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Modulation instability and solitons on a cw background in an optical fiber
with higher-order effects
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We construct the Lax pair for a higher-order nonlinear Sdimger equation that includes terms accounting
for the third-order dispersion, the self-steepening effect, and the delayed nonlinear response effect. Two exact
analytic solutions that descriki® modulation instability andii) soliton propagation on a continuous wave
background are obtained by using the Darboux transformation. In addition, we analyze the amplification-
absorption and quintic nonlinearity effects on the second solution in the adiabatic approximation.
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[. INTRODUCTION Hasegawa and Kodand0] has already numerically ana-
lyzed the influence of a cw background on the behavior of a
The propagation of ultrashort pulses in optical fibers insoliton pulse. They have observed that when the cw back-
the form of optical solitons is receiving growing attention ground was in phase with the solitonic pulse, a certain pulse
with a view to much potential application of solitons in long- compressionamplification was achieved. Akhmediev and
distance communications, optical switching devices, andVabnitz[11] suggested, for detecting the phase of a soliton
pulse shaping in laser sources. The possibility of compensapulse, to mix it with a cw background. More recently, N.
ing for the temporal broadening of a short pulse in theBelanger and P.-A. Banger[12] obtained an exact analyti-
anomalous-dispersion regime of fibers by using nonlinearitycal expression fon-bright solitons on a cw background by
(thus forming a so-called bright solitbwas first pointed out using the Hirota method and discussed the two-soliton inter-
by Hasegawa and Tappert in 19FB|. This prediction was action.
subsequently confirmed by several experimdiis At the However, it should be noted that all of these discussions
same time Hasegawa and Tappert proposed that in the noare based on the NLS equation. If optical pulses are shorter,
mal dispersion regime of the fiber, dark solitons might propathe standard NLS equation becomes inadequate. Some
gate in the form of dips embedded in a continuous-wavéigher-order effects, such as third-order dispersion, self-

(cw) background3]. steepening, and nonlinear response effects, will play impor-
The mathematical description of these solutions is specitant roles in the propagation of optical pulses. In order to
fied by solving the nonlinear Schdimger (NLS) equation understand such phenomena, Kodama and Haseld8,#d]
proposed a higher-order nonlinear Salinger (HNLS)
gq  d%q equation
i—+e— +2|g/2q=0, e==1, (1)
ot NG J 2 3 9 | |2
q . ) q (1al*a)
E_I al§+a2|q| q +a3§+a40—x
by the inverse-scattering transform method with vanishing
[4] and nonvanishing5] boundary conditions for the anoma- alql?
lous (e=1) and normal §=—1) dispersion regimes, re- +asq— (3]

spectively.

Kawata and Inoug6] has discussed E¢l) under nonva- where q is the slowly varying envelope of the pulse,
nishing boundary conditions in the anomalous-dispersion rex, ,a,,a3,a,4, and as are the real parameters related to
gime (e=1) by employing the inverse-scattering transformgroup velocity dispersion(GVD), self-phase modulation
scheme. As a particular result, they obtained an exact solySPM), third-order dispersio(TOD), self-steepening, and
tion that describes the evolution of one soliton on a cw backdelayed nonlinear response effect, respectively.
ground. Subsequently, Mgr7] derived a special case of a  In recent years many authors have analyzed the HNLS
more general solution by using the inverse-scattering techequation from different points of vieve.g., Painlevanaly-
nigue and discussed the two-soliton interaction. Latersis, Hirota direct method, Ablowitz-Kaup-Newel-Segur
Akhmedievet al. [8] and Adachihareet al. [9] also calcu- (AKNS) method, inverse-scattering transform, cRiaind
lated this solution by using two different direct integration transform, and conservation layand there have been many
methods. The first was based on an algebraic ansatz, and theratures giving the bright solitofil5—-22 solution and
second used B&lund transformation. On the other hand, dark soliton[23—25 solution for HNLS equation. Particu-

larly, there have recently been several articles giving

W-shaped solitary wave solution in the HNLS equation
*Email address: xuzy@mail.sxu.edu.cn [26,27. However, for all bright soliton or solitary wave so-
"Email address: lizhongh@mail.sxu.edu.cn lutions mentioned above, they are solved under the vanishing
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boundary conditions. How to find the exact and new-type a9 #q #q a9
solutions for an HNLS equation under the nonvanishing — =i a1—2+a2|q|2q +a3—3+a4|q|2—. 3
boundary conditions is an interesting work. Such an attempt at 28 X ax

appears in this paper.

