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Interchange mode in the presence of dust
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The linear and nonlinear development of an electrostatic interchange mode which involves a magnetized
nonuniform electron-ion fluid in the presence of nonuniform static charged dust grains is investigated. The
charge on grains is taken as spatially dependent, and the consequences of that condition are investigated. It is
shown that standardly accepted stabilization of the interchange mode in the presence of negatively charged
grains can be violated due to the spatial dependence of the charge on grains. Also, the ion drift, which is caused
by the action of a gravity term perpendicular to the magnetic field lines, is taken as nonuniform as a result of
the magnetic field nonuniformity, and it is shown that due to such a nonuniformity the instability condition can
be significantly modified. In the nonlinear regime several types of coherent stationary vortex structures are
found: namely, dipolar and tripolar vortices and vortex chains. The dipolar vortex is found to propagate in the
direction of the ion drift, while the tripole and vortex chains are carried by the drift flow. The spatial depen-
dence of these structures is determined by parameters describing the nonuniformity of the equilibrium plasma.
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[. INTRODUCTION wave frequencies are much smaller or much bigger than the
typical charging frequency.

The presence of dust in space plasmas has been the sub-For very-low-frequency processés.g., the interchange
ject of many studies in the past several decades. Varioug Rayleigh-Taylor modethe charging and discharging of
effects of dust were discussed by Spitzer in 1¢#Jland in ~ grains is an “adiabatic” process that is insignificant for the
his renowned booK2]. Particularly interesting is Ref1]  wave behavior. In fact, although the charge on dust grains in
because it is such an early work on the matter of dusty plasPrinciple fluctuatesieven in the absence of perturbatipns
mas. There, it is shown that for an electron density exceedinfpr this frequency range the amount of charge on grains on
the value of 10% cm™3, the charge on dust grains is deter- average can be taken as constant. For some astrophysical
mined by collisions with electrons rather than by the photo-conditions analytical estimatg®] show that the average
electric effect, and the potential on grains is abe@ V. On  charge on a grainieZy), can be given by
the other hand, studies of wave propagation in the presence
of dust started in 198F3], followed by many other studies,
such as Refd4,5]. The presence of dust in a system intro- (eZy)~~— 7
duces some new physical phenomena, such as extremely- 1+(7o/7)
low-frequency modes, charge fluctuation, crystal formation,
etc. In the simplest case of a wave motion, the dust is subjestherer=aT/e?’<0.2, T is the plasma temperatura,is the
to very-low-frequency sound-type oscillatiof§] that are grain radius, the quantity, is the reduced temperature for
well separated from standard plasma modes and typicathich the ion collision rate with a negatively charged grain
plasma frequencies. with Zy= —1 equals the electron collision rate with a neutral

The charge fluctuation on dust grains is another phenomgrain, ¢ is the solution to a transcedental Spitzer’'s equation
enon which is absent in ordinary plasmas, but can be of greaf.,9], and its values for an electron-proton and a heavy-ion
importance in a dusty plasma. It is typically a high-frequencyplasma are, respectively; 2.504 and—3.799. Forr~0.1,
process that can influence standard plasma modes. An early, 100, we havéeZ;)~1,30,300, respectively. In the case
discussion of that effect can be found in the Spitzer’s bookof a magnetized plasma the motion of plasma particles and,
[2], while in the theory of the propagation of waves in dustyconsequently, the charging cross sectigns., sticking of
plasmas the first studies can be found in R¢67]. Re-  electrons and ions on grainare substantially changed; in
cently, there have been many studies dealing with the effeche vicinity of a charged grain a magnetic bottle configura-
of fluctuating charge on dust grains, though one could contion is formed, etc. The cross sections are modified due to the
clude that there are tendencies of introducing that effect inimage charge effect as well. More details on these effects,
appropriately in the problems where in fact it cannot be ofwhich are, however, not the subject of the present study, one
any influence. An analysis of that issue is done in R&f.it  can find in Refs[9-11].
is shown that the charge fluctuation is unimportant whenever The situation is quite different when the wave frequency

