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Magnetic line trapping and effective transport in stochastic magnetic fields
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The transport of collisional particles in stochastic magnetic fields is studied using the decorrelation trajectory
method. The nonlinear effect of magnetic line trapping is considered together with particle collisions. The
running diffusion coefficient is determined for arbitrary values of the statistical parameters of the stochastic
magnetic field and of the collisional velocity. The effect of the magnetic line trapping is determined. New
anomalous diffusion regimes are found.
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I. INTRODUCTION

The problem of test particle diffusion in stochastic ma
netic fields has been studied by many authors@1–15# and
important progress was obtained. However, the general s
tion has not yet been found. Particle trajectories in a mag
tized plasma are determined by three stochastic proce
the magnetic field, the collisional velocity along magne
lines, and the collisional velocity perpendicular to the ma
netic lines. These components of the stochastic collisio
velocities have very different effects. There are two imp
tant difficulties appearing in this triple stochastic proce
One is related to the parallel collisional velocity which ente
as a multiplicative noise in the equations of motion and
other with the Lagrangian nonlinearity which is determin
by the space dependence of the stochastic magnetic fi
Each of these two problems has been recently studied,
only considered separately. The complete model for part
transport in stochastic magnetic fields was not analyzed u
now.

The problem is simplified whenever the study is restric
to stochastic magnetic fields with small amplitudes and
large perpendicular correlation lengths, for which the m
netic Kubo number~defined below! is small. In this case the
Lagrangian nonlinearity does not play an important role a
the effect of the parallel collisional velocity could be dete
mined. If the perpendicular collisional velocity is neglecte
this ‘‘quasilinear’’ problem has an exact solution that w
obtained by several methods@16#. It shows that the paralle
collisional motion determines a subdiffusive transport acr
the confining magnetic field with the running diffusion coe
ficient D(t) decaying to zero asD(t);t21/2. It was shown
@15# that this subdiffusive transport is due to collisio
induced trajectory trapping along the magnetic lines. T
parallel collisional velocity forces the particles to retu
along the magnetic lines in the correlated region and con
quently generates the long time Lagrangian correlation of
stochastic velocity. If the perpendicular collisional velocity
taken into account, the transport is diffusive and the diffus
coefficient was estimated by several methods@1–14#.
1063-651X/2003/67~2!/026406~12!/$20.00 67 0264
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On the other hand, the Lagrangian nonlinearity det
mined by the space dependence of the stochastic mag
field was studied in the related problem of particle diffusi
in electrostatic turbulence. The equations of theE3B drift
motion are mathematically identical with those for the ma
netic line ‘‘evolution’’ along the direction of the main mag
netic field. It was shown@17,18# that a process of trajector
trapping by the irregularities of the fluctuating electrosta
potential appears at large Kubo numbers and strongly in
ences the diffusion. Recently, a new statistical approach,
decorrelation trajectory method@19,20# was developed. It
provides a rather detailed analytical analysis of the trans
in the presence of trapping and evaluates the Lagrangian
relation and the running diffusion coefficient for arbitra
values of the Kubo number. Translated to the stochastic m
netic field case, this trapping process leads to localized s
ments of the magnetic lines with helicoidal shapes at la
Kubo numbers.

The aim of this paper is to study the general problem
collisional particle diffusion in a stochastic magnetic field
the guiding center approximation. More specifically, we d
termine the effect of the magnetic line trapping on the eff
tive transport. The running diffusion coefficient is dete
mined for arbitrary parameters of the stochastic magn
field and of particle collisions. The decorrelation trajecto
method is used for studying this rather complicated tri
stochastic process. We show that the magnetic line trapp
can strongly modify the diffusion coefficient and determin
anomalous diffusion regimes. The physical parameters co
sponding to these regimes are determined.

The paper is organized as follows. The physical mode
described in Sec. II. We derive in Sec. III the Lagrangi
velocity correlation and the running diffusion coefficient f
arbitrary values of the four specific parameters and for giv
Eulerian correlation of the potential. This general result
then analyzed by considering several particular cases
physical interest: the subdiffusive transport in Sec. IV, t
effect of collisional cross-field diffusion in Sec. V and th
effect of a time variation of the stochastic magnetic field
Sec. VI. The conclusions are summarized in Sec. VII.
©2003 The American Physical Society06-1
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II. THE SYSTEM OF EQUATIONS

The particle guiding center motion is studied in a ma
netic field with a stochastic component. The magnetic fiel
taken to be a sum of a large constant fieldB05B0ez and a
small fluctuating field perpendicular toB0, and depending on
the perpendicular coordinatesx[(x,y) and on the paralle
coordinatez,

B5B0„ez1b̃~x,z,t !…. ~1!