This paper is organized as follows. In Sec. Il, we first
follow the AKNS formalism to extend the Lax pair for
HNLS (Hirota type equation to more general form by intro-
ducing a real parameter. And fundamental Darboux trans-
formation[28,29 of the equation is presented on the basis o
this Lax pair. In Sec. lll, two exact solutions that describe
modulation instability andii) soliton propagation on a con-

Equation (3) has been investigated in the form of soliton
solution with vanishing boundary conditions by several au-
thors [29-31]. Here we concentrate on discussing it with
nonvanishing boundary conditions by using Darboux trans-
fformation.

By employing the AKNS method one can construct the
linear eigenvalue problem for EQR) as follows:

tinuous wave background are given by using Darboux trans- dr=U (4)
formation. And we show how the higher-order terms influ- * '
ence these two solutions. In Sec. IV, we analyze how the =V, (5)

amplification-absorption and quintic nonlinearity effects af-
fect the second solution in the adiabatic approximation. Thevhere

main results are summarized in Sec. V. -
b=(1,,) "

II. LAX PAIR FOR THE HNLS EQUATION AND ITS HereU andV can be given in the forms

DARBOUX TRANSFORMATION

By settinga,=2u2a;, a,=6u’as, a,+as=0 in Eq. U=\J+P J:(l 0 ) p— 0_ —Ha 6)
(2), we get an integrable Hirota equation as follo\86)]: ’ 0 -1/’ uq O '
|
ial
P — o . .
J[1 0 , 2 M [ —ikfaglal® - paggtipasy
V=4a3)\ _4)\ . +2|)\ —_ — .2 2
0 -1 — la pagd+ipasdy, Tnas|ql
THrazq S
a1 u2|q]%~ agu®(qa,—qdy) _iM“le_Maqux_2“3MBQ|Q|2) -
—ipagOyt pastet 2a3%q]al®  —iau?|q|?+ azu®(dd—aqdy)
|
whereu is a real constant. Obviously, setting=0 Eqs.(6) Combining Egs(4), (8), and(9), we obtain the Darboux

and(7) will give the Lax pair of NLS equation. The compat- transformation for Eq(3) in the form
ibility condition U;—V,+[U,V]=0 gives rise to Eq(3). In
general, the Lax pair assures the complete integrability of a P =P+JS-SJ (10)
nonlinear system, and is especially used to obtain an
N-soliton solution by means of inverse-scattering transfory; is eas ; ; T ;
X y to verify that, if {1,¢,) ' is a solution of Eqs(4)
hod. H he L 7 . — — T
mation method. Here based on the Lax gé&irand (7), we and (5) corresponding t.= A, then (= p,.1)" is also a

solve Eq.(3) by using the Darboux transformation and ob- ; . .
tain twoqnew t};/pes (g)f solitary wave solutions by choosingSOIUt'gn of Egs(4) and(5) and the eigenvaluk is replaced

the periodic initial “seed” solution. by —\1, then we have
Consider the Darboux transformation of E),

®1 _;2>

Ay O
' A: R , =
© =(NM—-9)¢,S=HAH 1, A=diag\i,\,), (8 0 —-N\ ®2 ¢

_ e |2 2
whereH is a nonsingular matrix, requiring A=detH|=[ea|*+]¢al"

— ()\1+y1)(Pi;j

0  —uq Si=—Midj+t ———— (i,j=12. (11

T

!

e,=U'¢, U=\J+P, P

9 From Egs.(6), (9), (10), and(11), we have
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e N Y (12
qa=q M121q q PhcS

Thus we obtain the fundamental expression of Darboux

transformation. That is, ifj is a solution of Eq( 3), q  is
also a solution of Eq(3). Therefore, we may vievg as a
“seed.”

Ill. EXACT SOLUTIONS

In this section, as an example of Darboux transformation,
we give two resulting explicit solutions of an HNLS equation

that describdi) modulation instability andii) soliton propa-
gation on a continuous wave background.
Here we take the initial seeg=a expi(At+Bx) and we
require
a(A+ Bzal-i- Bsa3—5a2a4—a2a2)=0. (13)

To solve Eqs(4) and (5), let ¢1=f1expi(At+BX), p,=T,,
then Egs.(4) and(5) become

fixtiBfy=Nf;—puaf,,
fox=npaf;—Af;,
iAf + T =af;—Bf,,
for=pBf1—af,.
By solving the equations above, we obtain
¢1=(C, expbh;+C, expbhy)expi(At+Bx),
(14)
¢,=C3 exph,+C, expb,,
where

01=(—IB+ {1 +ing)X2+ (—1A+ {+in)t/2,

0,=(—IB—={1—in)X2+(—1A—={—in)t/2,
1 :
)\: E()\l+|)\2),

and the expressions for real numbéxs »,, {,, andn, are
presented in formulél7), and the relations among the con-
stantsC,, C,, C3, andC, are given as follows:

Here for simplicity, we takeC,|=|C,|, where

_ 2apu(N+ &)
(A1 + &) 2+ (N =B+ 71)?