is comparable to the charge fluctuation frequency. Examples

of such a situation can be found in Rdf$2,13, where these
*Permanent address: Institute of Physics, P.O. Box 57, 11001 Bewidely separated slow and fast times scales are discussed—
grade, Yugoslavia. Electronic address: jvranjes@yahoo.com namely, dust acoustic and charge fluctuation time scales,
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which emanate from the large inertia of the dust and from itsand the nonuniform magnetic field results in a nonuniform
collision with plasma particles, respectively. At fast time drift of ions. That nonuniformity turns out to play an impor-
scales, it is the collective behavior of plasma parti¢lsc-  tant role in both the linear and nonlinear regimes. In the
trons and ionswhich is affected by dust charge fluctuations. linear regime it modifies the instability condition, while in
The existence of an ion temperature threshold above whicH€ nonlinear regime it is responsible for the formation of a
the ion acoustic mode can become unstable due to the flugPecific type of vortical structures consisting of monopolar
tuation of the dust charge is demonstrated. In RE2] the ~ @nd quadrupolar parts. The existence of dipolar vortices and
effects of a fluctuating grain charge in the presence of yortex chalr_1$ is alsc_> dlscuss_e.d. The an_alytlcal solutlo_ns and
current-driven dust-ion-acoustic mode are investigated. ThEoresponding physical conditions allowing for such kind of
frequency and growth rate of the ion acoustic mode is showfelutions are presented in detail. In Sec. Il we give the model
to be clearly influenced by the fluctuating charge. Also, the?"d basic equations describing the most unstable, i.e., purely
existence of a dust charge fluctuation mode in the system Rerpendicular, perturbations with respect to the magnetic
reported, and it is shown that the mode is unstable for thé'ekj lines. In Sec. Il we Q|scuss the mtgrchange instability
negative charge on dust per unit volume not exceeding som8 the presence of a spatial nonuniformity of both the mag-
critical value. netic field and the charge on dust grains. Particular nonlinear
The Rayleigh-Taylor(or the interchangemode is well solutl(_)n_s are presented in Secs. IV-VI; a tripolar vortex
known from fluid dynamics and standard plasma theory. I{€Onsisting of a monopolar and a quadrupolarpdound in
appears when a heavy fluid is supported by a lighter one: théec' IV, is shown to be driven by the aforesaid nonuniformi-

role of the lighter fluid in plasmas can be sometimes played/€S- A Propagating dipole, presented in Sec. V, is a typical

by a magnetic field. The effective interchange instability de-Solution in the case of a constant ion drift. A vortex chain,

velops also in situations when a nonuniform fiiof two  found in Sec. VI, turns out to be strictly determined by the
fluids with different densitiesis (are) accelerated in the di- Parameters describing the equilibrium nonuniformities and,
rection perpendicular to the density gradiémt perpendicu- similar to the tripole, it is camed by the nonuniform ion drift.
lar to the interface of the two fluidi$14]. A similar situation At the end a summary is given.
may appear in plasmas as well: as an example, in the day-
side part of the magnetosphere which, after a compression by [l. MODEL AND DERIVATIONS
the solar wind, bounces back in the direction opposite to the
gravity of planet. The instability is found to play an impor-
tant role in the problems of accretion disks5] and star
forming cloudg16]. Knowledge about the latter is based on
the recent development of observational tddlsibble space
telescopg which reveals the existence of various fingerlike
(or elephant-trunk-like structures in large clouddike the Nig(X) = Neo(X) + Zg(X) Ngo(X). (1)
Eagle Nebula The stability analysis of the interfaces be-
tween such different media reveals the possibility for theHerez,(x) denotes the charge residing on dust grains, which
Kelvin-Helmholtz, Rayleigh-Taylor, and Jeans instabilities,we take as spatially dependent. This should be a realistic
as starting points in the process of formation of stars.  situation for many space dusty plasma environments. As ex-
In dusty plasmas, the presence of immobile negativelyample, if the grains are charged due to the attachment of
charged dust grains turns out to be stabilizing with respect telectrons and ions in the process of inelastic collisions, the
that mode, while the situation is opposite for positively spatial distribution of plasma particles will influence the av-
charged graing8]. The interchange mode that develops inerage amount of charge on grains; in that case the gradients
the dust fluid itself has been studied recently in Refsyz, and Vnegjo Will have more or less the same direction.
[17,18}; the studies were performed without the effect of theon the other hand, if the charge on grains is caused by the
charge fluctuation. The effects of dust on planetesimal forphotoeffect, i.e., by an external source, it will depend on the
mation one can find ii19]. The Rayleigh-Taylor instability distance from the source and the gradients can have opposite
is shown to develop in the interaction of a shock wave withdirections. Secondary emission due to energétixterna)
a presolar dusty nebu[@0], where basically a dense fluid is plasma particles could depend on the density of the dust
accelerated into a less dense one, as mentioned in the tefgid, resulting again in oppositely oriented gradients. In our
above. The instability appears first in the form of multiple modelz, can be positivéfor negatively charged grainand
clumps at the edge of the compressed material, which argegative(in the opposite cage
afterwards driven inward in the form of fingers of the shock  For frequencies that are reasonably larger than the char-

material that penetrates into the cloud. acteristic frequencies of the dust fluid, but less than the ion
In the present work we investigate the effects of a nongyrofrequency,

uniform magnetic field on the interchange mode in an

electron-ion-dust plasma. This nonuniformity should be a wpd, Qg<O<Q;,

natural feature of any space dusty plasma. We allow also for

the grain charge to be spatially dependent which is anothehe grains can be assumed as heavy, i.e., stationary, taking no
natural dusty plasma feature, which in return modifies thepart in the motion of the perturbed fluid. Hedg,y,()4 are
instability condition. The presence of some gravifyterm  the dust Langmuir and dust gyrofrequencies, respectively.

We start from a model which includes a nonuniform
quasineutral plasma consisting of electrons, ions, and heavy
dust grains, with density gradients of all plasma species
along thex axis, so that in the equilibrium the following
conditions is satisfied:
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Z A Similarly, for ions we have a positive drift given by

2 ’
g i Mo > lio
T+ r].O)a(x)ey, cr= ol (5)

Bo(x) vio(X)=

K
Vo(X) For a convenience which will be obvious in the following

—— text, we shall write the ion equilibrium drift in the form

g / y . R
Vnjo(x) UiO(X):B_T‘P (x)ey= B—TerVgo, (6)

X where ¢(x) is a strean(drift) function or an effective equi-
librium potential caused by thg term.
For the most unstable case, i.e., for electrostatic perturba-
dtions propagating perpendicular to the magnetic field lines,
the electron motion is described approximately by

FIG. 1. The geometry of the problem.