~Here the perpendicular and the parallel directions are
fined in relation to the direction ofB0.) This is the usual slab
model of the confining configuration in a tokamak plasm
Since the reduced magnetic field is divergence-free,“•b̃
50, its two components can be determined from a sc
function f̃(x,z) as

b̃~x,z,t !5“3f̃~x,z,t !ez . ~2!

The system of equations for guiding center motion~to domi-
nant order! is

dx

dt
5b̃~x,z,t !h i~ t !1h'~ t !, ~3!

dz

dt
5h i~ t !. ~4!

The three stochastic functionsb̃(x,z,t), h'(t), andh i(t) are
statistically independent: all cross correlations are zero.
these stochastic functions are assumed to be Gaussian
tionary, and homogeneous, with zero averages. The auto
relation function of the stochastic potentialf̃(x,z,t) is mod-
eled by

A~x,z,t ![^f̃~0,0,0!f̃~x,z,t !&

5b2l'
2 expS 2

z2

2l i
2

2
x21y2

2l'
2 D expS 2

utu
tc

D , ~5!

where^•••& is the average over the realizations of the s
chastic potentialf̃, b is the mean square value of th
reduced magnetic fieldb̃, l i is the correlation length o
the potentialf̃ along the main magnetic fieldB0 , l' is
the correlation length in the plane perpendicular toB0,
and tc is the correlation time off̃. The autocorrelation
tensor of the reduced magnetic field componentsBi j

[^b̃i(0,0,0)b̃ j (x,z,t)&, i , j 5x,y, is determined fromA(x,z)
as

Bxx52
]2

]y2
A, Byy52

]2

]x2
A, Bxy5

]2

]x]y
A. ~6!

The collisional velocities are modeled by colored noises w
the correlations

^h i~0!h i~ t !&c5x inR~nt !, ~7!
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^h'
i ~0!h'

j ~ t !&c5d i j x'nR~nt !, ~8!

where^•••&c is the average over the collisional velocity r
alizations,n is the collision frequency,x i5lm f p

2 n/2 is the
parallel collisional diffusivity,lm f p is the parallel mean free
path, x'5rL

2n/2 is the perpendicular collisional diffusivity
and rL is the Larmor radius relative to the reference fie
R(nt) is a time decreasing function that is chosen as

R~nt !5exp~2nutu! ~9!

for the explicit calculations presented in this paper.
We introduce dimensionless quantities in Eqs.~3! and~4!

with the following units:l' for the perpendicular displace
ments,l i for the displacements along the reference magn
field and n21 for the time. The perpendicular velocityṽ
5b̃h i is reduced withV[bAx in, the parallel velocityh i(t)
with Ax in, and the perpendicular collisional velocityh'(t)
with Ax'n. The equations of motion in these dimensionle
variables~denoted by the same symbols as the physical on!
are

dx

dt
5M b̃~x,z,t !h i~ t !1x̄'

1/2h'~ t !, ~10!

dz

dt
5x̄ i

1/2h i~ t !. ~11!

Four dimensionless parameters appear naturally in this p
lem: the dimensionless perpendicular and parallel diffus
ties, respectively,

x̄'[
x'

l'
2 n

, x̄ i[
x i

l i
2n

, ~12!

a dimensionless parameter that contains the effect of the
chastic magnetic field

M5
V

l'n
5

bl i

l'

x̄ i
1/2, ~13!

and the dimensionless decorrelation time

t̄c5tcn. ~14!