—2au(Ay—B+n)
(N1+ L)%+ (N =B+ 71)?

PHYSICAL REVIEW E 67, 026603 (2003

Substituting expressiofi4) into Eq.(12) and using formula

(11), we have the following solution:

G
gq= = expi (At+BXx), (15

and its corresponding nonlinear phase shHifi,t) is in the
form

D, sinhE+D, sin®
D, coshE +D3 cos®/’

d(x,t)= arctar( (16)

where

G=D, coshE+iD, sinhE+D3 cos®+iD, sin®,
F=Ds5 coshZ +Dg cosO,
E={x+ 4t O=nx+nt,
D;=au(l+L2+M?)—2\,L,D,=2)\ M,
Dy=2aul—\;(1+L2+M?), D,=—-7(1-L%2=M?),

Ds=u(1+L%+M?), Dg=2pul, (17)

L+in=V—B?—4(—N\°+a’u’+iB\N),

Lotin=-A’—4(f°—’+iAa),
a=4a\>+2u2a%azh +i(2a\*+ ayu?a®+ 2Bazula®),

B=4uaaz\’+2azu’a®—auasB>—aua,B
+i 2/.La.)\(a’3B+ al).

Here\y, Ny, {1, 71, {2, 1, are real numbers. Solutigi5)
has some novel properties. Here we mainly discuss three
types of solitary wave solutions under the following para-
metric conditions.

(A) In case ofa=0. i.e., the initial seed is zero, solution
(15) becomes the bright solution as follows:

N
q=-— ;l sectE expi®, (18

where
E:)\]_X"' )\1[a3()\i—37\§)—2a1)\2]t,
O =NoX+[agha(BN2— N3+ a;(N2—AD)]t.

herea,=2u%a;,a,=6u’as,, i.e., three parameters are ar-
bitrary amonga,,@,,a3,a,4. The solution had been exten-
sively discussed by other author30]. Here it is only an
example obtained by Darboux transformation.

(B) Fora#0, the initial “seed” is periodic. And for sim-
plicity, we takeN,=B=0 and correspondingly have con-
straint conditionA=a?«, from Eq.(13). And from Eq.(17),
we have
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Ltin =N\ -4a%u’,

Here we should note that solutigh5) is not significant for
4u’a’®—\2=0. Therefore, the following two cases will be
investigated mainly.

(i) In the case of #%a®—\2>0, solution(15) becomes lal
as follows:

G (a2
q= = expi(alast),

G=D; coshZ+iD, sinhE +D3 cosO,
F=Ds cosh=E +Dg cos®,
E={ot,0=n1X+ 7,
ni=4a’u’ =27, (19

[e]
n2=azny(28u®+2\9),

1=0, o=—aimy,

1 1
D1=a—(7;§—2a2,u2), Do=——m\y, . - . L -
yo au FIG. 1. Evolution of a homoclinic orbit of modulation instability
with a=0.5, u=1, A\;=0.5, ;=0.5, a,=1. (8 The absence of
1 higher-order effectsxrz=a,=as=0; (b) the presence of higher-
D3=—\;, D5=2pu, D6=5)\1. order effectsa3=0.18, @4=1.08, a5=—1.08.

potential usage of the modulation instability effect is for

By analyzing solutior(19), we note that this solution is pe- code generation and decoding in code division multiaccess
riodic in the space coordinate and aperiodic in the longitudi- genera 9
mmunication system83].

nal variable as shown in Fig. 1. Therefore, it is considered a§°m .

a modulation instabilitMI) process. Ml is the process by (i) In the case of ﬂ‘zaz_)‘i<0’ solution(15) becomes
which a cw beam becomes unstaf8e]. In general, a whole e following form:
class of solutions of the NLS equation that are periodic or
guasiperiodic both in space and time dimensions exists. The
aperiodic solution in time may be viewed as a homoclinic or . .
separatrix trajectory in the infinite-dimension phase space of A= {1 €0SO+i), sin® _
the solutions of Eq(3) with periodic boundary conditions in 1 N\, coshE —a cosO®
space[see, for example, Ref33] and references thergin

i.e., the homoclinic orbit or separatrix trajectory is characterwhere

ized by a single mode which limits to the plane wavetas

q=A expi(aast),
(20

— oo [34]. To our best knowledge, Ml was predicted to E =X+ 4t 0= 1t
occur in optical fiber$35] and was experimentally observed

[36]. And the exact analytic expression for Ml in the NLS G=N\i-a% (o= az(1(2a%u?+ 1)),
equation was obtaind®7]. However, in this paper, an exact

analytic expression for MI in the HNLS equation are given. Mo=a1{1\1.