The plasma is immersed in a nonuniform magnetic fiel
oriented in the positive direction of the axis, which we

conveniently take in the form ) .
- 1 . . Cs- Vng eBy
==——e,XVe— —e,X—— =—.
& Vet B(x) ve (PSCATI fo m;
e,. (2
a(X)

. (7)
Bo(X) =B+

i , ... The parallel particle motion and electromagnetic effects have
Here, the terma(x) in general describes a magnetic field yoan discussed elsewhdeee Refs[21,27).
nonuniformity in thex direction. This form is convenient for We use also the continuity equatio’n for electrons

the present analytical study because, as will be sBgmen-

ters appropriate expressions in the denominators, which will

therefore result in th&-dependent term in the nominators. It _+(Jeo+ Jel).v* (Ngy+ ne1)+neo€'5e1=0- (8)
allows also for separating the main part from the weak spa- at

tial dependence, which will be used in the calculations. The

gravity term, which can be a real gravity or an effective oneA similar set of equations is written for ions:

due to the plasma motion, is taken in the negative direction

of the x axis,§= —géx, whereg=const>-0. Density gradi- > 1 . . Ci2 - VWM
. . . . = 12 - UL|l:—erV¢+ _eZX_
ents are in the direction of the axis, Vnjo=njg(x)e,, Bo(X) Q, Nio
wherenj’o(x)>0 at least for electrons and ions, which take
part in perturbations. The prime here and in the rest of the 1 g 1. . R
text denotes a derivative in thedirection, andj stays for —on | T e €xXV(ete) VIV(igte),
1% - (9)

Thus we have a geometry, presented in Fig. 1, which al-
lows for the interchangér Rayleigh-Tayloy instability; it is
chosen in the form corresponding to Riéf]. Note that even
for necessarily growing densiti@s,, ngy With X, the product
Z4(X)ngo(x) in principle yields various possibilities.

The momentum equation for plasma particles is written in N ) o _
the form In writing the above expressions the equilibrium gradients

are assumed as the first-order terms, and we keep linear and
nonlinear small terms up to second order.

(Nig+Nip) +NioV -0, =0.
(10

+(viptvi)-V

at

5]=an](—ﬁ¢+51><I§0)+mJnJ§—Vpl .

J L -
mJnJ(E"‘UJV

3 lIl. LINEAR INSTABILITY
In the limit of inertialess electrons, from E¢J) it follows Linearized equationg7)—(10) for perturbations of the
that |r.1 the .eqUIl.Ibrlum they W|” be SubjeF:t to a d”ft In the form Z(X)exp(_|wt+|ky), Where Z(X) is the X_dependent
negativey direction[for a positivea(x)], given by wave amplitude, with the help of the quasineutrality condi-
2 tion for the static dust grains
Deo(X)= Teo 2 ¥n a(x) - 220 2
&0 engB z e0 Q1 g v Ne1=Nj1, (11
T 4)
ng_eo, QT:%_ yield the following quasinonlocal equation for the potential
m m amplitude:
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52 KO-B 1\’ Kn Equation(16) is identical to the dispersion equation derived
— = 2—4(—) ( dNdo 2o eO) in Ref. [8]. From the instability condition which follows
Ix? Nio(w—kvo) | Bo from Eq. (16),
B kQ+ (Zgngo)’ B vok?Qr n_éo kvg B(%) 1/ enQ1Z4 2
nio a)_kl)o a)(a)—kvo) nio a)_kl)o )\g>Z k Uo ’ (17)
=0. (12 it can be seen that, in the frame of the model described by

Egs. (14) and (15), the presence of negatively charged dust
Although Eq.(12) comprises the shear flowrift) terms re-  (positive Z,) stabilizes the system by raising the threshold
sembling the Kelvin-Helmholtzor Rayleigh instability, one  for Ag above which, for a giverk, the system is unstable.
should note that these terms vanish in the absence of the The situation is opposite for positively charged grains, and
term. Therefore, the shear flow effects here cannot be studietlese results are known from Rg8]. Without dust it yields
separately from thg effects. This is a principal difference in the standard classical instability condition.
comparison with some classical works dealing with shear However, for a spatially nonuniform charge on grains,
flow effects on the interchange instabilitg3]. Rather, one from Eg. (13) one obtains the instability condition for arbi-
should discuss the modification of the Rayleigh-Tayltye  trary density profilegwith positive gradientsin the form
interchangg instability due to the nonuniformity effects.

Note the terms in parentheses, multiplying the ternBg)/; Nio. 1] Q7 Zg(X)Ngo(X) + Zg(X)Ngo(X) 2

the first one is due to the presence of dust while the second is gn_io>Z e Nig(X) +uok

the g term caused by the difference in the ion and electron (18
masses.