We note that the parameter which describes the evolutio
the magnetic lines, the magnetic Kubo numberKm
5bl i /l' , appears here as a factor inM, which can be
written asM5Kmx̄ i

1/2.
The aim of our calculation is to determine the Lagrang

autocorrelation of the effective perpendicular velocity

ṽ~x,z,t ![b̃~x,z,t !h i~ t !, ~15!

which leads to the effective perpendicular diffusion coe
cient.
6-2
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III. SOLUTION BY THE DECORRELATION
TRAJECTORY METHOD

We use the decorrelation trajectory method, following t
recent calculations for the influence of particle collisions
the diffusion in electrostatic turbulence@20#. The difference
and the supplementary difficulty of the magnetic proble
comes from structure~15! of the velocity ṽ which is the
product of two stochastic processes. They are statistic
independent, but in the Lagrangian frame they are correla
through the trajectories due to the space dependence o
magnetic field fluctuations. The latter makes this probl
strongly nonlinear. The trajectories also depend on the c
sional velocityh' , and thus the velocityṽ is a triply sto-
chastic process in the Lagrangian frame.

We now show that the problem is significantly simplifie
by first averaging all quantities over the perpendicular co
sions.

We determine the collisional contributions to the perpe
dicular displacement:

j~ t !5x̄'
1/2E

0

t

h'~t!dt, ~16!

and make the change of variablex8(t)5x(t)2j(t) in Eq.
~10!, which introduces the collisional displacements in t
argument of the magnetic field fluctuations:

dx8

dt
5M b̃@x8~ t !1j~ t !,z,t#h i~ t !. ~17!

We calculate the Eulerian correlation~EC! of the mag-
netic fluctuationsb̃@x1j(t),z,t#, averaged over both th
magnetic field fluctuations and over the perpendicular co
sional velocity. We calculate first the EC of the modifie
potentialf(x,z,t)[f̃@x1j(t),z,t#:

E[^^f̃@x11j~ t1!,z1 ,t1#f̃@x21j~ t2!,z2 ,t2#&&'

5^A@x11j~ t1!2x22j~ t2!, z12z2 ,t12t2#&' . ~18!

The detailed calculation ofE is given in Appendix A. The
‘‘perpendicular’’ average of the EC of the magnetic potent
f, A(x,z,t), is transformed intoE(x,z,t) @Eq. ~18!# that
contains a supplementary time dependence in addition to
determined by the finite correlation time of the stochas
magnetic field

E~x,z,t!5E dj A~x1j,z,t! P'~j,t!. ~19!

The Gaussian distribution functionP'(j,t) is defined in Ap-
pendix A, Eq.~A3!. As noted in Ref.@20#, E is the solution
of a diffusive equation and the effect of collisions consists
progressively smoothing out the EC of the magnetic pot
tial and in eliminating asymptotically thex dependence o
E(x,z,t). Since the integral overx of E is constant, the time
dependence introduced by collisions in Eq.~19! does not
destroy the correlation but only spreads it out. Note that
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average over the collisional parallel velocity was not p
formed at this stage:z in Eq. ~18! is an Eulerian coordinate

The problem of collisional particle motion in magnet
turbulence~10! and~11! is now formally reduced to adoubly
~instead of triply! stochastic process; the former can be wr
ten in terms of the fieldb(x,z,t) generated by the modified
potentialf(x,z,t)[f̃@x1j(t),z,t#:

dx

dt
5M b~x,z,t !h i~ t !. ~20!

The Eulerian correlation of the components ofb(x,z,t) are
determined from the EC of potential~19! by equations simi-
lar to Eq.~6!, with A replaced byE. The Langevin equation
~20! is similar to the two-dimensional divergence-free pro
lem studied in Ref.@19#. The velocity

v~x,z,t ![b~x,z,t !h i~ t ! ~21!

has a much more complicated structure being determined
the product of two stochastic processes. However,
method developed in Ref.@19# can be used here: we wil
follow the same calculation steps as in Ref.@20#.

First, we define a set of subensemblesSof the realizations
of the stochastic functions that have given values of the
tentialf, of the magnetic fieldb and of the parallel velocity
h i in the pointx50, z50 at timet50:

f~0,0,0!5f0, b~0,0,0!5b0, h i~0!5h0. ~22!

The correlation of the Lagrangian velocity~21! can be rep-
resented by a sum over the subensembles of the correla
appearing in each subensemble

L~ t !5E df0db0dh0P~b0,f0,h0!^v~0,0,0!v@x~ t !,z~ t !,t#&S

~23!

weighted by the probability P(b0,f0,h0) of having
b0,f0,h0 at x50, z50 and t50, which is P(b0,f0,h0)
5P(b1

0)P(b2
0)P(f0)P(h0) with P(X)5exp(2X2/2)/A2p.

