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Energy loss of ions in a magnetized plasma: Conformity between linear response
and binary collision treatments
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The energy loss of a heavy ion moving in a magnetized electron plasma is considered within the linear
respons€LR) and binary collision(BC) treatments with the purpose to look for a connection between these
two models. These two complementary approaches yield close results if no magnetic field is present, but there
develop discrepancies with growing magnetic field at ion velocities that are lower than, or comparable with, the
thermal velocity of the electrons. We show that this is a peculiarity of the Coulomb interaction which requires
cutoff procedures to account for its singularity at the origin and its infinite range. The cutoff procedures in the
LR and BC treatments are different as the order of integrations in velocity and in ordfaugie) spaces is
reversed in both treatments. While BC involves a velocity average of Coulomb logarithms, there appear in LR
Coulomb logarithms of velocity averaged cutoffs. The discrepancies between LR and BC vanish, except for
small contributions of collective modes, for smoothened potentials that require no cutoffs. This is shown
explicitly with the help of an improved BC in which the velocity transfer is treated up to second order in the
interaction in Fourier space.
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I. INTRODUCTION each other. Therefore no closed solution exists for BCs,
which is uniformly valid for any strength of the magnetic
The energy loss of ion beams and the related processes field and the Coulomb force between the particles. Numeri-
magnetized plasmas are important in many areas of physi&ﬁ] calculations have been performed for BCs between mag-
such as transport, heating, magnetic confinement of thermdetized electron§l5,16 and for collisions between magne-
nuclear plasmas, and astrophysics. Recent applications aliged electrons and iorfd7-21. As an ion is much heavier
the cooling of heavy-ion beams by electrdiis-3] and the than an electron, its uniform motion is only weakly perturbed

energy transfer for heavy-ion inertial confinement fusiee ~ PY collisions with the electrons. In this paper, we consider
Ref. [4] for an overview. the Coulomb interaction with the ion as a perturbation to the

For a theoretical description of the energy loss of ions inhehcal motion of the magnetized electrons, while the ion

a plasma, there exist two standard approaches. The dielectfjotion remains unchanged. This has been done previously in

. . . ﬁrst order in the ion charg&€ and for an ion at resf19].
linear responséLR) treatment considers the ion as a pertur'However it has been shovg\]/n that a second-order t:r;gatgnent is
bation of the target plasma and the stopping is caused by tl"[gz '

o . . : L oth necessary and sufficient for the conservation of a gen-
polarization of the surrounding medium. It is only valid if the eralized energy20].

@on couples weakly to the target. Alternatively, the _stopping Both treatments, LR and BC, can be regarded as comple-
is calc.ulated as t_he result of the energy_transfers in Succeﬁﬁentary to each other and both of them are of physical in-
sive binary collisions(BCs) between the ion and the elec- terest. Within the LR treatmertlielectric theory, the stop-
trons. Here it is essential to consider appropriate approximaying power can receive a dynamic contribution from
tions for the shielding of the Coulomb potential by the collective plasma excitations. It requires a cutoff at small
plasma. distances, where hard collisions between the ion and elec-
Since the early 1960s, a number of theoretical calculatrons cannot be treated any more as a weak perturbation.
tions of the stopping power within the LR treatment in aWithin the BC picture, the interaction between the plasma
magnetized plasma have been preser(wek, e.g., Refs. electrons is only treated approximately by an effective inter-
[5-14), and references thergirRecently, new theoretical in- action or an upper cutoff for the impact parameters, to ac-
vestigations[8—14] have been stimulated by a number of count for screening. In this case, the stopping power of an
experiments, e.g., the electron cooling of heavy-ion beams iion is the result of the energy transfer in successive binary
the presence of a magnetic field or in magnetized target fueollisions. In the limit of a noninteracting electron gag (
sion research. —0, whereV is the interaction potential between the elec-
The problem of two charged particles in an external mag+rons, the LR and BC treatments should therefore provide
netic field cannot be solved in closed form as the relativethe same result for the stopping power. But even in the ab-
motion and the motion of the center of mass are coupled tgence of a magnetic field, both approaches give slightly dif-
ferent results. Exactly the same results can be achieved if
physically reasonable cutoffs are used in the Coulomb loga-
*Permanent address: Division of Theoretical Physics, Institute ofithms[1,2]. In the presence of a magnetic field, the situation
Radiophysics and Electronics, 1 Alikhanian Brothers Str., Ashtarakis dramatically changed. Here the agreement between the LR
2, 378410, Armenia. Email address: hrachya@irphe.am and BC treatments breaks down for intermediate and low ion
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velocities as discussed in Rgf20]. The disagreement is coupling, whereZ<1 corresponds to weak, almost linear
larger for an ion motion along the magnetic field than transcoupling andZ=1 to strong, nonlinear coupling.
verse to it. In addition, the BC treatment also predicts an For a sufficiently small perturbationZ<1), the linear-

ll?n?tfgy gain(negative stopping powgfor very low ion ve-  jzed Vlasov equation of the plasma may be written as
ocities.