Equation(12) is nontrivial to solve in general but it can be Here we have taken.,=(njo—Zgngo)’ in the last term in
analyzed in various limits and for some specific given equi-Eq. (13). Obviously the spatial dependenceZyf(x) can in
librium profiles forZy(x),ngo(X),Neo(X),Nio(X),vo(X). Note  principle make the threshold lower compared to Ed), so
that in deriving Eq.(12) the thermal corrections have been that the mode is destabilized even in the presence of nega-
omitted because they introduce only minor modifications oftively charged grains. From physical reasons this is possible
the instability conditions, as has been shown in Ref. only when the charge on grains is not mainly caused by the

For the uniform magnetic field, and therefore constantabsorption of plasma particles; instead it should be due to
drift vo, EQ.(12) yields the following dispersion equation: some other physical mechanisms which cause the derivative

of Z4 to have a negative sign, with respect to the density
) Q1 [Zg(X)Ngo(X)]’ <0 gradients. Note also that, due to the same reason, the phase
o™t o - n—io—vok +UOQTn_iO:O- velocity of the mode
(13
or vy Q7 [Zg(X)Ngo(X)]’ 19
One can follow the assumptions from RE8] and take the k 2 o2 Nio(X) ' (19
exponential densities

wherew, is the real frequency, is not necessarily decreased
Nio(X) =N;jgeXp(AX), Neo(X)=NgoeXpAX), (14 in the presence of negatively charged grains. Evidently, the

dispersion of the mode is due to the presence of dust.

in the case when For the case of a lineak(x) and in the local limitd/ dx
~k§< k?, from Eq.(12) one can derive the following disper-
Ngo(X)/Njp(X) = e=const. (15 sion equation:
Note that this is equivalent to the case of a spatially constant > O1Zgngoa’ n Qr(Zgngo)' S voNeo{dra’
chargeZy, which is easily seen by taking thxederivative of n;ok Njok 0 Nig
the quasineutrality conditioril) and using Eqs(14) and ,
(19 4 Lottt (20
Now, in the ion reference frame from E(L3), using Nio '
Ny (Ne)|’ Neo Nig wherev,=g/Q+. The instability condition can be written in
_:(_) +— —=(1—€eZy)\ the form
Nio |\ Nio Nio Nio
1[Q1Zgngoa’  Qr(Zgngo)’ 2 n/
and introducingQ) = w — vk, we obtain il el - 1(ZaNao) +uvok| <g 204 0.
4 niok niok Nio
g (21
2 2 - =2
KO Q(vok™+ OrehZg) TvoQTAK=0, vo=g~. Consequently, the instability condition can be substantially

.
(16 modified due to the nonuniformity of the ion drift. The modi-
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16 plasma to ~1 (all electrons attached to the grainghe
valuesk above the curves are stable for the given model.

Note a very important consequence of the drift nonunifor-
mity which follows from Eq.(21) or (22); namely, in the
limit a’+n;y/n;p<0 the instability vanishes. That happens
whenever the decreasing drift changes faster than the loga-
rithm of the increasing ion density, and this conclusion is
valid generally, not only for a dusty plasma.

IV. NONLINEAR QUADRUPOLAR VORTEX

0.0 05 10
€Z, Using Eqgs.(7) and(9), the nonlinear continuity equations
(8) and(10), without thermal corrections, can be written as

FIG. 2. The threshold values &f (in units ofk, ) versuseZ.

Here curves 1, 2, and 3 correspond ¢6=0, a'=0.7, anda’ d 1. - = T

=1.3, respectively. The values efabove the corresponding curves at + B_Tez>< Vo V) N Neo(X) + n81+m =0,

are stable for the given model. (24)
fication is twofold. First, as it enters the left-hand side of Eq. 1. . . Bt

(21), for a positive gradieniz’ in principle it raises the E+ B—ezx V(o+te)-Vilin ”io(X)+ni1+m
threshold for the unstable mode similar to the effect of dust; T 0
though one should note that the dust and shear drift terms are 1 )

coupled and various possibilities can take place. Second, the - mv [¢+e(x)]|=0. (25

mode may become unstable even for a constant ion density

provided that the perpendicular drift gradient is bigger thaljere the perturbed concentratioms ,n;; are normalized to
the critical value which follows from Eq(21). This is to «0.Nio. The nonlinearity in the above equations is of the

some extent similar to a classical result dealing with thevector-product(or Poisson brackgtype, implying vorticity

streaming instability in a plasmi24]; note, however, that . B . . .
here the instability is strictly related to the presence ofghe due_to the leading _ordeEX B dr'.ft' Directly comparing typi-
cal linear and nonlinear terms in the corresponding equations

term. . . . .
. . . . . one can conclude in what situations the nonlinear terms are
A direct comparison with Ref.8], regarding the spatial ; . .
P 18], reg g P of importance. Hence, in Eq25) we make the ratio of the

dependence of, introduced here, cannot be done since the i . SO ST
results in Ref[8] are obtained for a specific case of density following typical terms:e;=e,XV -V Inno(X)/Br and e,
distribution, given by Eqs(14) and(15), which is equivalent =e,xV¢-VV2¢/QB2. This vyields e,/e;=kLyo k?¢/

to a constanZ,. However, the effects of the nonuniform Q;B;. Note that the ternkL, is (much bigger than 1 as
drift studied here can be compared with the results of Refassumed throughout the text; therefore the teemscan be