Figure Xb) shows the propagation of this homoclinic orbit in

the presence of higher-order effects. As seen from Hig. 1 Figures 2a), 2(b), and 2Zc) show the propagation of such a
and 1b), when compared with the homoclinic orbit of NLS bright soliton for different background amplitu@e As one
equation as given in Refg33,34], the main characteristics of can see from Fig. 2, solutiof20) represents a bright pulse
the homoclinic orbit in the presence of higher-order termshat propagates on a cw background in the presence of
(a3#0) are essentially the same except for the change dfigher-order effects. The main characteristic of the propaga-
group velocities. And it is interesting to find that the sign of tion is the periodic peaking property of the field amplitude,
a4 determines the propagation direction of solitary wave. Inwhich can be very strong without splitting of the pulse. And
application, the homoclinic orbit of modulation instability solution(20) with a3=0 of course gives such a bright soli-
can be used to produce a strain of optical solitons. Anotheton plus cw background for the NLS equation.
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V(A +acos®)

4 arctah—————

| V(Ai—acos®) 23
JAi—a? cos?0

shows that a-periodic energy exchange is performed be-
tween the pulse and the cw background.

In addition, we should note that the solution takes the
particular form at any locationy=[(1+4n)m/2%n,] for n
=0,12...,

q=expi(aa,t)(—a+2i; sechZ). (24)

Therefore, this solution can be generated by coherently add-
ing in quadrature a bright soliton to a cw background.

IV. AMPLIFICATION-ABSORPTION AND QUINTIC
NONLINEARITY EFFECTS

In this section we calculate the adiabatic evolution of the
parameters, {;, and\, of the solution Il in the presence of
amplification-absorption terms and quintic nonlinearity for
Eq. (3). To the end, the following equation:

g 7q , | . Pa . aq
! PNe a|q|°q | —ias PRE Lay|q X iIR(q),
(25
where
FIG. 2. Propagation of the cw solito(20) for ©=0.5, N\, R(Q) = Y09+ 10— ¥20/a|?— ysalal*

=12, a;=0.5, a,=0.25, a3=—0.10, a,= — 0.60, a5=0.60, and

for three cw background amplitude@) a= 155, (b) a=, () a IS considered. . . o
_1 The parametery, describes a linear amplificationyg

2' >0) or absorption §,<<0), the parametef,;=0 is a gain

Note that thea; dependence arises only through the gj-dispersion term that is due to a fi_nite gain bandwidth, and
genvalues’, from [§2=a3§1(2a2,u2+)\§)]. Thus the effect 3_/2;0 stands for a phenom_enologlcal model 01_‘ gain satura-
of the higher-order terms on the solitary wave solution istion Or & two-photo absorption effect and that is propor-
simply changing the coefficients of the coordinateThis t|onal to the. fifth-order susceptibility stands for a model of
shows that, when compared with solitary wave solution ofd@n saturation. Forz=a,=7y3=0, we recover the equa-
the NLS equation ¢3=0), the main characteristics of the

tion investigated by Gagnadr38].
solution in the presence of higher-order terms are essentiall

As usual in the adiabatic approximation, we consider that
the same except for the change of soliton velocities. It cleariy3(d) is small and assume that the wave evolution is close in

shows the change of velocity as expected. In addition, wehape to expressid20), where the parametess ¢y, and\,
also find that the sign of the third-order dispersiars) de- are considered as functions ofTherefore, here the variable

termines the propagation direction of solitary wave.

It is also interesting to note that %f_m |g|?dx=2Re j qR(q)dx (26)
+ o0
f [la(x,t)|?—=|q(+=,t)|?]dx=8{4, (21)  of the first conserved integral is needed for one to determine

the evolution of the parameters of the exact solution.
o _ _ It is important to point out that the integrals in E@6)
which is exactly the energy of the one-soliton solution of Eq.contain a contribution that is due to the cw background. This

(3). In contrast, the quantity contribution can easily be identified by taking note that the
evolution of the cw part is completely determined by the

tee arametera and can be calculated exactly by solving Eq.

f_w |q(x,t)—q(ioo,t)|2dx=8§1+4§1a(cos®)l, FZS). The result is y by 9=

(22
Jew= a(t)expi

f;azazdt) y (27)

where
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wherea(t) satisfies

da(z)

ax (289

=Yoad— 7233— 7335-

We can eliminate the infinite cw contribution in E@6) by
using relation(28). The remaining terms in Eq26) then
give the following evolution equation af;(2):

8

dgq(2)
: ® _§?’2§§

dx

=2y0l1= L(y1+472)
Y0617 61{N yzki—a2c0§

4
— 4y L1+ T yslN (1A 7a%) — y3h,
(29

where

1 1
W= E)\ia cosO| + §(2>\§+ a? cog 0),

A:M1+M2+M3,
3

&
(\j—a? cog 0)?