In this paper, we consider BCs between ion and electrons afy afy oty e dp dfy
in the presence of an arbitrary magnetic field and demon- EJFV' W_Q[VXb]'W_ “mor av’ @
strate that full agreement between BC and LR treatments in
the limit of a noninteracting electron plasma is guaranteeavheref="fy+f; and = ¢+ ¢ is the electrostatic poten-
for a smoothened interaction which is both of finite rangetial. It consists of the perturbing ion potentiad,
and less singular than the Coulomb interaction at the origin=Ze/4meo|r —v;t| and the self-consistent polarization con-
The paper is organized as follows: We start in Sec. Il with atribution ¢<. which is determined by the Poisson equation
brief discussion of the basic results of the LR treatment for
the stppping power in a magnetizgd pIasma._We derive an V2¢sc=£f dvE(r,vt). 3)
analytical expression for the stopping power in the case of €
noninteracting electron plasma. In Sec. lll, we consider the , i
LR and BC treatments without and with an infinitely strong Further, b is the unit vector parallel tdB,,—e and €
magnetic field. In Sec. IV, we discuss the velocity and energy™ €Bo/m aré the charge and cyclotron frequency of the
transfer during BCs of magnetized electrons with ions forP'@Sma electrons, respectively, afiis the unperturbed dis-
arbitrary magnetic fields and strengths of the electron-iorffiPution function of plasma electrons. _
interaction potential. We assume that the ion nmdss much By solving Eqs.(2) and(3) in space-time Fourier compo-
larger than the electron mass The equations of motion are N€Nts, we obtain the electrostatic potential
solved in a perturbative manner up to the second ordéer in .
starting from the unperturbed helical motion of the electrons B(rt)= J kexm K-(r=vit)]
in the magnetic field. Then in Sec. V we turn to the energy ' (27)3e, k?e(K,K-V;)
loss of ions in a magnetized electron plasma. We show that . )
the stopping power obtained within the BC treatment comWhich provides the dynamic response of the plasma to the
pletely coincides with the LR result. The results are summatmotion of the projectile ion in the presence of the external

4

rized and discussed in Sec. VI. magnetic field. The dielectric functiot(k,») of a homoge-
neous plasma is given by(k,w)=1+V(k)x(k, ),
Il. LINEAR RESPONSE EORMULATION where @2/4mey)V(K) is the Fourier transformed two-body

interaction potential; in case of the repulsive Coulomb po-
As a basis for further considerations, we recall briefly thetential for electron systemé(k)=1/27°k?. The susceptibil-
main aspects of the LR theory for the ion-plasma interactiotity of the magnetized electrons {see, e.g., Refl23]) the
in the presence of an external magnetic field. Within the LR causality of
the electron plasma is described as a continuous, polarizable

fluid (medium, which is represented by the phase-space den- o) (273w} § o

sity of the electrong(r,v,t). Usually only a mean-field in- X ¢ w)=-— N Jo ULUVL

teraction between the electrons is considered and hard colli-

sions are neglected. The evolution of the distribution y J+°°d (nQ afg N af(,) J2(B)
function f(r,v,t) is determined by the Vlasov-Poisson equa- I v, dv, [ vy kjoy—a,—i0°

tion. This is valid for weakly coupled plasmas where the

number of electrons in the Debye sphiig=4mno\3>1 is )

very large. Here,ny is the electron density andp Here w, = (nge?/msg) Y2 i ;

o N1/ e p=(No g0) < is the plasma frequency,, is the

= (€ckgT/nee™) ™" is the Debye length. _ Bessel function of thenth order ande,=w—n{, and 8
We consider a nonrelativistic projectile ion with charge =k, v, /. The symbold) andL denote the components of

Zle and with a vellomty\r/]i , which moxes ina ma?_neUzed the vectorsk andv parallel or perpendicular to the external
plasma at an angle with respect to the magnetic fielg,. magnetic field, respectively. The positive infinitesimal 0

We shall consider here the limit of heavy ions and negleqn Eq. (5) guarantees the vanishing of the response
recoil effects. The strength of the coupling between the mov- Thé stopping powes,  of an ion is now defined és the

ing ion and the electron plasma is given by the CouDIingenergy loss of the ion per unit length due to the plasma

parameter polarization, that is, the electric fielel= —V ¢, from Eq.(4)
_ g9 ) < - dg;  Z%? J k-v; -1 6
[1+viv§]®? RETAC T qui2m) Tk Te(kkev)” ©

Herevy,= (kg T/m)Y2 is the thermal velocity of an electron, The collective excitationgi.e., magnetized plasma modes
g=Z/Np. The derivation of Eq(1) is discussed in detail in contributing to the stopping power are contained in
Refs.[21,22. The parameteZ characterizes the ion-target e(k,k-v;). But in general, Eq(6) cannot be evaluated in
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closed form except for the limiting caséy—0 and Bg lll. LR AND BC TREATMENTS WITHOUT AND WITH
—. In intermediate situations we assume weakly interact- STRONG MAGNETIC FIELD

; 1/3 ;
ing electronsg®ng"—0 (or wp—0), with To illustrate the problem and to motivate the forthcoming
considerations on the interrelation of the LR and BC treat-
Im -1 :lms(k'“’) ~V(K) My (K, o). (7) ments, we consider the cases without and with an infinitely
e(k,w) |s(k,w)|2 strong magnetic field. We show that even in the absence of a
magnetic field both approaches yield slightly different results
In this approximation the stopping power thus reads when using the standard averaging procedure. The discrep-

ancy grows with the strength of the magnetic field.

