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Energy loss of ions in a magnetized plasma: Conformity between linear response
and binary collision treatments

H. B. Nersisyan,* G. Zwicknagel, and C. Toepffer
Institut für Theoretische Physik II, Universita¨t Erlangen, D-91058 Erlangen, Germany

~Received 14 May 2002; revised manuscript received 15 August 2002; published 19 February 2003!

The energy loss of a heavy ion moving in a magnetized electron plasma is considered within the linear
response~LR! and binary collision~BC! treatments with the purpose to look for a connection between these
two models. These two complementary approaches yield close results if no magnetic field is present, but there
develop discrepancies with growing magnetic field at ion velocities that are lower than, or comparable with, the
thermal velocity of the electrons. We show that this is a peculiarity of the Coulomb interaction which requires
cutoff procedures to account for its singularity at the origin and its infinite range. The cutoff procedures in the
LR and BC treatments are different as the order of integrations in velocity and in ordinary~Fourier! spaces is
reversed in both treatments. While BC involves a velocity average of Coulomb logarithms, there appear in LR
Coulomb logarithms of velocity averaged cutoffs. The discrepancies between LR and BC vanish, except for
small contributions of collective modes, for smoothened potentials that require no cutoffs. This is shown
explicitly with the help of an improved BC in which the velocity transfer is treated up to second order in the
interaction in Fourier space.

DOI: 10.1103/PhysRevE.67.026411 PACS number~s!: 52.40.Mj, 34.50.Bw, 52.35.2g
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I. INTRODUCTION

The energy loss of ion beams and the related process
magnetized plasmas are important in many areas of phy
such as transport, heating, magnetic confinement of ther
nuclear plasmas, and astrophysics. Recent applications
the cooling of heavy-ion beams by electrons@1–3# and the
energy transfer for heavy-ion inertial confinement fusion~see
Ref. @4# for an overview!.

For a theoretical description of the energy loss of ions
a plasma, there exist two standard approaches. The diele
linear response~LR! treatment considers the ion as a pert
bation of the target plasma and the stopping is caused by
polarization of the surrounding medium. It is only valid if th
ion couples weakly to the target. Alternatively, the stopp
is calculated as the result of the energy transfers in suc
sive binary collisions~BCs! between the ion and the elec
trons. Here it is essential to consider appropriate approxi
tions for the shielding of the Coulomb potential by th
plasma.

Since the early 1960s, a number of theoretical calcu
tions of the stopping power within the LR treatment in
magnetized plasma have been presented~see, e.g., Refs
@5–14#, and references therein!. Recently, new theoretical in
vestigations@8–14# have been stimulated by a number
experiments, e.g., the electron cooling of heavy-ion beam
the presence of a magnetic field or in magnetized target
sion research.

The problem of two charged particles in an external m
netic field cannot be solved in closed form as the relat
motion and the motion of the center of mass are couple
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each other. Therefore no closed solution exists for B
which is uniformly valid for any strength of the magnet
field and the Coulomb force between the particles. Num
cal calculations have been performed for BCs between m
netized electrons@15,16# and for collisions between magne
tized electrons and ions@17–21#. As an ion is much heavie
than an electron, its uniform motion is only weakly perturb
by collisions with the electrons. In this paper, we consid
the Coulomb interaction with the ion as a perturbation to
helical motion of the magnetized electrons, while the i
motion remains unchanged. This has been done previous
first order in the ion chargeZ and for an ion at rest@19#.
However, it has been shown that a second-order treatme
both necessary and sufficient for the conservation of a g
eralized energy@20#.

Both treatments, LR and BC, can be regarded as com
mentary to each other and both of them are of physical
terest. Within the LR treatment~dielectric theory!, the stop-
ping power can receive a dynamic contribution fro
collective plasma excitations. It requires a cutoff at sm
distances, where hard collisions between the ion and e
trons cannot be treated any more as a weak perturba
Within the BC picture, the interaction between the plas
electrons is only treated approximately by an effective int
action or an upper cutoff for the impact parameters, to
count for screening. In this case, the stopping power of
ion is the result of the energy transfer in successive bin
collisions. In the limit of a noninteracting electron gas (V
→0, whereV is the interaction potential between the ele
trons!, the LR and BC treatments should therefore prov
the same result for the stopping power. But even in the
sence of a magnetic field, both approaches give slightly
ferent results. Exactly the same results can be achieve
physically reasonable cutoffs are used in the Coulomb lo
rithms @1,2#. In the presence of a magnetic field, the situati
is dramatically changed. Here the agreement between the
and BC treatments breaks down for intermediate and low
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velocities as discussed in Ref.@20#. The disagreement is
larger for an ion motion along the magnetic field than tra
verse to it. In addition, the BC treatment also predicts
energy gain~negative stopping power! for very low ion ve-
locities.

In this paper, we consider BCs between ion and electr
in the presence of an arbitrary magnetic field and dem
strate that full agreement between BC and LR treatment
the limit of a noninteracting electron plasma is guarante
for a smoothened interaction which is both of finite ran
and less singular than the Coulomb interaction at the ori
The paper is organized as follows: We start in Sec. II wit
brief discussion of the basic results of the LR treatment
the stopping power in a magnetized plasma. We derive
analytical expression for the stopping power in the case
noninteracting electron plasma. In Sec. III, we consider
LR and BC treatments without and with an infinitely stro
magnetic field. In Sec. IV, we discuss the velocity and ene
transfer during BCs of magnetized electrons with ions
arbitrary magnetic fields and strengths of the electron-
interaction potential. We assume that the ion massM is much
larger than the electron massm. The equations of motion ar
solved in a perturbative manner up to the second orderZ
starting from the unperturbed helical motion of the electro
in the magnetic field. Then in Sec. V we turn to the ene
loss of ions in a magnetized electron plasma. We show
the stopping power obtained within the BC treatment co
pletely coincides with the LR result. The results are summ
rized and discussed in Sec. VI.