This probability is a product of individual distributions, be
cause the stochastic variables are not correlated inx50, z
50, t50. The pointx50, z50 is taken as the initial con
dition for the trajectories determined from Eqs.~20! and~11!.
Since the initial velocity in the subensemble S isv(0,0,0)
5b0h0 for all trajectories inS, the subensemble average
Eq. ~23! is

^v~0,0,0!v~x~ t !,z~ t !,t !&S5b0h0^v@x~ t !,z~ t !,t#&S ,
~24!

and thus the Lagrangian correlationL(t) is determined by
the average Lagrangian velocities in all subensembles
order to evaluate these quantities, we need to calculate
average Eulerian velocity in the subensembleS,

VS~x,t ![^v@x,z~ t !,t#&S5^b@x,z~ t !,t#h i~ t !&S , ~25!

where ^•••&S is the average over the two stochastic pr
cesses restricted to the realizations inS and z(t) is the sto-
6-3
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chastic parallel displacement obtained from Eq.~11!. The
details of the calculation of this quantity are given in Ape
dix B. The resulting average velocity~25! in the suben-
sembleS is

VS~x,t !5E dzBS~x,z,t !M i~z,t !, ~26!

where

BS~x,z,t ![^b~x,z,t !&S5S ]

]x2
,2

]

]x1
DFS~x,z,t !,

~27!

with the average potential in the subensembleFS(x,z,t)
given by

FS~x,z,t !5f0E~x,z,t !1bi
0Eif~x,z,t !, ~28!

where Eif(x,z,t)5^bi(0,0,0)f(x,z,t)&52« i j (]/]xj )
3E(x,z,t). The second factor in Eq.~26! is

M i~z,t !5Fh0R~ t !2x̄ i
1/2D~ t !@12R~ t !#

]

]zGPS~z,t !,

~29!

where PS(z,t) is the probability of having a parallel dis
placementz at time t taken for the trajectories in the sube
sembleS: it is a Gaussian function defined in Appendix B
Eq. ~B9!, and the reduced parallel running diffusion coef
cient is @see, Eq.~A5!#

D~ t !5
1

2

dC~ t !

dt
512exp~2t !. ~30!

The next step in the decorrelation trajectory method c
sists of finding adeterministictrajectoryXS(t) in each sub-
ensembleS as the solution of the equation

dXS~ t !

dt
5MVS@XS~ t !,t# ~31!

with XS(0)50. Using Eqs.~26! and~27! one can show tha
this is a Hamiltonian system of equations which can be w
ten as

dXS~ t !

dt
5M

]HS~XS,YS,t !

]YS U
XS5XS(t)

,

dYS~ t !

dt
52M

]HS~XS,YS,t !

]XS U
XS5XS(t)

, ~32!

with the Hamiltonian

HS~XS,t !5E dzFS~XS,z,t !M i~z,t !. ~33!

This Hamiltonian represents the average potential in the s
ensembleS. Its explicit expression is calculated for correl
02640
-
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tions ~5! and~9!. Since the stochastic magnetic field cons
ered here is isotropic, the Hamiltonian could be simplified
a given subensemble by taking thex axis alongb0. One
obtains

HS~XS,YS,t !5bh0
„p1n'~ t !YS

…n'~ t !

3expH 2
1

2
n'~ t !@~XS!21~YS!2#J f i~ t !,

~34!

where

f i~ t !5ni
1/2$R2x̄ ini~ t !D 2~ t !@12R~ t !#%

3expF2
1

2
~h0!2ni~ t !x̄ iD 2~ t !G , ~35!

n'~ t ![@11x̄'C~ t !#21, ni~ t !5@11s2~ t !#21.
~36!

The parameters of the subensembleS are in Eq. ~34!, b
5ub0u, p[f0/b, and h0. The equations for the decorrela
tion trajectory~32! obtained from the Hamiltonian~34! are

dXS

dt
5Mbh0n'

2 f i@12pYS2n'~YS!2#

3expS 2
1

2
n'@~XS!21~YS!2# D , ~37!

dYS

dt
5Mbh0n'

2 f iX
S~p1n'YS!

