
bifurcation emerges if the conditiqng;<O0 is satisfied. Itis terized by the phase difference between the two central lat-
then of interest to determine the parameter space where afic€ Points that can be either 0 ar when the solutions are
solutely stable DS exist. To realize this, it is necessary thafighly confined. In the DNLS regime, the-out-of-phase

the zero background on which these discrete modes reside f2irasite DS are known to be staljieg] for relatively strong
stable for any perturbation frequency, i.es —2|a;|. By nonlinearities, whereas, the in-phase intrasite DS are always
,i.es .

taking this into account and knowing from standard bifurca_unstable because of oscillatory instabilities. Yet, in the DGL

tion theorems that stable and unstable manifolds alternat%”}ttgse ?(;?Lﬁ?n swaerehas\{gbllde ermﬂg;dg r%g'srni‘:’] ghs(et;elalte)oit:t:gspi?es
one can then conclude that necessary conc_imons_for D_S S ﬂ’i-phase state is depicted. For these values of the parameters
bility are p;<0 andg;>0. In Fig. 5 such bifurcation dia- 1 the in-phase and the out-of-phase DS are stable. Their
grams of the quintic model satisfying the necessary stability,o ity profiles are almost identical, and their main differ-
conditions are depicted. The curves shown in Figs) 5n_d _ence is in the relative phase between the high-intensity lattice
S(b) correspond to the base and the edge of the Br'IIOLJ'rEites which is O orr. The stability of these DS was checked
zone, respectively. The stability of these solutions was the'ayna,mically against symmetry breaking perturbations. A

investig_ateq by p_erforming nhumerical simulations_. The_ DSmore detailed stability analysis of these DS will be presented
shown in Fig. 4a) lies on the upper branch of the bifurcation elsewhere

?r']agr?hm a;]nd ;V?E aIscI) \t/.e”f'e: numerllzt;atljlyhto be Stibli' On In conclusion, we have demonstrated that discrete solitons
e other hand, the solution shown in Figbjhappens to be are possible in Ginzburg-Landau lattices. As a result of dis-

unstable. creteness, this system exhibits several features that have no

We would also like to mention that in certain range (_)f_counterpart whatsoever in either the continuous limit or in
parameters the DS solutions of the DGL equation can exhlb%/

! : . ) ther conservative discrete models. Before closing, we
interesting behavior; the tails of the DS become very broa 9

. latii . h h | £ ould like to mention that there are still several issues that
(occupying many lattice sitgswhereas the central part of it may merit further investigation. These include, for example,

is confined and displays a cusplike feature as shown i.n Fi%e existence of other DGL coherent structures, such as,
6. Note that no such cusp sol_lton structures are p_035|ble fonts, sources, as well as sinks. Finally, we mention that it
e|tzer thedcor?tlnl;mrl]s GL regime or in DI;ILS I;’:ltt_|c§s. To may also be of interest to investigate the effect of higher-
lin erstaﬂs ft IS eh aworr] one m% use t ef rr?aue:me order discrete diffraction effects that can appear, for ex-
= 2a coshs, from where the rate of decag,, of the soliton 5516 iy a discretized version of the complex Swift-

tails in Eq.(6) can be determined. In the case of Fig.sp,  ohenberg equation. Physically, this is possible by using the
=0.2 which indeed justifies the slow field decay at the ta'ls'zigzag configuration suggested in REZ9)].

More complicated bifurcation diagrams that have no ana-
log in the continuous GL case also appear in the discrete This work was supported by an ARO MURI and by the
model. For example, in Fig. (hormal diffraction regimpwe  Pittsburgh Supercomputer Center.
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