II. LINEAR RESPONSE FORMULATION

As a basis for further considerations, we recall briefly t
main aspects of the LR theory for the ion-plasma interact
in the presence of an external magnetic field. Within the L
the electron plasma is described as a continuous, polariz
fluid ~medium!, which is represented by the phase-space d
sity of the electronsf (r ,v,t). Usually only a mean-field in-
teraction between the electrons is considered and hard c
sions are neglected. The evolution of the distributi
function f (r ,v,t) is determined by the Vlasov-Poisson equ
tion. This is valid for weakly coupled plasmas where t
number of electrons in the Debye sphereND54pn0lD

3 @1 is
very large. Here, n0 is the electron density andlD
5(e0kBT/n0e2)1/2 is the Debye length.

We consider a nonrelativistic projectile ion with char
Ze and with a velocityvi , which moves in a magnetize
plasma at an anglea with respect to the magnetic fieldB0.
We shall consider here the limit of heavy ions and negl
recoil effects. The strength of the coupling between the m
ing ion and the electron plasma is given by the coupl
parameter

Z5
g

@11v i
2/v th

2 #3/2
. ~1!

Herev th5(kBT/m)1/2 is the thermal velocity of an electron
g5Z/ND . The derivation of Eq.~1! is discussed in detail in
Refs. @21,22#. The parameterZ characterizes the ion-targe
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coupling, whereZ!1 corresponds to weak, almost line
coupling andZ*1 to strong, nonlinear coupling.

For a sufficiently small perturbation (Z!1), the linear-
ized Vlasov equation of the plasma may be written as

] f 1

]t
1v•

] f 1

]r
2V@v3b#•

] f 1

]v
52

e

m

]f

]r
•

] f 0

]v
, ~2!

where f 5 f 01 f 1 andf5f ie1fsc is the electrostatic poten
tial. It consists of the perturbing ion potentialf ie
5Ze/4pe0ur2vi tu and the self-consistent polarization co
tribution fsc which is determined by the Poisson equation

,2fsc5
e

e0
E dvf 1~r ,v,t !. ~3!

Further, b is the unit vector parallel toB0 ,2e and V
5eB0 /m are the charge and cyclotron frequency of t
plasma electrons, respectively, andf 0 is the unperturbed dis
tribution function of plasma electrons.

By solving Eqs.~2! and~3! in space-time Fourier compo
nents, we obtain the electrostatic potential

f~r ,t !5
Ze

~2p!3«0
E dk

exp@ ik•~r2vi t !#

k2«~k,k•vi !
~4!

which provides the dynamic response of the plasma to
motion of the projectile ion in the presence of the exter
magnetic field. The dielectric function«(k,v) of a homoge-
neous plasma is given by«(k,v)511V(k)x (0)(k,v),
where (e2/4pe0)V(k) is the Fourier transformed two-bod
interaction potential; in case of the repulsive Coulomb p
tential for electron systemsV(k)51/2p2k2. The susceptibil-
ity of the magnetized electrons is~see, e.g., Ref.@23#! the
causality of

x (0)~k,v!52
~2p!3vp

2

2 (
n52`

1` E
0

`

v'dv'

3E
2`

1`

dv iS nV

v'

] f 0

]v'

1ki
] f 0

]v i
D Jn

2~b!

kiv i2an2 i0
.

~5!

Here vp5(n0e2/m«0)1/2 is the plasma frequency,Jn is the
Bessel function of thenth order andan5v2nV, and b
5k'v' /V. The symbolsi and' denote the components o
the vectorsk andv parallel or perpendicular to the extern
magnetic field, respectively. The positive infinitesimal1 i0
in Eq. ~5! guarantees the vanishing of the response.

The stopping powerSLR of an ion is now defined as th
energy loss of the ion per unit length due to the plas
polarization, that is, the electric fieldE52¹f, from Eq.~4!

SLR52
dEi

d,
5

Z2e2

e0v i~2p!3E dk
k•vi

k2
Im

21

«~k,k•vi !
. ~6!

The collective excitations~i.e., magnetized plasma mode!
contributing to the stopping power are contained
«(k,k•vi). But in general, Eq.~6! cannot be evaluated in
1-2
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ENERGY LOSS OF IONS IN A MAGNETIZED . . . PHYSICAL REVIEW E67, 026411 ~2003!
closed form except for the limiting casesB0→0 and B0
→`. In intermediate situations we assume weakly intera
ing electrons,e2n0

1/3→0 ~or vp→0), with

Im
21

«~k,v!
5

Im«~k,v!

u«~k,v!u2
.V~k!Imx (0)~k,v!. ~7!

In this approximation the stopping power thus reads

SLR8 5
Z2e2

4pe0v i
E dkuU~k!u2~k•vi !Imx (0)~k,k•vi !, ~8!

where we have introduced the Fourier transformed i
electron interaction potential,2(Ze2/4pe0)U(k). Now the
stopping power does not receive any contribution from
dynamic collective plasma modes, but static collective c
tributions ~i.e., screening! can be easily reintroduced by re
placingU(k) with a shielded ion-electron interaction pote
tial. Then, Eq. ~8! amounts to neglecting the electro
electron interaction in the target except for a static shield
of the ion.

In the case of a bare Coulomb interaction between
projectile ion and plasma electrons, i.e.,U(k)5V(k), the
cutoff parameterskmin51/r max and kmax51/r min ~wherer min
is the effective minimum impact parameter! must be intro-
duced in Eq.~8! to avoid the logarithmic divergence at sma
and largek. The divergence at largek corresponds to the
incapability of the linearized Vlasov theory to treat clo
encounters between the projectile ion and the plasma e
trons properly, whilekmin accounts for screening. Forr min we
use the effective minimum impact parameter excluding h
Coulomb collisions with a scattering angle larger than 900,

r min5
Ze2

4pe0mv r
2

, r max5
v r

vp
. ~9!