3expS 2
1

2
n'@~XS!21~YS!2# D . ~38!

The main assumption of the decorrelation trajecto
method is the following~see, Ref.@20#!: the average La-
grangian velocity is approximated by the average Euler
velocity along the deterministic decorrelation trajectory

^v@x~ t !,z~ t !,t#&S>VS@XS~ t !,t#, ~39!

whereXS(t) is the solution of Eqs.~37! and ~38!.
We finally obtain using Eqs.~23!, ~24!, and ~39! the au-

tocorrelation of the perpendicular Lagrangian veloc
v@x(t),z(t),t#5b@x(t),z(t),t#h i(t) for arbitrary values of
the four dimensionless parameters~12!–~14! and for given
Eulerian correlations of the three stochastic processes
combine in equations of motion~3! and ~4!:

L~ t;M ,x̄ i ,x̄' ,t̄c!5~nl'!2M2
1

2p E
0

`

dp

3E
0

`

dbb3expF2
b2

2
~p211!G

3E
2`

`

dh0h0expS 2
h02

2 DV1
S
„XS~ t !,t….

~40!
6-4
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The total perpendicular running diffusion coefficient is t
sum of two terms: a direct contribution of the collision
velocity h' obtained from Eq.~A4!, and the contribution of
the velocity~15!,

D~ t;M ,x̄ i ,x̄' ,t̄c!5x'D~ t !1~nl'
2 !Dint~ t;M ,x̄ i ,x̄' ,t̄c!.

~41!

The latter is the time integral of the Lagrangian correlat
~40! and can be written as

Dint~ t;M ,x̄ i ,x̄' ,t̄c!

5
M

2pE0

`

dpE
0

`

db b3expF2
b2

2
~p211!G

3E
2`

`

dh0h0expS 2
h02

2 DXS~ t !, ~42!

whereXS(t) is the component along thex axis of the solution
of Eq. ~32!. It depends on the parametersM, x̄ i , x̄' , andt̄c
as well as on the shape of the Eulerian correlations. T
contribution~42! results from the nonlinear interaction of th
three stochastic processes. These results~40! and ~41! are
written as dimensional quantities. The asymptotic diffus
coefficient is

D~M ,x̄ i ,x̄' ,t̄c!5~nl'
2 !@ x̄'1Dint~M ,x̄ i ,x̄' ,t̄c!#,

~43!

where Dint(M ,x̄ i ,x̄' ,t̄c) is the limit for t→` of
Dint(t;M ,x̄ i ,x̄' ,t̄c).

A computer code that calculates the running diffusion
efficient starting from analytical expression~42! has been
developed. It determines the decorrelation trajectories~32!
for a large enough number of subensembles and perform
integrals in Eq.~42!. The code was tested and the paramet
in the numerical calculation were established using the a
lytical results concerning the subdiffusive transport. Name
as shown in the following section, the asymptotic express
for the decorrelation trajectories and for the diffusion coe
cient can be determined for an arbitraryM and x̄ i , in the
case wherex̄'50 andt̄c5`. This provides a very good tes
for the code and permits the optimization of the choice of
parameters.

The analysis of the collisional particle transport in s
chastic magnetic fields obtained by means of the decorr
tion trajectory method results~40!–~43! is the subject of the
subsequent three sections.

IV. SUBDIFFUSIVE TRANSPORT

We consider in this section a static stochastic magn
field (tc→`) and the zero Larmor radius limit correspon
ing to negligible cross-field collisional diffusion,x'50. It is
interesting to study separately this particular case, becau
leads to a subdiffusive transport determined, as shown be
by two kinds of trapping processes. Moreover, the time
pendence of the diffusion coefficient obtained for these p
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ticular conditions also allows the understanding of the sc
ing laws of the diffusion coefficient determined by th
presence of a decorrelation mechanism.