ZZeZ
" 2(k. v 0 Ve
SR 47750Uif dkU k)| vi)Imy Pk k-vi), - (8) A. LR and BC treatments without magnetic field

where we have introduced the Fourier transformed ion—t.b.\ll.\t/'th?cut m_agpetu_: f||\e/|ld, the”_lmaglmary p_art 9f the suscep-
electron interaction potentiat; (Ze?/4mey)U (k). Now the ibility of an isotropic Maxwellian plasma is given tigee,

stopping power does not receive any contribution from the®-9- Ref[23])

dynamic collective plasma modes, but static collective con- 2m)5%2 o w2
tributions (i.e., screeningcan be easily reintroduced by re- Imy©@(k, w)= —exp( - _) (12)
placingU (k) with a shielded ion-electron interaction poten- 4\ kv 2k%v2,

tial. Then, Eg.(8) amounts to neglecting the electron-

electron interaction in the target except for a static shielding The expressiori8) for the simplified LR stopping power

of the ion. in the case of the Coulomb interactidd(k) =V(k), yields
In the case of a bare Coulomb interaction between the

projectile ion and plasma electrons, i.&l(k)=V(k), the , g

cutoff parameters ;= 1/ max @Nd K= 1/ min (Wherer i Sir= SOPALR()\)

is the effective minimum impact parametenust be intro- (12)

duced in Eq(8) to avoid the logarithmic divergence at small

and largek. The divergence at largk corresponds to the \here erf§) is the error function, \=v;/vy, So

incapability of the linearized Vlasov theory to treat close —4¢,(kyT/€)2, and

encounters between the projectile ion and the plasma elec-

trons properly, whil&k,,;, accounts for screening. Fog,;, we (Kma) (1+2\?)%2 1

use the effective minimum impact parameter excluding hard Ar(M)=1In (Ko =In =In Z0n)

Coulomb collisions with a scattering angle larger thafl, 90 min g

2

(13

Here Z is defined by Eq.1). In the Coulomb logarithm
zZe? r _Ur 9) A r, the averaged lower and upper cutoftee Eq.(10)]
Wy have been used.
Within the perturbative BC treatmelisee Ref[20] for
The cutoffr ., describes the dynamic screening at high rela-detaily, we need to consider only the second-order energy
tive electron-ion velocities, (see, e.g., Ref22] for more  transfer during an electron-ion collision, as the first-order
detail). energy transfer is proportional to the impact paramstand
In the LR treatment, cutoffs and impact parameters areyanishes after averaging ovex The angular averaged
used which are averaged with respect to the electron velocitgecond-order energy transfer reads
distribution function. With the averaged relative velocity

Fmin™ >
47'reomvr2

<Ur>2(vi2+vt2h)1/21 they read <AE,(2)>:( zZe 22Vi - V; (14)
: 4’7T60$ mv4 ’
zé? '
{Vmin) (Kma  4megm(vZ+v32)’ where v, =vg—V; is the relative velocity of the colliding
particles. The energy loss of the ion in a homogeneous elec-
1 (02 +vt2h)1/2 tron plasma is obtained by integrating Ef4) over an area
(r may = = (100  elementd®s perpendicular to the relative current density,
(Kmin) @p and averaging over the unperturbed electron distribution

The cutoff parameterf) and (10) are well known(see, function fo,

e.g., Refs.[1-3,18-22) for stopping power calculations dE 27N,

without magnetic field. In particular, the minimum impact SBC:_(d_el) =— —f dveofo(Veg) v,
parameter i, is provided by the Rutherford scattering for- BC vi

mula[24]. However, in the presence of a magnetic field, the ;
cutoff r ,;, must be deduced by a comparison of the LR and XJ maxdss(AEi(Z)>. (15)
the full nonperturbative BC treatments. r

min
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1.5 ——r———————————— B
.9- .‘. 1 SBC: ZA LR()\)

AP
In| 1+ "] Sk. (18)

---- BC ] This demonstrates that both approaches are equivalent if
Full LR comparable cutoff procedures, resulting in equal Coulomb

w09 logarithms, are used. Equati@h8) shows that for the con-
) formity between both approaches one must choosd
N 06 =(1+1?)3-g? In the limit g<1, this condition becomes
0 (x?)=1+\2
03 B. LR and BC treatments with strong magnetic fields
In the presence of a strong magnetic field, the imaginary
004 part of x(9(k,w) reads(see, e.g., Ref23])
0 2 4 6 8 10
v./v iy @)= 2T | a9
. m W)= ——— ——exXp — —— |,
i th X anz kv 20202,

FIG. 1. Stopping powerén units ofg?S,) within the simplified
LR, Eq. (8) (dotted line$; full LR, Eq. (6) (solid lineg; and BC
(dashed linestreatments as a function of the ion velocity (in
units of vy,) in a plasma without magnetic field fg=0.1 (lines 5 2 ’lezd
without circleg andg=0.01 (lines with circles. Sig= SO%)\ALR()\)SW'ZQJ‘

{27 PN
Here the upper cutoff . accounts for screening, while
rmin=Ze2/(4qrs0mvr2) is the cutoff below which the perturba- Here « is the angle between the magnetic field and the ion
tive treatment of the Coulomb interaction fajlee Eq(9)].  velocity v;, the Coulomb logarithm\  is the same as in
However, it is well known that for Rutherford scattering hardEq.  (13) and q(x,\)=x?—2\xcosx+\2, where x

wherek| is the component ok along the magnetic field.
Substituting Eq(19) into Eq. (8), we obtain

(20

collisions are taken into account by regularizing iete-  =v¢/vg,.
gral in Eg.(15) according to The second-order energy transfer for an electron-ion col-
lision in the presence of a strong magnetic field26]
madS  Fmax  ["max Sds 1 r2 o
f sn .Hf ooz Mtz | z& \%v}
Fmin S Fmin 0 S™+TIm VM min <AEi(2)>: ) I_(UgH_Uiz), (22)
(16 Ameos) mo
which yields the exact resul4]. wherev,=vgb—v;, anduv is the electron velocity along
For an isotropic Maxwellian distribution, we finally ob- the magnetic field. The last result has already been given in
tain from Eqs.(14—(16), Ref. [1] for the casevg=0. In the general case, this term

also leads to an energy gain fof<v? .