The cutoffr max describes the dynamic screening at high re
tive electron-ion velocitiesv r ~see, e.g., Ref.@22# for more
detail!.

In the LR treatment, cutoffs and impact parameters
used which are averaged with respect to the electron velo
distribution function. With the averaged relative veloci
^v r&.(v i

21v th
2 )1/2, they read

^r min&5
1

^kmax&
5

Ze2

4pe0m~v i
21v th

2 !
,

^r max&5
1

^kmin&
5

~v i
21v th

2 !1/2

vp
. ~10!

The cutoff parameters~9! and ~10! are well known~see,
e.g., Refs.@1–3,18–22#! for stopping power calculation
without magnetic field. In particular, the minimum impa
parameter,r min , is provided by the Rutherford scattering fo
mula @24#. However, in the presence of a magnetic field, t
cutoff r min must be deduced by a comparison of the LR a
the full nonperturbative BC treatments.
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III. LR AND BC TREATMENTS WITHOUT AND WITH
STRONG MAGNETIC FIELD

To illustrate the problem and to motivate the forthcomi
considerations on the interrelation of the LR and BC tre
ments, we consider the cases without and with an infinit
strong magnetic field. We show that even in the absence
magnetic field both approaches yield slightly different resu
when using the standard averaging procedure. The disc
ancy grows with the strength of the magnetic field.

A. LR and BC treatments without magnetic field

Without magnetic field, the imaginary part of the susce
tibility of an isotropic Maxwellian plasma is given by~see,
e.g., Ref.@23#!

Imx (0)~k,v!5
~2p!5/2

4lD
2

v

kv th
expS 2

v2

2k2v th
2 D . ~11!

The expression~8! for the simplified LR stopping powe
in the case of the Coulomb interaction,U(k)5V(k), yields

SLR8 5S0

g2

l2
LLR~l!FerfS l

A2
D 2A2

p
l expS 2

l2

2 D G ,

~12!

where erf(x) is the error function, l5v i /v th , S0
54pe0(kBT/e)2, and

LLR~l!5 ln
^kmax&

^kmin&
5 ln

~11l2!3/2

g
5 ln

1

Z~l!
. ~13!

Here Z is defined by Eq.~1!. In the Coulomb logarithm
LLR , the averaged lower and upper cutoffs@see Eq.~10!#
have been used.

Within the perturbative BC treatment~see Ref.@20# for
details!, we need to consider only the second-order ene
transfer during an electron-ion collision, as the first-ord
energy transfer is proportional to the impact parameters and
vanishes after averaging overs. The angular averaged
second-order energy transfer reads

^DEi
(2)&5S Ze2

4pe0sD
22vi•vr

mv r
4

, ~14!

where vr5ve02vi is the relative velocity of the colliding
particles. The energy loss of the ion in a homogeneous e
tron plasma is obtained by integrating Eq.~14! over an area
elementd2s perpendicular to the relative current densityn0vr
and averaging over the unperturbed electron distribut
function f 0,

SBC52S dEi

d, D
BC

52
2pn0

v i
E dve0f 0~ve0!v r

3E
r min

r max
dsŝ DEi

(2)&. ~15!
1-3
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NERSISYAN, ZWICKNAGEL, AND TOEPFFER PHYSICAL REVIEW E67, 026411 ~2003!
Here the upper cutoffr max accounts for screening, whil
r min5Ze2/(4p«0mvr

2) is the cutoff below which the perturba
tive treatment of the Coulomb interaction fails@see Eq.~9!#.
However, it is well known that for Rutherford scattering ha
collisions are taken into account by regularizing thes inte-
gral in Eq.~15! according to

E
r min

r maxds

s
5 ln

r max

r min
→E

0

r max sds

s21r min
2

5
1

2
lnS 11

r max
2

r min
2 D ,

~16!

which yields the exact result@24#.
For an isotropic Maxwellian distribution, we finally ob

tain from Eqs.~14!–~16!,

SBC5S0

g2

2l2A2p
E

0

` dx

x2
lnS 11

x6

g2D @~lx21!e2(x2l)2/2

1~lx11!e2(x1l)2/2#, ~17!

wherex5v r /v th .
In Fig. 1, the normalized stopping powers within the si

plified LR ~dotted lines! and BC ~dashed lines! treatments,
Eqs. ~12! and ~17!, are plotted versus ion velocity. The fu
LR results,SLR , including the electron-electron interactio
are also plotted for comparison~solid lines!. All these ap-
proaches yield close results except for some deviations in
intermediate velocity range.

To make a contact between LR and BC results, Eqs.~12!
and~17!, we note that the integral in Eq.~17! divided by the
factorA2p is identical with the expression in square brac
ets in Eq.~12! if the logarithmic factor in Eq.~17! is taken
out of thex integral. Taking thus out the logarithmic functio
with some average valuêx&5^v r&/v th , the stopping power
in the BC treatment can be rewritten as

FIG. 1. Stopping powers~in units ofg2S0) within the simplified
LR, Eq. ~8! ~dotted lines!; full LR, Eq. ~6! ~solid lines!; and BC
~dashed lines! treatments as a function of the ion velocityv i ~in
units of v th) in a plasma without magnetic field forg50.1 ~lines
without circles! andg50.01 ~lines with circles!.
02641
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1

2LLR~l!
lnS 11

^x6&

g2 D SLR8 . ~18!

This demonstrates that both approaches are equivale
comparable cutoff procedures, resulting in equal Coulo
logarithms, are used. Equation~18! shows that for the con-
formity between both approaches one must choose^x6&
5(11l2)32g2. In the limit g!1, this condition becomes
^x2&.11l2.

B. LR and BC treatments with strong magnetic fields

In the presence of a strong magnetic field, the imagin
part of x (0)(k,v) reads~see, e.g., Ref.@23#!

Imx (0)~k,v!5
~2p!5/2

4lD
2

v

ukiuv th
expS 2

v2

2ki
2v th

2 D , ~19!

where ki is the component ofk along the magnetic field
Substituting Eq.~19! into Eq. ~8!, we obtain

SLR8 5S0

g2

2A2p
lLLR~l!sin2aE

2`

` x2e2x2/2dx

q3/2~x,l!
. ~20!