[8]. For the profiles(14) and (15), the instability condition of the same order even if the perturbatignis very small

(21) can be rewritten as (i.e., much less than the terfd;B1/k?, which is, however,
dependent on the wave numblky. In the literature it is
known that such nonlinear terms can cause the formation of
quasistationary vortical structures that can propagate in the
system. We shall therefore assume the existence of such non-
Here we introduce the wave number normalized tok, linear solutions that can develop in the process of growing
=20.y\g. Fora’=0, Eq.(22) is identical to the corre- the unstable mode and search for their analytical description
sponding one from Ref8] for the negative charge on grains. and for the physical conditions that make such solutions pos-

!

2 L @
+ —
A

+eZyt+4K?| <16k?

( EZda' . (22)

Now, one can calculate the unstable valuesof sible. Consequently, we propose traveling solutions that ei-
ther can be carried by the drift, or can propagate in the
1 a' 1 a'\? vz 12 system independently with the velocity, in the direction of
k<) 7|1+ (2 eZa)+ 5| | 1+ ) (1-€Zy) propagation of the linear mode. Writing
(23 0 0 .
In the casea’ =0, Eq.(23) yields the corresponding result W ay B0 VX,

from Ref.[8] for the negative charge on grains. In the ab-
sence of dust it yields the well-known reskﬁ/m?r<)\/g. Egs.(24) and(25) can be written in a proper vector-product
The threshold values of versuseZ, are presented in Fig. 2, form which allows for an integration, yielding the following
for two values of the drift gradient’ in units of\, i.e., for ~ expressions:

a’'=0.7 (curve 2, anda’=1.3 (curve 3. Curve 1 corre-
sponds to the one from RdB] (the casex’ =0). HereeZ,

o . IN Ngo(X) +Ngy +
takes values from=0 (a negligible presence of dust in the eo(X) T Ney

WTxffl((ﬁ—BTuyx), 26)
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Bt 1, A particular solution of Eq(33), in terms of cylindrical
InNig(X) +njz+ Box) ﬁV [d+e(X)] coordinates , 6, can be written as
=f,(+@—Bruyx). (27) U (r,0)= agKo(N1r)+ aK(Ngr)cos 26, (34)
The expression$26) and (27) are very general a$;(&,), HereKg ; are modified Bessel functions of the second kind.

fo(&,) are arbitrary, i.e., any functions of the given argu- On the other hand, inside the circle we take
ments. In order to find some specific, particular nonlinear

solutions one has to specify the form of these two functional ~ , LE _pin_ Nio(x)
forms. Thus, we proceed by taking a particular, in principle () +Fze(x)=(F2 )Bruyx=QrBrin Neo(X)
piecewise linear shape of the functions as 2 (35
=K s
f1(§)="F1- &1, fa(&2) =12 &2, (28)

where, in principlex is an arbitrary constant. The reason for
wheref; , are some constants which we allow to have twotaking the right-hand side of E(35) in the given form is the
different values in space. Namely, we divide the space by &llowing. When we combine Eg432) and (35), the loga-
circle of radiusry and allow for different values of these rithm terms cancel out, and the simplest form of the nonuni-
constants outside and inside the circle, in the following texfformity which satisfies the resulting equation is such that it
denoted a§°“"" By such a choice we keep nonlinearity in yields a linear spatial profile for the velocity,(x), which
its 5|mplest form, as that means that the functional formsorresponds to the quadratic profile @fx). We therefore
f1(£1),,(&,) are in fact nonlinear. obtain

In that case from Eq26) one can obtain
(\f+A5)u,Br L

— 2
nelzfl'¢1 (29) QD(X)_ Fizn—FgUt Fizn_FgutX ) (36)
where, in order to have localized solutions foy(r,0) and
&(r, ), the following condition must be satisfied: 1.,
Br g (N3 +A3)uy 2x
fB1u X+ INnNg(X) + =0. (30 vo(X)==—a(x)= X |.
o ” Bo(X) o Q1 Fy—F3" uyBr(\{+)3)
Using the quasineutrality conditioll) we combine Egs. (37
(26) and (27_) and obtain_ the following equation for the per- Here we have introduced
turbed nonlinear potential:
A=FJ—F;.

(V24 F,=Fp) ¢+ ¢"(X) +Fo0(x) = (F,— F 1) BruyX

Nio(X) One should note that from?=r2(1+ cos %)/2 even such a

Noo(X) =0, (3D simple nonuniform case involves quadrupolar harmonics
€0 as possible solutions. Further, in Eq37 we can

where Fy,=f; ;0:Br. We shall solve Eq(31) indepen- Cchoose g/Q= (\f +7\2)U I(FR—F3") and a(x)=1

dently outside and inside of the mentioned circle, and matcht 2xx/[u,Br(AT+\3)].