The integration of Eq(21) over the impact parametsiis
similar to that used in the preceding section, ELf), with
I min @Nd T max from Eq. (9). However, now, is replaced by

6

9° fw dx X IPVENY:
=S — —Inl 1+ —|T(A\x=1)e~ x—N)2
Sec 2\2\2mJo x? gz)[( )

+(Ax+1)e” (xHNZ2), (170 the relative velocity of the guiding centei(ve—vi))?
+v?2 1¥2. Averaging expressiot21) over an isotropic Max-
wherex=uv, /vy, well distribution functionf,, we arrive at
In Fig. 1, the normalized stopping powers within the sim-
plified LR (dotted line$ and BC (dashed linestreatments, g2 o Jw dx()xz—xz)e"‘z’z
Egs.(12) and(17), are plotted versus ion velocity. The full Skc 8045)\& al )

LR results,S g, including the electron-electron interaction
are also plotted for comparisaisolid lineg. All these ap-
proaches yield close results except for some deviations in the x|
intermediate velocity range.

To make a contact between LR and BC results, ELR).
and(17), we note that the integral in EGL7) divided by the ~ When the logarithmic factor in Eq22) is now taken out
factor y2 is identical with the expression in square brack-With some average valu@®(x,\)), thex integral does not
ets in Eq.(12) if the logarithmic factor in Eq(17) is taken ~ Nhecessarily coincide with theintegral in Eq.(20) as it has
out of thex integral. Taking thus out the logarithmic function been the case in the absence of a magnetic field, cfiBy.
with some average valug) = (v, /vy, the stopping power Moreover, at low ion velocity X—0), the stopping power
in the BC treatment can be rewritten as Sgc behaves as 1/and tends to infinity. The LR stopping

a3(x,\)

nl 1+ 92

(22
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0 1 2 3 4 5
Vi/V 0

FIG. 2. Stopping powerén units ofg?S,) within the simplified FIG. 3. As Fig. 2, but herg=0.01.

LR (lines without circles and the BC(lines with circles treatment ) ) )
as a function of the ion velocity; (in units ofvy,) in a plasmawith ~ BC. In particular, the large stopping power predicted by the
a strong magnetic field fay=0.1, «=0 (solid lineg, a= /4 (dot-  Simplified LR fora= 0 is unrealistic, since it vanishes within

ted lines, and = /2 (dashed lines an exact(nonlineay BC treatment, as discussed above. This
is not healed by including collective effects, see Fig. 4,

power Eq.(20), on the other hand, leads at low ion velocities where we compare the simplifi¢éq. (8)] and full [Eq. (6)]

to a term which behaveg\In(1/\) [10], for both the full LR stopping powers for an infinitely strong magnetic field.

and the simplified LR treatments. This is a quite unexpected he role of collective excitations is not as important here as

behavior compared to the well-known linear velocity depen-n the limiting case considered in Refd.,8]. These conclu-

dence without magnetic fiel®2,25,28. sions are supported by a numerical solution of the nonlinear-
The stopping power$20) and (22) depend on the angle ized Vlasov-Poisson equation$3].
a. For smalla—0, Eq.(20) yields In the low-velocity limit when\<1, the BC stopping
, power is linear in\ and negative,
g 2
Slr(@—0)=Sy—=Ar(AM)re "7, (23 g < dx
2 ,0)=—S.— >\ gi A ox 3y
V Sgc(A—0) sosmxsmzafo e Vin(1+ 89"
whereas for BC, the stopping power vanishes as (25
gZ - fw dx()\Z_XZ)e7X2/2 1.5 v T T T T T T T
— e —
Sge(@—0) 804\/277)\S|r72a B P
1.2
(x—\)®
XIn| 1+ 5 (24
9 QO 0.9
This result coincides with the exact behavioio perturba- 7p)
tion treatment of the BC stopping power for smalk "o0 06
[17,18,2]. In the presence of a strong magnetic field, the ’
electrons move parallel to the magnetic field. For reasons of
symmetry, no velocity can be transfered to positively 03
charged ions that also move parallel to the field. The energy
transfer and hence the stopping power within the BC treat-
ment must therefore vanish. 0.0 &
In Figs. 2 and 3, the stopping powers within the [iRe
curves without circles and BC (the curves with circles v.[v
treatments are plotted for plasmas in a strong magnetic field 1 'th
for three values ofa: a=0 (solid lines, a==/4 (dotted FIG. 4. Stopping powerén units ofg?S,) within the simplified

lines), a=m/2 (dashed lings The difference between the (dashed linesand the full(solid lineg LR treatment as a function
two treatments is noteworthy especially in the low and inter-of the ion velocityv; (in units of vy,) in a plasma with strong
mediate ion velocity limits. It is related to the different cutoff magnetic field forg=0.01, =0 (lines without circley and «
procedures, i.e{Kmin), (Kmay iN the LR andr ,n, rmaxin the =2 (lines with circles.
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This corresponds to an energy gain of an ion at slow perpering binary collision process. In contrast to previous work
dicular motion. For a finite magnetic field strength and an{20], the present treatment becomes more transparent in Fou-
isotropic (nonequilibrium velocity distributions typical for rier space.