Herea is the angle between the magnetic field and the
velocity vi , the Coulomb logarithmLLR is the same as in
Eq. ~13! and q(x,l)5x222lxcosa1l2, where x
5vei /v th .

The second-order energy transfer for an electron-ion c
lision in the presence of a strong magnetic field is@20#

^DEi
(2)&5S Ze2

4pe0sD
2 v i'

2

mv r
6 ~vei

2 2v i
2!, ~21!

wherevr5veib2vi , and vei is the electron velocity along
the magnetic field. The last result has already been give
Ref. @1# for the casevei50. In the general case, this term
also leads to an energy gain forv i

2,vei
2 .

The integration of Eq.~21! over the impact parameters is
similar to that used in the preceding section, Eq.~16!, with
r min and r max from Eq. ~9!. However, nowv r is replaced by
the relative velocity of the guiding center@(vei2v i i)

2

1v i'
2 #1/2. Averaging expression~21! over an isotropic Max-

well distribution functionf 0, we arrive at

SBC5S0

g2

4A2p
lsin2aE

2`

` dx~l22x2!e2x2/2

q5/2~x,l!

3 lnF11
q3~x,l!

g2 G . ~22!

When the logarithmic factor in Eq.~22! is now taken out
with some average valuêq3(x,l)&, the x integral does not
necessarily coincide with thex integral in Eq.~20! as it has
been the case in the absence of a magnetic field, cf. Eq.~18!.
Moreover, at low ion velocity (l→0), the stopping power
S̄BC behaves as 1/l and tends to infinity. The LR stopping
1-4
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ENERGY LOSS OF IONS IN A MAGNETIZED . . . PHYSICAL REVIEW E67, 026411 ~2003!
power Eq.~20!, on the other hand, leads at low ion velociti
to a term which behaves}l ln(1/l) @10#, for both the full
and the simplified LR treatments. This is a quite unexpec
behavior compared to the well-known linear velocity depe
dence without magnetic field@22,25,26#.

The stopping powers~20! and ~22! depend on the angle
a. For smalla→0, Eq. ~20! yields

SLR8 ~a→0!5S0

g2

A2p
LLR~l!le2l2/2, ~23!

whereas for BC, the stopping power vanishes as

SBC~a→0!5S0

g2

4A2p
lsin2aE

2`

` dx~l22x2!e2x2/2

ux2lu5

3 lnF11
~x2l!6

g2 G . ~24!

This result coincides with the exact behavior~no perturba-
tion treatment! of the BC stopping power for smalla
@17,18,21#. In the presence of a strong magnetic field, t
electrons move parallel to the magnetic field. For reason
symmetry, no velocity can be transfered to positive
charged ions that also move parallel to the field. The ene
transfer and hence the stopping power within the BC tre
ment must therefore vanish.

In Figs. 2 and 3, the stopping powers within the LR~the
curves without circles! and BC ~the curves with circles!
treatments are plotted for plasmas in a strong magnetic
for three values ofa: a50 ~solid lines!, a5p/4 ~dotted
lines!, a5p/2 ~dashed lines!. The difference between th
two treatments is noteworthy especially in the low and int
mediate ion velocity limits. It is related to the different cuto
procedures, i.e.,̂kmin&, ^kmax& in the LR andr min , r max in the

FIG. 2. Stopping powers~in units ofg2S0) within the simplified
LR ~lines without circles! and the BC~lines with circles! treatment
as a function of the ion velocityv i ~in units ofv th) in a plasma with
a strong magnetic field forg50.1, a50 ~solid lines!, a5p/4 ~dot-
ted lines!, anda5p/2 ~dashed lines!.
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BC. In particular, the large stopping power predicted by
simplified LR fora50 is unrealistic, since it vanishes withi
an exact~nonlinear! BC treatment, as discussed above. T
is not healed by including collective effects, see Fig.
where we compare the simplified@Eq. ~8!# and full @Eq. ~6!#
LR stopping powers for an infinitely strong magnetic fiel
The role of collective excitations is not as important here
in the limiting case considered in Refs.@1,8#. These conclu-
sions are supported by a numerical solution of the nonline
ized Vlasov-Poisson equations@13#.

In the low-velocity limit whenl!1, the BC stopping
power is linear inl and negative,

SBC~l→0!52S0

g

8A2p
l sin2aE

0

` dx

x2
e2gxln~118gx3!.

~25!

FIG. 3. As Fig. 2, but hereg50.01.

FIG. 4. Stopping powers~in units ofg2S0) within the simplified
~dashed lines! and the full~solid lines! LR treatment as a function
of the ion velocityv i ~in units of v th) in a plasma with strong
magnetic field forg50.01, a50 ~lines without circles!, and a
5p/2 ~lines with circles!.
1-5
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This corresponds to an energy gain of an ion at slow perp
dicular motion. For a finite magnetic field strength and a
isotropic ~nonequilibrium! velocity distributions typical for
electron cooling, such energy gains have indeed been
served in nonperturbative numerical simulations of bin
collisions@18# as well as in a numerical solution of the no
linearized Vlasov-Poisson equation@13#. The perturbing ion
drives the equilibration between the longitudinal and tra
verse electron temperatures. There results, in the avera
shrinking of the cyclotron radii of the electrons and an e
ergy gain of the ion caused by the released transverse
tron energy. For an infinitely strong magnetic field and
effective one-dimensional electron motion, however, t
mechanism does not work. Both the unexpected}l ln(1/l)
behavior in the LR and the energy gain in~second-order! BC
therefore indicate a breakdown of a perturbation treatm
for B→` and small ion velocities. This is also supported
considering again the case where the ion moves along
magnetic field. As discussed above, the energy transfe
binary collisions is zero for positively charged ions due
symmetry. But for negatively charged ions, the electron
either pass over the potential well, which gives again
energy transfer, or it is reflected with a momentum trans
of two times its initial momentum. Thus all scattering even
contributing to the stopping power are nonperturbative
this case. It is evident that this situation cannot be treated
either the LR or the second-order BC, which both depend
the square of the ion charge. However, the cutoff procedu
employed in the~perturbative! BC lead to stopping power
which are much closer to numerical simulations@13,18# than
the LR predictions@20# for positively charged ions and finit
magnetic fields.