the solutions smoothly at=r,. From the requirement of In this notation and on conditio(85), from Eq.(31) we
localized solutions, it is seen that when in the outside regio®btain

the following condition is satisfied,

- QTBT In

Nig(X) (V2+13) ¢i“+£x2— 2—K)=o. (38)
©"(X) + F3"o(x) — (FS"'~ F1)BruyX— Q1B In| —> S 3
Y neO(X)
-0 (32) From the condition(30) and for an increasing electron den-
’ sity profile, as assumed in the model, we find out that both
from Eq.(31) we obtain F, and k must be negative, so we write them formally as
F,=-b? K:—K% Now we find the necessary electron
(V2=2\%)¢°U=0. (33 density distribution
Here we have introduced the notation ) 1 b2uy ZKi a9
Neo(X) = —ex + X|.
_)\2 Fout Fy, €0 e Q+ BT()\i"')\%)Uy

where, in view of the conditio30) which involves the con- Note that heree is the base of the natural logarithm.
tinuous equilibrium functions, one has to take as constant In the same notation the solution of E§8) can be writ-
in all space. However, the nonlinearity 6f(¢,) still holds.  ten as
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. ZKE Ki N1y
¢|n(l’,0)=—F—kﬁﬂ—i—ﬂo\]o()\zr) 1(N1T o) +Ka(N 1T o)]
2 2
K2 _ Kilo 2
+| B2Ja(Nor) + Z—)SZFZICOSZH. (40 - }\g +N2B5| J1(Narg) — 2()\2r0)
2

(46)
HereJ, , are Bessel functions of the first kind.
The imposed condition$32) and (35) yield the corre- The functional formf,(&,) must be continuous as it is ob-
sponding equilibrium profiles for the ion drift velocity and tained after one integration. This implies the continuity of
the dust concentration, which must be satlsﬁed in order t&72¢(ry,6) as well. Formally this condition is written as

have solutiong34) and (40). Using F' —b? and F3!"!

=—(b%+\3), we find FoU [+ @(x) = Bruyx]=F3' - [ ¢+ o(X) — BruyX],
242 where we use Eq36) and separate the zeroth and second
vo(X)=U,— o X. (41  harmonics. For the zeroth harmonics this yields
Br(A{+A3)u, ),
Kilo
It is seen that the proposed travelifgith the velocityu,) aoKo(N1lo) = D) 47
solution is in fact carried by the ion drift whose amplitude is (A1 +A3)
g/Qr=u,. Note also that the vortex appears for a decreasand for the second,
ing prof|le of the drift velocity. It does not appear in the case
of a uniform drift. From Eqs(32) and(35) we also find Kircz)
Mo(¥) _ . Za(¥)ngo(x) , T 9
= (X)E Noa(X) =expla;x+a,x+as),
€0 €0 (42  The meaning of these two conditions is that the cirgjés
an isoline for the function &(r,0)=d¢(r,0)+ ¢(X)
where —Bruyx, i.e., &x(rp,0)=0.
Thus one integration constant and the physical parameters
b2+ A2 K5 uyb? will remain free, which results in a broad spectrum of possi-
QTR 12.a2 2T T bilities for the tripolar vortex to appear in the given system.
TET AR T The solution presented by Eq84) and (40) consists of
5 the monopolar and quadrupolar parts. The contour plot of
e — 2K] such a solution is known from the literature and turns out to
3 Q:Br(\2+2\2)" have a tripolar fornf25] consisting of a vortex core and two

lateral vortices with opposite vorticity. The present structure
In the framework of the given model in the absence of dusts elongated along the magnetic field lines; it moves together
the present solution does not appear, as can be seen from téh the ion drift, and its amplitudgsee Eq(40)] is strictly
quasineutrality conditiom;o(x) =ne(x) and Eq.(42). How-  dependent on the gradient of the ion drift.
ever, a quadrupolar solution is possible in an electron-ion
plasma as well; in that case the functional for{28) should V. DIPOLAR VORTEX
be taken as constant in the outside region.

The integration constantg \; 5, ag,, and By, and the
physical parameterg,, ro, anduy should be found from
appropriate physical conditions at the circler,.

The continuity of¢(rq,0) yields

In the case of a negligible nonuniformity of the magnetic
field[i.e., for a constant velocity, and a lineax-dependent
©(X)], instead of thex? term in the condition(35) we take
kX, which is then used to cancel the growing termsxat
—o0, On the other hand, such a term in cylindrical coordi-

2,2 2r2 nates imposes the existence of first harmonics in the solution,
aoKo(Nro)=— _41 2 +,303 (Aafo), (43 i.e.,x=r cosé. Using Eq.(29) andF,=—b?, from Eq.(31)
N, 2\ on conditiong30), (32), and(35) (where now instead afx>
we havexx) we find a particular solution in the form of a
KIrg dipolar vortex
asKa(N 1l o) = —— + B2J2(A2r ). (44)
2)\5 °UY(r,0)=coKo(N1r) +C1K (Nqr)COSH, r>rg,
R (49)
The continuity ofV ¢(rg, ) yields
2 in _ K
Klro (]S (r,a)—do\lo()\zr)+ d1J1(7\2r)— — I COSH, r<ro,
—NagKi(N1ro) = —= = Bor2J1(N2ro), (45 NS
A2 (50)
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and the concentrationg, is again given by Eq(29). Here £2= ¢+ @ —BruyX.