electron cooling, such energy gains have indeed been ob-

served in nonperturbative numerical simulations of binary A. Relative motion and conservation laws
collisions[18] as well as in a numerical solution of the non- ) ) )
linearized Vlasov-Poisson equatiph3]. The perturbing ion We consider two point charges with massesM and

drives the equilibration between the longitudinal and trans€harges—e, Ze, respectively, moving in a homogeneous
verse electron temperatures. There results, in the average Mfgnetic fieldBo=Bob. We assume that the particles inter-
shrinking of the cyclotron radii of the electrons and an en-act With the potential—(Ze*/4meq)U(r), wherer is the
ergy gain of the ion caused by the released transverse e|eg_elat|ve coordlnate of colliding particles. For (_:harged par-
tron energy. For an infinitely strong magnetic field and anticles the functionU(r) can be expressed, for instance, by
effective one-dimensional electron motion, however, thisthe Coulomb potential)¢(r)=1/r or, more realistically, for
mechanism does not work. Both the unexpectedin(1/A)  @pplication in plasmas, by the Debye screened potential,
behavior in the LR and the energy gain(second-orderBC ~ Up(r) =exp(=r/kp)/r. In the presence of an external mag-
therefore indicate a breakdown of a perturbation treatmenfi€tic field, the Lagrangian and the corresponding equations
for B—0 and small ion velocities. This is also supported by©f particles’ motion cannot, in general, be separated into
considering again the case where the ion moves along thea"ts describing the relative motion and the motion of the
magnetic field. As discussed above, the energy transfer igénter of mass with velocities, V., and coordinates,
binary collisions is zero for positively charged ions due toRem. respectively(see, e.g., Refq.15,18,20). Introducing
symmetry. But for negatively charged ions, the electron carthe reduced mass A~1/m+1/M the equations of motion
either pass over the potential well, which gives again nc€

energy transfer, or it is reflected with a momentum transfer

of two times its initial momentum. Thus all scattering events yt)+ [ v(t) x b]= — Q[ Von(t) X b]— F(r(t)),
contributing to the stopping power are nonperturbative in Ameop

this case. It is evident that this situation cannot be treated by (26)
either the LR or the second-order BC, which both depend on

the square of the ion charge. However, the cutoff procedures V() = Qq[ V(1) X b]= — Q5[ v(t) X b], (27)

employed in the(perturbativeé BC lead to stopping powers
which are much closer to numerical simulatiga8,18 than  where — (Ze?/4me) F(r(t)) (F=—adU/dr) is the force act-
the LR predictiong20] for positively charged ions and finite ing on each particle. The frequenci®s, Q,, O3, andQ,

magnetic fields. are expressed in terms of the electron cyclotron frequency
Q=eBy/m,
IV. BINARY COLLISION FORMULATION
m(Z—1) m(M +Zm)

The results obtained so far strongly suggest that the large = "M+m Q, Q,= (M+m)2 Q, (28)
discrepancies between the LR and the BC seen at strong
magnetic fields are peculiar to the Coulomb interaction that )
requires cutoffs. It is the main concern of this paper to show _ Zm _ Zm\ u
that these discrepancies are in fact a consequence of the dif- Q=1+ ™M @, Q={1- M2 EQ' (29)

ferent cutoff procedures in the LR and BC and that the stan-

dard cutoff recipes for the nonmagnetized case are not gu

anteed to work in the presence of an external magnetic fiel

To this end we replace the Coulomb interaction by an effec-

tive, smoothened interaction potential, which decays faster 2

thanr ~* at large distances and increases slower thanat W= (M+mVer ’“_vz — ze

small ones. The introduction of such a smoothened potential 2 2 Ame

can be viewed as an alternative implementation of cutoffs. It

is justified by the same line of arguments: At large distanceghut the relative and center of mass energies are not conserved

the bare Coulomb interaction is shielded by the polarizatiorseparately.

of the electrons. At small distances, a perturbative treatment The coupled, nonlinear differential equatiof6) and

of the Coulomb interaction leads to divergencies. One thu§27) completely describe the motion of the particles. They

attempts to approximate the finite cross section of a nonpehave to be integrated numerically for a complete set of the

turbative treatment by either a cutoff or a smoothening of thénitial conditions for solving the scattering problem. In the

interaction. case of heavy ions, i.eM>m, the equations of motion can
Below we first discuss the general equations of motion foibe further simplified, sincexu—m, ;,Q,—0, and

two charged particles moving in a homogeneous magneti€)s,{),— ) [see Eqs(28) and(29)]. Equation(27) leads to

field and the remaining conservation laws. From the velocityV .,,— Vv;=const, wherey; is the heavy-ion velocity, and Eq.

transfer we then proceed to the energy loss of particles duf26) turns into

“rom Eqgs.(26) and (27) follows the conservation of total
nergy

U(r)=const, (30
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. Zé? d
V(O + Q[V(1) X b]= —Q[vyXb] = - F(r(1). Fl(ro<t>,r1<t))=(r1<t>- 5) F(N)lr=ro0
(31
= | dkU(K)Kk[k-ri(t)]exdik-rq(t)].
With the help of the equation of motio81) it can be J (kkLk-ra(t) Jexd o(t)]
easily proven that the quantity (39
mv2 Ze? In Egs. (38) and(39), we have introduced the ion-electron
K=s——- HU(FHme[Vi Xb] (32)  interaction potentialU(r) through F(r)=—4U(r)/or and
0

the force corrections have been written using a Fourier trans-
formation in space.