IV. BINARY COLLISION FORMULATION

The results obtained so far strongly suggest that the la
discrepancies between the LR and the BC seen at st
magnetic fields are peculiar to the Coulomb interaction t
requires cutoffs. It is the main concern of this paper to sh
that these discrepancies are in fact a consequence of the
ferent cutoff procedures in the LR and BC and that the st
dard cutoff recipes for the nonmagnetized case are not g
anteed to work in the presence of an external magnetic fi
To this end we replace the Coulomb interaction by an eff
tive, smoothened interaction potential, which decays fa
than r 21 at large distances and increases slower thanr 21 at
small ones. The introduction of such a smoothened poten
can be viewed as an alternative implementation of cutoffs
is justified by the same line of arguments: At large distanc
the bare Coulomb interaction is shielded by the polarizat
of the electrons. At small distances, a perturbative treatm
of the Coulomb interaction leads to divergencies. One t
attempts to approximate the finite cross section of a non
turbative treatment by either a cutoff or a smoothening of
interaction.

Below we first discuss the general equations of motion
two charged particles moving in a homogeneous magn
field and the remaining conservation laws. From the veloc
transfer we then proceed to the energy loss of particles
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ing binary collision process. In contrast to previous wo
@20#, the present treatment becomes more transparent in
rier space.

A. Relative motion and conservation laws

We consider two point charges with massesm, M and
charges2e, Ze, respectively, moving in a homogeneou
magnetic fieldB05B0b. We assume that the particles inte
act with the potential2(Ze2/4pe0)U(r ), where r is the
relative coordinate of colliding particles. For charged p
ticles the functionU(r ) can be expressed, for instance,
the Coulomb potential,UC(r )51/r or, more realistically, for
application in plasmas, by the Debye screened poten
UD(r )5exp(2r/lD)/r . In the presence of an external ma
netic field, the Lagrangian and the corresponding equati
of particles’ motion cannot, in general, be separated i
parts describing the relative motion and the motion of
center of mass with velocitiesv, Vcm and coordinatesr ,
Rcm, respectively~see, e.g., Refs.@15,18,20#!. Introducing
the reduced mass 1/m51/m11/M the equations of motion
are

v̇~ t !1V4@v~ t !3b#52V3@Vcm~ t !3b#2
Ze2

4pe0m
F„r ~ t !…,

~26!

V̇cm~ t !2V1@Vcm~ t !3b#52V2@v~ t !3b#, ~27!

where2(Ze2/4pe0)F„r (t)… (F52]U/]r ) is the force act-
ing on each particle. The frequenciesV1 , V2 , V3, andV4
are expressed in terms of the electron cyclotron freque
V5eB0 /m,

V15
m~Z21!

M1m
V, V25

m~M1Zm!

~M1m!2
V, ~28!

V35S 11
Zm

M DV, V45S 12
Zm2

M2 D m

m
V. ~29!

From Eqs.~26! and ~27! follows the conservation of tota
energy

W5
~M1m!Vcm

2

2
1

mv2

2
2

Ze2

4pe0
U~r !5const, ~30!

but the relative and center of mass energies are not conse
separately.

The coupled, nonlinear differential equations~26! and
~27! completely describe the motion of the particles. Th
have to be integrated numerically for a complete set of
initial conditions for solving the scattering problem. In th
case of heavy ions, i.e.,M@m, the equations of motion can
be further simplified, sincem→m, V1 ,V2→0, and
V3 ,V4→V @see Eqs.~28! and~29!#. Equation~27! leads to
Vcm→vi5const, wherevi is the heavy-ion velocity, and Eq
~26! turns into
1-6



as
n

el

n

ve

-

r
o

ve

ex

n

ns-

of

e

ular

ial

is

tion

ENERGY LOSS OF IONS IN A MAGNETIZED . . . PHYSICAL REVIEW E67, 026411 ~2003!
v̇~ t !1V@v~ t !3b#52V@vi3b#2
Ze2

4pe0m
F„r ~ t !….

~31!

With the help of the equation of motion~31! it can be
easily proven that the quantity

K5
mv2

2
2

Ze2

4pe0
U~r !1mVr @vi3b# ~32!

is a constant of motion. In contrast to the unmagnetized c
it thus follows that the relative energy transfer during io
electron collision is proportional todr'v i' , wheredr' and
v i' are the perpendicular components of the change of r
tive position and the ion velocity.

B. Trajectory correction

It is now useful to introduce the velocity correctio
through relationsdv(t)5ve(t)2ve0(t)5v(t)2v0(t), where
ve0(t) and v0(t) are the unperturbed electron and relati
velocities, respectively, with

v̇0~ t !1V@v0~ t !3b#52V@vi3b#. ~33!

Note thatdv(t)→0 at t→2`. The equation of motion for
dv(t) then follows from Eq.~31! as

d v̇~ t !1V@dv~ t !3b#52
Ze2

4pe0m
F„r ~ t !…, ~34!

where r (t)5re(t)2vi t is the ion-electron relative coordi
nate.