A, are the same quantities as in Sec. IV, aggdandd, , are

the new integration constants. In accordance with the as-erec,, k;, andd, are some integration constants, and, as
sumed model, which includes the increasing densities in thearlier, we search for solutions that propagate with the veloc-
positivex direction, from Eqs(30), (32), and(35) we find as ity u, in the direction of the ion drift. Note that condition
earlier thate must be negative=t — Kf) and the electron and (30) still holds.

ion densities are given by On the condition
_[b%uy B,
Neo(X) =ex o, X Inn;o+ B—0=f1~(cp—BTqu). (54)
2/ 2 2
k7(b“+\7) i i
nio(x)=neo(x)eXQCx)=ex;{ 1( 2 1 x|, ®1 Equation(27) can be written as
QrBr(ANT+A3)
, 4c,k3 2
where Vi(pt+e)= gz & — o (@te—Brux)|. (59
1

1

Ki(b*+ND)  bPuy . o

c= NN . One solution of Eq(55) can be readily written in the form
QTBT()\:L"‘ )\2) QT

#(X,y)=—@(X)+Bruyx

1
2( coshk x+ \/1— Ecoskly)

From the same conditions we find that the vortex velocity
and the ion drift are related by

2 +Clln . (56)

K1

= [ 1
Uy U0+ BT(}\E_F)\%) . (52)
Note that
Thus, the appropriate concentrations increase wids re-
quired, the vortex speed is larger than the ion drift, as is lim In[2 costik,x)]=ky|x],
known from standard vortex theory, and the parametger X— oo

describes the difference between these two velocities.
The dipolar vortex exists in the absence of dust as well. Invhere |x| denotes the absolute value. Withaptx) the so-
that case from the requirement of quasineutrality this must beution (56) represents the well-known Kelvin-Stuart-type

c=0, and we find vortex chain which is periodic iy, but physically inappro-
.y priate as it is not localized in the direction. In the present
LN A case it can be localized in thedirection for the drift func-
x1=UyBtb 2 tion ¢(x) satisfyin
b2+\2 ¢ 9
and lim @(x)=(ciky*Bruy)|x]. (57)
X— F oo
b? 2 o .
Uy=vo| 1+ — Hered7=1; for the casal;=1 periodicity iny vanishes and
A1 Eq. (56) transforms into a zonal flow.

Some of the integration constants in E¢S5) and (56)

| be determined by the magnetic field nonuniformity
which should be given. Indeed, let us take a particular case
when the magnetic fiel(2) changes smoothly as

It is seen that in both cases, with and without dust, the vortex
velocity is larger than the constant ion drift velocity. The
integration constants, ; anddy ; can be found from bound-
ary conditions similar to those in Sec. IV.

VI. VORTEX CHAIN Bo(X)= _ B
. . . . _ 1—a’tanhi ox
Localized solutions in the direction of equilibrium gradi-
ents, and periodic in the direction of the ion drift, can be
obtained from Eqs(26) and(27) by the following procedure.
We use Eq(29) for a constant; in all space, but in Eq27)
we take a highly nonlinear arbitrary functidn(¢,) in the vo(X)= Qi(l—aztanh)\ox), (58)
form T

and, therefore,

2 where from physical reasons one might tae<1. From
ex;{——gz), (53)  the condition(30) we find the appropriate profile for the
C1 electron density

1 4ck?
fa(&2)="F1- &~ 0B o2
1
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1
Neg(X) = Eexp(aztanh)\oer b?Bru,X). (59

Here, in order to have an increasing profile fog(x) we
have takerf,=—b?. Using the definition of the drift func-
tion ¢(x) we find

QD(X) = BTJ vo(X)dX-l- CO

9By ga’Br
07 Xy

In[2(coshhgx)]. (60

Note here that the integration constant is taken conveniently

ascy=(In2)/\o. Now from Eq.(54) we can find the appro-
priate ion concentration

1 gbfa®B
Nio(X) = —expg a’tani( A ox) + —————In[2 coskir oX)]
e NoQr
2 g
+biBr Uy— Q_T X. (61)
From Eq.(60) we see that
. gBr ga’Br
lIim o(X)=| =——— X|. 62
X_}ﬂ@( ) 0, o x| (62)

Therefore, the solutior{56) becomes localized irx, i.e.,
lim,_, +,=0, if

g
Uy=— 63
y QT ( )
and
_ gBa?
Ci=— m (64)

In that case the solutiof®56) can be written as a dimension-
less function in the form

PHYSICAL REVIEW &7, 026410 (2003

FIG. 3. The contour plot of the dimensionless potential of the
vortex chain analytically given by Eq65). Here \(=0.9, k;
=0.6, andd;=1.6.

Hence, the structurb) is formed at the position in the
direction where the nonuniform ion drift velocity has the
valueg/Q+ and its amplitude is dependent on this value and
on the gradient of the velocitg?. The same parameters enter
the expressions for the electron and ion densities; however,
the densities are also determined by another free paraimeter
so that the given conditions are not too strict. Similar to the
tripolar vortex, the solutior{65) is carried by the flow. The
contour plot of the vortex chain is presented in Fig. 3. Here
x is the direction of the gradients and the nonuniform ion
drift is in the y direction. The structure is obtained for in-
creasing profiles of the ion and electron concentrations given
by Egs. (59 and (66) and an almost flat profile of
Z4(X)ngo(X). The corresponding profiles fory(X), Neg(X),
Z4(X)ngo(x), andBy(x) are given in Figs. 4 and 5.