is a constant of motion. In contrast to the unmagnetized case, e start with the zero-order unperturbed helical motion of
it thus follows that the relative energy transfer during ion-ine electrons. From Eq33), we obtain

electron collision is proportional tér ,v;, , whereér, and
v;, are the perpendicular components of the change of rela- Vo(t) =V, +vg, {ucog Qt) +[bXu]sin(Qt)}, (40
tive position and the ion velocity.

ro(t)=Rp+v, t+afusin(Qt) —[bXu]cog Qt)}, (41

B. Trajectory correction whereu=(cosg,sin¢) is the unit vector perpendicular to the

It is now useful to introduce the velocity correction magnetic fieldyo anduvg, (with v, =0) are the electron
through relationssv(t) = vg(t) — Veo(t) = V(t) —Vvo(t), where  unperturbed velocity components parallel and perpendicular
Veo(t) and vy(t) are the unperturbed electron and relativeto b, respectivelyy, =vqb—v; is the relative velocity of the

velocities, respectively, with electron guiding center, ana=v, /) is the cyclotron ra-
_ dius. It should be noted that in Eqel0) and (41), the vari-
Vo(t) + Q[ vo(t) Xb]=—Q[v; X b]. (33 ablesu andR, are independent and are defined by the initial
conditions.
Note thatév(t)—0 att— —o. The equation of motion for The equation for the first-order velocity correction is
sv(t) then follows from Eq(31) as given by
2
. Vi () + Q[ vy () Xb]=— Fo(ro(t 42
SO+ O[OV XbI=— TS Fe(v), (3 1O+ QLD XB]= = 7= Fo(ro(1) (42
0

with the solutions

where r(t)=rq(t) —v;t is the ion-electron relative coordi-
nate. Vl(t) —
We seek an approximate solution of E84) in which the 4meom
interaction force between the ion and electrons is considered

{=bV|(t) +Reb(b-V, (t))=V (1)

as a perturbation. Thus we have to look for the solution of HilbxV (W] (43
Eq. (34) for the variableg andv in a perturbative manner 7e?
r1(t)= 4 ———{=bP|(t)+Reb(b-P, (1))~ P.(t)
() =ro(t)+ry(t)+rat)+- -, (35) °
+i[bXP. ()11}, (44)
V(D) =Vo(t) FVa(t) F V() +- -, 38 \where we have introduced the following abbreviations
whererq(t),vp(t) are the unperturbed ion-electron relative [t
coordinate and velocity, respectively,(t),v,(t)<Z"F,_; V()= %dTb‘FO(rO(T))*
(n=1,2,...) are thenth order perturbations of(t) and (45)
v(t), which are proportional t&". F,(t) is the nth order or [t i
correction to the ion-electron interaction force. Using the ex- Vi(t)=¢ f dre” " Fo(ro( 7)),
pansion(35) for the nth order correction§,, we obtain o
t
F(r(t)=Fo(ro(t) +Fy(ro(t),ry(t)+---, (37 P(t)= j_xdTVH(T)’
where (46
t
PL(t):f7 d7V,(7),
Folro(1))=F(ro(t)) = _if dkU(k)kexrik-ro(t)], and have assumed that all corrections vanish-at-. For

(39 instance, in the unscreened Coulomb case, the interaction

026411-7
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force F, must behave afq(rq(t))— 142 for |t|—o. Thus
from Eq. (45) at t—o we obtainV(t)— Vg =const and
V, (t)—e' ™V, , whereV,, =const. The quantitiegy and
Vo, give the first-order velocity correction in E3) after
an electron-ion collision. In this limit, we find for the first-
order trajectory correction from Eq$45) and (46), P|(t)

=Vot+Poj, PL(t)=—i(Vo, /Q)e¥+Py, , where

Po=v— ficdrrb Fo(ro(7)),
7
Po=g | deFatrotm).

For the Coulomb interaction= —tV/(t)|;_, _..=bv, /v? and

v=_0 for any screened interaction potential. Note that for the

Coulomb interaction, the second term in E47) tends to
infinity (see, e.g., Refl20]). However, the contribution of

this term to the ion energy change vanishes after averaging

over impact parameters.
Substituting Eqs(38) and (41) into Egs.(45) and (46),
and using the expressiga7]

exp(izsin§)= _2 J.(z)e"?, (48)

whereJ, is the Bessel function of theth order, we obtain
for an arbitrary interaction potential

PH(t)=iJ dkU (k) (k-b)e’Ro

§ . gl {n(k)t
vy (k,a) ——, (49
e A o
Pi(t)ziJ dkU (k)ke'k Ro _}; enJ, (k, a)
el én(t
(50

X () —10][Zn_1(K)—i0]"

Here {(K)=nQ+k-v,, y=¢—06, and tg=k,/k,. The
quantitiesV|(t) andV, (t) are obtained directly from Egs.
(49) and (50) through the relation¥/(t) = P”(t) andV (1)

=P, (1).
V. FROM THE BC ENERGY TRANSFER TO THE
STOPPING POWER
A. General formulation

Previously (see, e.g., Refl20], and references thergijn
the energy gail\E, of the electron in terms of the velocity

PHYSICAL REVIEW B7, 026411 (2003

©

zZe?
AEi:

Armeq dtv;- F(r(t)).

(51)

— o0

Insertion of Eq.(37) into the general expressiofbl)

yields

AE=AEM+AE@+. .., (52)

where

(1)—— ‘ I I t '

AEP)=

e (=
477€of mdtVi'F1(ro(t),r1(t))

re the first- and second-order energy transfer, respectively.