We seek an approximate solution of Eq.~34! in which the
interaction force between the ion and electrons is conside
as a perturbation. Thus we have to look for the solution
Eq. ~34! for the variablesr andv in a perturbative manner

r ~ t !5r0~ t !1r1~ t !1r2~ t !1•••, ~35!

v~ t !5v0~ t !1v1~ t !1v2~ t !1•••, ~36!

where r0(t),v0(t) are the unperturbed ion-electron relati
coordinate and velocity, respectively,rn(t),vn(t)}ZnFn21
(n51,2, . . . ) are thenth order perturbations ofr (t) and
v(t), which are proportional toZn. Fn(t) is the nth order
correction to the ion-electron interaction force. Using the
pansion~35! for the nth order correctionsFn , we obtain

F„r ~ t !…5F0„r0~ t !…1F1„r0~ t !,r1~ t !…1•••, ~37!

where

F0„r0~ t !…5F~r0~ t !!52 i E dkU~k!kexp@ ik•r0~ t !#,

~38!
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F1„r0~ t !,r1~ t !…5S r1~ t !•
]

]r DF~r !ur5r0(t)

5E dkU~k!k@k•r1~ t !#exp@ ik•r0~ t !#.

~39!

In Eqs. ~38! and ~39!, we have introduced the ion-electro
interaction potentialU(r ) through F(r )52]U(r )/]r and
the force corrections have been written using a Fourier tra
formation in space.

We start with the zero-order unperturbed helical motion
the electrons. From Eq.~33!, we obtain

v0~ t !5vr1v0'$ucos~Vt !1@b3u#sin~Vt !%, ~40!

r0~ t !5R01vr t1a$usin~Vt !2@b3u#cos~Vt !%, ~41!

whereuÄ„cosw,sinw) is the unit vector perpendicular to th
magnetic field,v0i and v0' ~with v0'>0) are the electron
unperturbed velocity components parallel and perpendic
to b, respectively,vr5v0ib2vi is the relative velocity of the
electron guiding center, anda5v0' /V is the cyclotron ra-
dius. It should be noted that in Eqs.~40! and ~41!, the vari-
ablesu andR0 are independent and are defined by the init
conditions.

The equation for the first-order velocity correction
given by

v̇1~ t !1V@v1~ t !3b#52
Ze2

4pe0m
F0„r0~ t !… ~42!

with the solutions

v1~ t !5
Ze2

4pe0m
$2bVi~ t !1Re†b„b•V'~ t !…2V'~ t !

1 i †b3V'~ t !#‡%, ~43!

r1~ t !5
Ze2

4pe0m
$2bPi~ t !1Re†b„b•P'~ t !…2P'~ t !

1 i @b3P'~ t !#‡%, ~44!

where we have introduced the following abbreviations

Vi~ t !5E
2`

t

dtb•F0„r0~t!…,

~45!

V'~ t !5eiVtE
2`

t

dte2 iVtF0„r0~t!…,

Pi~ t !5E
2`

t

dtVi~t!,

~46!

P'~ t !5E
2`

t

dtV'~t!,

and have assumed that all corrections vanish att→2`. For
instance, in the unscreened Coulomb case, the interac
1-7
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force F0 must behave asF0(r0(t))→1/t2 for utu→`. Thus
from Eq. ~45! at t→` we obtain Vi(t)→V0i5const and
V'(t)→eiVtV0' , whereV0'5const. The quantitiesV0i and
V0' give the first-order velocity correction in Eq.~43! after
an electron-ion collision. In this limit, we find for the firs
order trajectory correction from Eqs.~45! and ~46!, Pi(t)
5V0it1P0i , P'(t)52 i (V0' /V)eiVt1P̃0' , where

P0i5n2E
2`

`

dttb•F0„r0~t!…,

~47!

P̃0'5
i

VE
2`

`

dtF0~r0~t!!.

For the Coulomb interactionn52tVi(t)u t→2`5bvr /v r
3 and

n50 for any screened interaction potential. Note that for
Coulomb interaction, the second term in Eq.~47! tends to
infinity ~see, e.g., Ref.@20#!. However, the contribution o
this term to the ion energy change vanishes after avera
over impact parameters.

Substituting Eqs.~38! and ~41! into Eqs. ~45! and ~46!,
and using the expression@27#

exp~ iz sinu!5 (
n52`

`

Jn~z!einu, ~48!

whereJn is the Bessel function of thenth order, we obtain
for an arbitrary interaction potential

Pi~ t !5 i E dkU~k!~k•b!eik•R0

3 (
n52`

1`

eincJn~k'a!
ei zn(k)t

@zn~k!2 i0#2
, ~49!

P'~ t !5 i E dkU~k!keik•R0 (
n52`

1`

eincJn~k'a!

3
ei zn(k)t

@zn~k!2 i0#@zn21~k!2 i0#
. ~50!

Here zn(k)5nV1k•vr , c5w2u, and tgu5ky /kx . The
quantitiesVi(t) and V'(t) are obtained directly from Eqs
~49! and ~50! through the relationsVi(t)5 Ṗi(t) andV'(t)
5Ṗ'(t).

V. FROM THE BC ENERGY TRANSFER TO THE
STOPPING POWER

A. General formulation

Previously ~see, e.g., Ref.@20#, and references therein!,
the energy gainDEe of the electron in terms of the velocit
transferdv was considered. But this equals the energy los
the ion,DEi52DEe .

The total energy change of the ion during an ion-elect
collision is given by
02641
e
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DEi5
Ze2

4pe0
E

2`

`

dtvi•F„r ~ t !…. ~51!

Insertion of Eq. ~37! into the general expression~51!
yields

DEi5DEi
(1)1DEi

(2)1•••, ~52!

where

DEi
(1)5

Ze2

4pe0
E

2`

`

dtvi•F0„r0~ t !…,

~53!

DEi
(2)5

Ze2

4pe0
E

2`

`

dtvi•F1„r0~ t !,r1~ t !…

are the first- and second-order energy transfer, respectiv

B. First-order energy transfer

The first-order energy transfer can be obtained by sub
tuting Eqs.~38! and~41! into the first one of Eqs.~53!. This
yields

DEi
(1)52 i

Ze2

2e0
E dkU~k!~k•vi !e

ik•R0

3 (
n52`

1`

eincJn~k'a!d„zn~k!…. ~54!