M,=20\% (\j—a* cog 0),

{1
(\2—a? cog 9)?

M,=4a* (cog @)(\] cog ®—2\7

1
a? co¢ ©)%’

+a* cog @)+ 125\ jal cos® e
2_

Mz=6¢3a°\2 cos®;
v \2—a? cod
2 {1
+—at——————(53\2+7a% co¢ 0),
157 \2-a?cog O '
andl is given by Eq.(23).
In addition, we assume that the relations

2

3a
-+ (30

N=(i+a?, £2=a3§1(

remain valid in the considered approximation.
Relations(28)—(30) provide the adiabatic evolution of the
parametersa, {4, and\,, respectively, in the presence of

PHYSICAL REVIEW E 67, 026603 (2003

(b)
45 -

4.0 -
3_5_- Pl

3.0
254
2.0
154
1.0
0.5
0.0

FIG. 3. (Color online Adiabatic evolution of the parameteas
{1, and \; according to relationg28)—(30) for y,=0.1, y;
=0.01, and(@ y,=0.002, y;=0, (b) y,=0.002, y3=0.0003.

The pulse part increases or decreases faster than the cw part
because of the factor of 2 in the exponential.

For an amplifying medium ,>0) with gain saturation,
typical results are plotted in Fig. 3 by solving E¢28)—(30)
numerically. When the case ¢f>0 andy,= y3;=0 recov-
ers the case of Fig. 5 in Ref38] where the cw part is
uniformly amplified, while the pulse part amplifies rapidly
before vanishing completely for largg {;—0). The result
is a growing cw asymptotic state that evolves according to
a(z)=a(0)explt). As depicted in Fig. &), the evolution
is similar fory;>0 andy,>0 but y;=0, except that the cw
asymptotic state now saturates. And the small oscillations of
aand{, can be seen clearly from Fig(&8, which is consis-
tent with the results in Ref.38]. However, when we take
v3#0 as shown in Fig. @), these small ripples are elimi-

amplification-absorption terms and quintic nonlinearity ashated. Therefore, we may infer that it is the quintic nonlin-

perturbation. Foa=0 we can give the adiabatic evolution of
the fundamental one-soliton solution of EE).

Exact solutions of Eqs(28)—(30) can be obtained only
when y;=vy,=7y3;=0. In this case the field amplitude de-
creases for a purely absorbing mediufy€0) or increases
for a purely amplifying one {,>0) according to the expo-
nential lawsa(z) =a(0)expot) and {1(z) =a(0)exp(2yt).

earity effect that makes the pulses more stable, which is im-
portant to the propagation of nonlinear pulses.

V. CONCLUSIONS

We have obtained two exact analytic solutions of the
HNLS equation that describ@) the homoclinic orbit of Ml
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and (ii) soliton propagation on a continuous wave back-Fig. 3(@ as well as in Ref[38] have been eliminated by
ground by using the Darboux transformation. We also shovintroducing the quintic nonlinearity effect in E5). There-
how the higher-order terms influence these two solutions. Wéore, we may infer that it is the quintic nonlinearity effect
have also shown that the presence of higher-order terms, ihat makes the pulses more stable, which is important to the
general, changes the velocity of the solitary wave withoutpropagation of nonlinear pulses. The analytic result of the
changing its shape and that the sign of the third-order dispefyresent paper will be helpful to know how analytical results

sion (a3) determines the propagation direction of solitary can be applied to systems with realistic, nonintegrable
waves. From the discussion above and from the relationgigher-order terms.

a,=2ulay, a,=6u’as anday+ as=0, we can see that

it is the exact balance among the third-order dispersion, the

self-steepening effect, and the delayed nonlinear response ACKNOWLEDGMENTS

effect that make the pulse more stable for the second solu-

tion. Thus the compressed ultrafast pulses may be obtained This research was supported by the National Natural Sci-
by this method. Here we have analyzed how theence Foundation of China Grant No. 10074041, the Provin-
amplification-absorption and quintic nonlinearity effects in-cial Natural Science Foundation of Shanxi Grant No.
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