B. First-order energy transfer

The first-order energy transfer can be obtained by substi-
tuting Eqgs.(38) and(41) into the first one of Eq953). This
yields

ze? .
AE§1>=—i2—6J dkU(k)(k-v;)e'k Ro

+ oo

x 2 eMkia)dnk). (54

We now introduce the variabke=R{) which is the com-
ponent ofR, perpendicular to the relative velocity vectgr.
From Egs.(40) and(41) we can see thatis the distance of
closest approach for the guiding center of the electron helical
motion. The stopping power is now given by the average of
AE; with respect to the initial phase of the electragnsind
the azimuthal angle of. For spherically symmetric interac-
tion potentials{U(r)=U(r) and U(k)=U(k)], the first-
order energy transfer gives no contribution due to symmetry
and the ion energy change receives a contribution only from
higher orders. In fact, Eq54) for the averaged first-order
energy change gives

7€
(AEM) =~ 2 [ kUi v)3g(k9) 3k, @) a(k-vo),
€0
55

wherex=\k?—(k-n,)? andn,=v, /v, . As the integrand is
an odd function ok we have(AE(")=0.

transferdv was considered. But this equals the energy loss of

the ion,AE;=—AE,.

The total energy change of the ion during an ion-electron

collision is given by

C. Second-order energy transfer

Inserting Eqs(39), (41), (44), (49), and(50) into the sec-
ond equation of EqY53) one obtains

026411-8
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miz2%e*

AEP(Rg, @)=
i”(Ro, ) (47760)2m

f dkdk'U(k)U(k")
X(k'Vi)ei(k-H(’)'Ro

+ 00
X X enrimi'g (k a)d(kla)

n;m=—oo

X 6(£n(K) + Em(k"))Gm(k,k"), (56)
wherey’=¢—6', and
(k) = 2D
[{m(k')—i0]
N (k-b)(k"-b)—k-k"+ik-[bXxk']
[{m(K") =i0][{m-1(k")—i0]
N (k-b)(k’~b)—k~k’—ik~[b><k’]. 57

[Z{m(K") =10][{m+1(k")—i0]

Next, AE(?) is averaged with respect to the initial phase

of electrons ¢ (see the Appendix for detajls The

¢p-averaged ion energy Ch&ndﬁEi(z)>¢, is then integrated
over the impact parametesin the full two-dimensional
(2D) space.

Thus we can introduce an effective transport cross sectio

[17,21] through the relatiorisee the appendix

2
oV Vi) =— _zf d25<AEi(2)>tp
Mo

w272t =
—f deU<k)|2<k-vi)n2 Ik, a)
Uy =—o

=2 5 3

4

- 5(§n_1(k))]],

2 ki
F8" (La(KD)+ 57T 8 1(K))

(58)

where 6’ (x) defines the derivative of thé function with
respect to the argument.

For the Coulomb interactiob (k) = V(k), the full 2D in-
tegration over the space results in a logarithmic divergence
of the k integration in Eq.(58). To cure this, we introduce
cutoff parametergki,) and(knay as it was done in the
linear response formulatidrsee Eq.(10)].

PHYSICAL REVIEW B7, 026411 (2003

wheren, is the density of plasma electrons. Substituting Eq.
(58) for the effective transport cross sectiop into the last
expression, we obtain E@8) derived in the simplified LR
treatment(see the Appendix for detajls This shows the
complete conformity between both approaches.

In the presence of a strong magnetic field, the simplified
LR expression8) for the stopping power with an arbitrary
spherically symmetric interaction potentiél(r) and the
imaginary part of the susceptibilitfl9) yields

Y2
= x2e X"2dx

SIe(M)=S, 9 xsinZaf L Tos(\)
R 2\27 N S
(60)
Here,
RZONE
=" fo K3U2(K)dk 61)

and U(k) is the Fourier transformed interaction potential.
Now there appears in E¢60) the numerical factoi{, in-
stead of the Coulomb logarithifi3) in Eq. (20). Equation
(61) also gives a criterion in Fourier space for the smooth-
ened potential, which is equivalent to the conditions consid-
ered above. Indeed, it must behave Il¢k)=k 2~ at k
—0 andk—« with negative or positive valuegr<<O and
o>0, respectively. Note that for the Coulomb potental
=0 in both limits and the lower and upper cutoffs must be

|r}1troduced in Eq(61).

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a detailed theoretical
investigation of the stopping power of ions moving in a mag-
netized electron plasma within two complementary ap-
proaches: the dielectric linear resporit®) and the binary
collision (BC) treatments. The full LR including the dynamic
collective response of the electrons can only be evaluated in
closed form in the limiting cases of a vanishing and an infi-
nitely strong magnetic field, respectively. A simplified LR
which includes only static screening is used for intermediate
cases. The BC treatment developed here is valid for arbitrary
strengths of the magnetic field and arbitrary shapes of the
interaction potential up to second order in the interaction
strength. The purpose of this work was to investigate the
connection between the complementary BC and LR ap-
proaches.