We now introduce the variables5R0'
(r ) which is the com-

ponent ofR0 perpendicular to the relative velocity vectorvr .
From Eqs.~40! and~41! we can see thats is the distance of
closest approach for the guiding center of the electron hel
motion. The stopping power is now given by the average
DEi with respect to the initial phase of the electronsw and
the azimuthal angle ofs. For spherically symmetric interac
tion potentials@U(r )5U(r ) and U(k)5U(k)], the first-
order energy transfer gives no contribution due to symme
and the ion energy change receives a contribution only fr
higher orders. In fact, Eq.~54! for the averaged first-orde
energy change gives

^DEi
(1)&52 i

Ze2

2e0
E dkU~k!~k•vi !J0~ks!J0~k'a!d~k•vr !,

~55!

wherek5Ak22(k•nr)
2 andnr5vr /v r . As the integrand is

an odd function ofk we have^DEi
(1)&50.

C. Second-order energy transfer

Inserting Eqs.~39!, ~41!, ~44!, ~49!, and~50! into the sec-
ond equation of Eqs.~53! one obtains
1-8
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DEi
(2)~R0 ,w!5

p iZ2e4

~4pe0!2m
E dkdk8U~k!U~k8!

3~k•vi !e
i (k¿k8)•R0

3 (
n;m52`

1`

einc1 imc8Jn~k'a!Jm~k'8 a!

3d„zn~k!1zm~k8!…Gm~k,k8!, ~56!

wherec85w2u8, and

Gm~k,k8!5
22~k•b!~k8•b!

@zm~k8!2 i0#2

1
~k•b!~k8•b!2k•k81 ik•@b3k8#

@zm~k8!2 i0#@zm21~k8!2 i0#

1
~k•b!~k8•b!2k•k82 ik•@b3k8#

@zm~k8!2 i0#@zm11~k8!2 i0#
. ~57!

Next, DEi
(2) is averaged with respect to the initial pha

of electrons w ~see the Appendix for details!. The
w-averaged ion energy change,^DEi

(2)&w , is then integrated
over the impact parameterss in the full two-dimensional
~2D! space.

Thus we can introduce an effective transport cross sec
@17,21# through the relation~see the appendix!

s tr~vr ,vi !52
2

mv r
2E d2ŝ DEi

(2)&w

5
p2Z2e4

e0
2m2v r

3E dkuU~k!u2~k•vi ! (
n52`

1`

Jn
2~k'a!

3H ki
2d8„zn~k!…1

k'
2

2V
@d„zn11~k!…

2d„zn21~k!…#J , ~58!

where d8(x) defines the derivative of thed function with
respect to the argument.

For the Coulomb interactionU(k)5V(k), the full 2D in-
tegration over thes space results in a logarithmic divergen
of the k integration in Eq.~58!. To cure this, we introduce
cutoff parameterŝkmin& and ^kmax& as it was done in the
linear response formulation@see Eq.~10!#.

For applications to the energy loss of ions moving in
magnetized homogeneous plasma, we average the ion en
change during binary collision over the distribution functi
of the electronsf 0. The standard procedure for averagi
over distribution function yields

SBC52
dE

d,
5E dv0f 0~v0!

n0v r

v i

mv r
2

2
s tr~vr ,vi !, ~59!
02641
n
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wheren0 is the density of plasma electrons. Substituting E
~58! for the effective transport cross sections tr into the last
expression, we obtain Eq.~8! derived in the simplified LR
treatment~see the Appendix for details!. This shows the
complete conformity between both approaches.

In the presence of a strong magnetic field, the simplifi
LR expression~8! for the stopping power with an arbitrar
spherically symmetric interaction potentialU(r ) and the
imaginary part of the susceptibility~19! yields

SLR8 ~l!5S0

g2U0

2A2p
lsin2aE

2`

` x2e2x2/2dx

q3/2~x,l!
5SBC~l!.

~60!

Here,

U05
~2p!4

4 E
0

`

k3U2~k!dk ~61!

and U(k) is the Fourier transformed interaction potentia
Now there appears in Eq.~60! the numerical factorU0 in-
stead of the Coulomb logarithm~13! in Eq. ~20!. Equation
~61! also gives a criterion in Fourier space for the smoo
ened potential, which is equivalent to the conditions cons
ered above. Indeed, it must behave likeU(k).k222s at k
→0 andk→` with negative or positive values,s,0 and
s.0, respectively. Note that for the Coulomb potentials
50 in both limits and the lower and upper cutoffs must
introduced in Eq.~61!.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a detailed theoret
investigation of the stopping power of ions moving in a ma
netized electron plasma within two complementary a
proaches: the dielectric linear response~LR! and the binary
collision ~BC! treatments. The full LR including the dynami
collective response of the electrons can only be evaluate
closed form in the limiting cases of a vanishing and an in
nitely strong magnetic field, respectively. A simplified L
which includes only static screening is used for intermedi
cases. The BC treatment developed here is valid for arbit
strengths of the magnetic field and arbitrary shapes of
interaction potential up to second order in the interact
strength. The purpose of this work was to investigate
connection between the complementary BC and LR
proaches.

We compare both treatments for a vanishing and v
strong magnetic fields. The results obtained within both
proaches differ slightly at intermediate ion velocities in t
field-free case~see Fig. 1! but significantly at low and inter-
mediate ion velocities for strong magnetic fields~see Fig. 2
and 3!. In particular, if the ion moves parallel to a stron
magnetic field, the stopping power becomes unreali
within the simplified LR treatment and this is not healed
the full LR treatment~see Fig. 4!. The discrepancies can b
traced to the different cutoff procedures employed in b
treatments. The cutoffs are required by the infinite range
the Coulomb interaction and its singularity at the origin. W
1-9



f

ls

ar
tio

or
ll
o

r
d

t

-
e

al
o

la
t

us
re

w

lts
e
ot
n
ut

n
o
o
ld

o
He

e
io

fer.

ns

art

NERSISYAN, ZWICKNAGEL, AND TOEPFFER PHYSICAL REVIEW E67, 026411 ~2003!
showed the complete conformity between both treatments
smoothened potentials, which need no cutoffs.