14,

= = 0.7
D(x,y) 9B, In[2 costiAoX)]
NoQt
No 1 0.0
— —In| 2{ coshk;x)+ 1— —cogkyy) | |.
Ky d?
(65 3 0 3
Finally, the corresponding ion concentration profile, which is X
necessary for such solution, is given by FIG. 4. The ion(curve ) and electroricurve 2 density profiles
1 g 2,28 given by Eqs(59) and(66), respectively, for the potential from Fig.
— 2 1 T 3. The dash-dotted lingurve 3 is the profile ofZ4(x)ngo(x). Here
Nio(X) = —expg a“tanh(Agx) + ——=—1In[ 2 coslik,x)]|. di*/7do
io(X) e F{ M) NoQt [ fikyx)] a?=0.9 andgb?B;a?/Q+=0.1, and other parameters are the same
(66)  asinFig. 3.
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10, plasma flow(drift). Both the tripole and chain are driven by
the ion drift nonuniformity(i.e., by the nonuniformity of the
magnetic field, but they are also strictly dependent on the
equilibrium parameters describing densities.

The dust enters into the equations in the most simple way,
i.e., through the quasineutrality conditiéh) only. Yet it sig-
nificantly influences the mode behavior in both the linear and
nonlinear regimes. We have found analytical expressions for
the equilibrium quantities which allow for the given struc-
tures; see Eq939), (41), and (42) for the tripole, Eq.(51)
for the dipole, and Eq9¥58), (59), and(66) (and the corre-
sponding figures, Figs. 4 and tr the vortex chain. There-
fore one might say that whenever the equilibrium is de-
scribed by these expressions, one should expect the
X formation of the given coherent structures representing pos-
sible saturated states of the linearly unstable interchange
mode. The conditions under which the structures are found
look strict, yet there exist several integration constants and

VII. SUMMARY physica.ll' parameters that are chosen freely, implying higher
probabilities for the formation of such structures. Also, the

We have studied linear and nonlinear regimes in the destationary structures follow from specific forms of the afore-
velopment of an interchange mode in a dusty plasma witlsaid functional forms which are chosen frefdgee Eqs(28)
stationary dust grains and with a spatially dependent chargand (53)]. This implies a possible diversity in realistic situa-
on the grains. In addition, a reasonably realistic case with &ons, which could eventually be an obstacle for clear evi-
spatially dependent magnetic field, and, consequently, with dence of the present structures in some experimental studies
nonuniform ion drift perpendicular to the magnetic field or in observations in space plasmas.
lines, is included in the study. The presence of dust, which It should be said that tripolar vortices have been observed
enters the equations through the quasineutrality condition iin laboratory experiments with rotating fluids, where they
the equilibrium only and its influence on the interchangedevelop from a perturbed monopgd26]. They are shown to
mode have been studied earlier in R], resulting in the  be remarkably stable structures, surviving many rotations of
conclusion that negatively charged grains stabilize the systhe system. A structure of the same sort has been observed in
tem against the interchange instability. However, the addinature as well27] as a way of self-organization in sea water.
tional spatial dependence of the charge on the grains intrdn plasma systems, the first analytical solution of that type
duces new effects and the aforesaid stabilization can bwas predicted in Ref.28]. As for the experimental verifica-
violated. Similar effects follow from the action of the non- tion of the tripolar vortex in plasmas, recently it has been
uniformity of the ion drift. obtained as a standing electrostatic global structure which

In the nonlinear domain we have derived correspondinglevelops due to nonlinear effects in a cylindrical laboratory
nonlinear equations describing perturbations that propagatglasmal29]. As for dipoles, after the early theoretical pre-
perpendicular to the magnetic field. They include severadliction[30], they have been observed on many occasions in
x-dependent functions which describe the equilibrium. Theplasmas and fluids31-34. A dipole reported in Ref.34] is
nonlinear equations comprise vector-product-type nonlineariebserved in the core of a galaxy, i.e., in a self-gravitating
ties and can be integrated, resulting in two additional arbimedium:; it is a huge structure with dimensions measured in
trary functional forms(26) and (27) with the arguments light years. Also, chains of vortices have been observed so
d(x,y) —Bruyx and ¢é(x,y)+e(x)—Bruyx. Therefore, farin various situations in fluids35] and plasmag36]. Con-
various nonlinear solutions are possible, dependent on thsequently the solutions found in the present study are realis-
choice of these equilibrium functions and functional forms.tic as they have been predicted and observed elsewhere; we
We have found three types of stationary solutions, in thenave found rather precise conditions under which they may
form of tripolar and dipolar vortices and vortex chains. Theappear, and we believe that the present study may be used as
dipolar vortex is shown to propagate with respect to the drift-a solid basis for some experimental or observational searches
ing plasma; two other structures are just carried by theor such structures in nonuniform dusty or nondusty plasmas.

FIG. 5. The magnetic fieldcurve ) and the velocity profile
(curve 2 for the solution presented in Fig. 3.
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