We compare both treatments for a vanishing and very
strong magnetic fields. The results obtained within both ap-
proaches differ slightly at intermediate ion velocities in the
field-free casdsee Fig. 1 but significantly at low and inter-

For applications to the energy loss of ions moving in amegiate ion velocities for strong magnetic fieldee Fig. 2
magnetized homogeneous plasma, we average the ion energyy 3 |n particular, if the ion moves parallel to a strong

change during binary collision over the distribution function
of the electronsf,. The standard procedure for averaging
over distribution function yields

dE

ST

Nov, M r2
Sgc= dVofo(Vo)—U_ - (59
I

(Ve , Vi),

magnetic field, the stopping power becomes unrealistic
within the simplified LR treatment and this is not healed in
the full LR treatmenisee Fig. 4. The discrepancies can be
traced to the different cutoff procedures employed in both
treatments. The cutoffs are required by the infinite range of
the Coulomb interaction and its singularity at the origin. We

026411-9
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showed the complete conformity between both treatments fostart with the angular averaging of the ion energy transfer.
smoothened potentials, which need no cutoffs. From Eq.(56), we have
In order to look for a connection between the two models,

we start within the BC approach from Eq&6) and (57), 2 miz%e* , o

which represent the energy transfer to the ion for arbitrary (AEY) = 2 j dkdk’U(k)U* (k")
. . . . . (4’7760) m

magnetic fields and shapes of smooth electron-ion interaction

potentials. Following the standard procedure, &) must X(k,vi)ei(k—k').Ro

be averaged with respect to the impact parameters. For a

smoothened potential, Eq56) can be integrated over all A

possible impact parameters in 2D space. However, for a Cou- X Z e =03k, a)Jn(k! a)

lomb potential the averaging requires a cutoff parameter in =

the k integration. It is found that for a velocity averaged X 8((k—k")-v,)G_p(k,—k"), (A1)

cutoff parametetk,,.,) [see Eq(10)], the energy loss within
the BC [Eq. (59)] coincides with the simplified LR result where the functiorG,(k,k’) is given by Eq.(57). HereU*

[Eq. (8)]. is the complex conjugate dff and we used the relation
We note that previous BC and LR treatmefgse, e.g., J_,=(—1)"J, for the Bessel functiong27].
Refs.[1-3,20-22) for the Coulomb interaction differ some- For calculation of thes integral in Eq.(58) we split all

what in their approaches. In the BC model, the mOdifiedvariabIesA=Aﬁ’)nr+Af) in Eq. (A1) into components par-

Coulomb logarithm(16) is considered under the integral alie| (A{”) and perpendicularA(") to the relative velocity
with respect to the velocity distribution of the electrons. Fory wheren,=v, /v, is the unit vector along, . Note that

modified Coulomb logarithm is proportional tof./f4n  is now a function ok{” andk{" . Performing thes integra-
«p®. Therefore, this approach is self-cutting for small rela-tion in Eq. (58) we obtain

tive velocitiesv, . In the LR model the integral with respect

to the velocity distribution of the electrons enters in the sus- (21)4Zz2e*

ceptibility, Eq.(5) and hence in the dielectric function. Here ou(Vy V)= P 3f dk|U(K)|2(k-v;)

an average Coulomb logarithia, g arises due to thk inte- (4meq) " m7u;

gration in Eq.(6) or (8) with averaged cutoffgk,,;,) and +oo

(Kmax [s€€ Eq(10)]. This leads to a large energy loss at low X > I3k a)gn(k), (A2)
n=—ow

ion velocities, which behaves & g<v;ln(vy,/v;) for low
ion velocities[10], as shown in Fig. 2—4. ] o

Finally, we would like to mention that our current results Wheregn(k) =(—i/2m)G_,(k,—Kk) is given by
still leave some questions open. Usually, the dependence of

cutoff parameters on the magnetic field is ignored in both 1 k k? 1
approaches. Besides, the regularization procedure given by gn(k)= =y [¢ (k)+i0]2+ 20 Lno1(K)+i0

Eq. (16) has been performed on the basis of the exact Ruth- "

erford formula in the field-free case. However, it is known 1

that for a strong magnetic field the Rutherford scattering for- —m . (A3)
mula breaks down and the transport coefficients and the Cou- n+i

lomb logarithm are strongly modified by the magnetic field
(see, e.g., Ref$19,23 and references thergirThese topics e
are presently under investigation by the authors. ¢n(k):

Cn+1(K)+8n-1(K)=22,(K), Lns1(K)—En-1(k)=2Q.
(A4)
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Here we used the following relations between the functions
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(ANSEP for their support. It is easy to see that the contribution of the imaginary part

of g,(k) to the effective cross section, EGA2), vanishes.

The contribution of the real part together with E§9) leads
APPENDIX: CALCULATION OF EFFECTIVE TRANSPORT to

CROSS SECTION AND STOPPING POWER
242
We now give a more detailed derivation of E(¢56)—(58) Spe= z’e J dk|U(K)|2(k- V) E(k,k-V;), (AB)
and show that Eq(8) follows from Egs.(58) and (59). We Ameq;
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where

E(k,w)szzwgn;x f dvofo(vo)Jﬁ(kLa)‘ Kf &' (&)

k?
+m[5(§n+l)_5(§nfl)] ' (A7)
andé,=Kk-vy— a, with @,=o—nQ.
With the relations
(2= 35 1(D)= —3n(2)I)(2), (A8)

PHYSICAL REVIEW B7, 026411 (2003

for the Bessel functiongsee, e.g., Refl27]), the function
Z(k,w) becomes

E(k,w)=2m wZZ dvofof vo)lk Z(kLa) a(gn)

n{) )
+ 5(§n)T Jnk a);. (A9)

Vg, dUqy

After a partial integration of Eq.(A9) we arrive at

Z(k,w)=ImyO(k,w), wherex?(k,w) is the susceptibil-

ity of magnetized electrons given by E&). The comparison
of Egs.(A6) and(8) then yieldsSgc= S/ .
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