In order to look for a connection between the two mode
we start within the BC approach from Eqs.~56! and ~57!,
which represent the energy transfer to the ion for arbitr
magnetic fields and shapes of smooth electron-ion interac
potentials. Following the standard procedure, Eq.~56! must
be averaged with respect to the impact parameters. F
smoothened potential, Eq.~56! can be integrated over a
possible impact parameters in 2D space. However, for a C
lomb potential the averaging requires a cutoff paramete
the k integration. It is found that for a velocity average
cutoff parameter̂kmax& @see Eq.~10!#, the energy loss within
the BC @Eq. ~59!# coincides with the simplified LR resul
@Eq. ~8!#.

We note that previous BC and LR treatments~see, e.g.,
Refs.@1–3,20–22#! for the Coulomb interaction differ some
what in their approaches. In the BC model, the modifi
Coulomb logarithm~16! is considered under the integr
with respect to the velocity distribution of the electrons. F
small relative velocitiesv r , Eqs.~9! and ~16! show that the
modified Coulomb logarithm is proportional tor max

2 /rmin
2

}vr
6 . Therefore, this approach is self-cutting for small re

tive velocitiesv r . In the LR model the integral with respec
to the velocity distribution of the electrons enters in the s
ceptibility, Eq.~5! and hence in the dielectric function. He
an average Coulomb logarithmLLR arises due to thek inte-
gration in Eq.~6! or ~8! with averaged cutoffŝkmin& and
^kmax& @see Eq.~10!#. This leads to a large energy loss at lo
ion velocities, which behaves asSLR}v i ln(vth /v i) for low
ion velocities@10#, as shown in Fig. 2–4.

Finally, we would like to mention that our current resu
still leave some questions open. Usually, the dependenc
cutoff parameters on the magnetic field is ignored in b
approaches. Besides, the regularization procedure give
Eq. ~16! has been performed on the basis of the exact R
erford formula in the field-free case. However, it is know
that for a strong magnetic field the Rutherford scattering f
mula breaks down and the transport coefficients and the C
lomb logarithm are strongly modified by the magnetic fie
~see, e.g., Refs.@19,23# and references therein!. These topics
are presently under investigation by the authors.
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APPENDIX: CALCULATION OF EFFECTIVE TRANSPORT
CROSS SECTION AND STOPPING POWER

We now give a more detailed derivation of Eqs.~56!–~58!
and show that Eq.~8! follows from Eqs.~58! and ~59!. We
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start with the angular averaging of the ion energy trans
From Eq.~56!, we have

^DEi
(2)&w5

p iZ2e4

~4pe0!2m
E dkdk8U~k!U* ~k8!

3~k•vi !e
i (k2k8)•R0

3 (
n52`

1`

ein(u82u)Jn~k'a!Jn~k'8 a!

3d„~k2k8!•vr…G2n~k,2k8!, ~A1!

where the functionGn(k,k8) is given by Eq.~57!. HereU*
is the complex conjugate ofU and we used the relation
J2n5(21)nJn for the Bessel functions@27#.

For calculation of thes integral in Eq.~58! we split all
variablesA5Ai

(r )nr1A'
(r ) in Eq. ~A1! into components par-

allel (Ai
(r )) and perpendicular (A'

(r )) to the relative velocity
vr , wherenr5vr /v r is the unit vector alongvr . Note that
the component ofk perpendicular to the magnetic field,k' ,
is now a function ofki

(r ) andk'
(r ) . Performing thes integra-

tion in Eq. ~58! we obtain

s tr~vr ,vi !5
~2p!4Z2e4

~4pe0!2m2v r
3E dkuU~k!u2~k•vi !

3 (
n52`

1`

Jn
2~k'a!gn~k!, ~A2!

wheregn(k)5(2 i /2p)G2n(k,2k) is given by

gn~k!5
1

p i H ki
2

@zn~k!1 i0#2
1

k'
2

2V F 1

zn21~k!1 i0

2
1

zn11~k!1 i0G J . ~A3!

Here we used the following relations between the functio
zn(k):

zn11~k!1zn21~k!52zn~k!, zn11~k!2zn21~k!52V.

~A4!

The second-order singularity in Eq.~A3! ~the first term! must
be understood as

1

~zn1 i0!2
→ 1

zn~zn1 i0!
5

1

zn
2

2
p i

zn
d~zn!. ~A5!

It is easy to see that the contribution of the imaginary p
of gn(k) to the effective cross section, Eq.~A2!, vanishes.
The contribution of the real part together with Eq.~59! leads
to

SBC5
Z2e2

4pe0v i
E dkuU~k!u2~k•vi !J~k,k•vi !, ~A6!
1-10
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where

J~k,v!52p2vp
2 (

n52`

1` E dv0f 0~v0!Jn
2~k'a!H ki

2d8~jn!

1
k'

2

2V
@d~jn11!2d~jn21!#J , ~A7!

andjn5k•v02an with an5v2nV.
With the relations

Jn21
2 ~z!2Jn11

2 ~z!5
4n

z
Jn~z!Jn8~z!, ~A8!
d

av
C
P.
A

. E

. B

rd

.

02641
for the Bessel functions~see, e.g., Ref.@27#!, the function
J(k,v) becomes

J~k,v!52p2vp
2 (

n52`

1` E dv0f 0~v0!H kiJn
2~k'a!

]

]v0i
d~jn!

1d~jn!
nV

v0'

]

]v0'

Jn
2~k'a!J . ~A9!

After a partial integration of Eq.~A9! we arrive at
J(k,v)5Imx (0)(k,v), wherex (0)(k,v) is the susceptibil-
ity of magnetized electrons given by Eq.~5!. The comparison
of Eqs.~A6! and ~8! then yieldsSBC5SLR8 .
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