First we study in this section the quasilinear case co
sponding to small magnetic Kubo numbers,Km5bl i /l'

!1, where the magnetic lines are not trapped. In the li
l'→`, an exact analytical solution has been determined
Ref. @16#. It was shown that particle perpendicular transp
is subdiffusive with the running diffusion coefficient goin
asymptotically to zero ast21/2. This particular case is use
here as a test for our general results~40!–~43!. We show that
the exact solution is found in this limit. Then the nonline
problem corresponding to finitel' and large magnetic Kubo
number is studied. We show that the existence of magn
line trapping does not change the asymptotic behavior of
diffusion coefficient: a similar subdiffusive regime is ob
tained from Eq.~42! with D(t);t21/2. This nonlinear pro-
cess has a strong effect but it is localized in time: it det
mines a transient decrease ofD(t). This transient effect is
very important because it leads, as will be shown in
subsequent sections, to complex anomalous regimes w
x'Þ0 or whent̄c is finite.

In the limit l'→` the Lagrangian nonlinearity deter
mined by thex dependence of the stochastic magnetic fi
disappears and the problem simplifies considerably. T
equations for the decorrelation trajectories~38! reduce to

dXS~ t !

dt
52bh0f i~ t !,

dYS~ t !

dt
50, ~44!

where the dimensional quantities were used. Thus the a
age Lagrangian velocity inS involved in the Lagrangian ve
locity correlation~40! is V1

S(t)52bh0f i(t). The integrals
overp b, andh0 can easily be performed in Eq.~40!, and one
obtains

L0~ t;0,x̄ i,0,̀ !5V2
1

@11x̄ iC~ t !#3/2
$R~ t !@11s2~ t !#

2x̄ iD 2~ t !@12R~ t !#%, ~45!

which after algebraic transformations becomes

L0~ t;0,x̄ i,0,̀ !5 V2
1

@11x̄ iC~ t !#1/2FR~ t !2
x̄ iD 2~ t !

11x̄ iC~ t !
G .

~46!

This is precisely identical with the exact analytical soluti
determined in Ref.@16# by means of a different method. Th
perpendicular running diffusion coefficient can be obtain
by time integration of Eq.~46! as

D0~ t;0,x̄ i,0,̀ !5~V2/n!
D~ t !

@11x̄ iC~ t !#1/2
. ~47!

This exact solution obtained forl'→` is also valid for
finite l' as long asM5Kmx̄ i

1/2!1. Actually this is the con-
6-5
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dition for neglecting the perpendicular displacements and
x dependence of the magnetic field fluctuations. Con
quently, Eqs.~46! and~47! have physical relevance for toka
mak plasmas, althoughl' is of the order of 1 cm, and it is
smaller thanl i by at least a factor of 103. Due to the small
values ofb which are usually of the order of 1024 the pa-
rameterM can be small.

The absolute value of L0(t;M ,x̄ i,0,̀ ) and
D0(t;M ,x̄ i,0,̀ ) are plotted in Figs. 1 and 2. One can s

FIG. 1. The Lagrangian velocity correlation for the subdiffusi

transport (x̄'50, t̄c5`). L0(t) corresponds toM!1 and is given
by Eq.~46! andL(t) is the nonlinear result obtained in the presen

of magnetic line trapping at largeKm (M510, x̄ i50.1). The
dashed parts of the two curves represent negative values o
Lagrangian correlations. The normalization constant isV2

5(l'nM )2.

FIG. 2. The running diffusion coefficient corresponding to t
Lagrangian velocity correlations in Fig. 1,D0(t) is the integral of
L0(t) and is given by Eq.~47! andD(t) is the integral ofL(t) and
shows the effect of the magnetic line trapping. The normalizat
constant is (l'

2 n)M .
02640
e
e-

that the Lagrangian correlation has a long negative tai
larget; its contribution exactly compensates the positive p
appearing at small time such that its time integral is ze
More precisely,D0;t21/2 for long time. The zero of the
Lagrangian correlation~and the maximum ofD0) occurs at a
time t r called the average return time; it is a decreas
function of x̄ i scaling approximately asx̄ i

21/2. It is remark-
able to note that in the limiting case of the absence of co
sions (n50), Eq. ~47! yields a finite diffusion coefficient
@16#. In this case,x in5VT

2/2 ~whereVT is the thermal veloc-
ity! and a small time expansion in Eq.~47! leads to the result
of Jokipii and Parker@3#, DJP5b2l iVT /A2. This is also
well known as the Rechester and Rosenbluth collisionl
diffusion coefficient@1#, in the form DRR5DmVT , where
Dm is the diffusion coefficient of the magnetic lines~see also
Refs.@10,12#!.

Thus, the collisions determine a very strong change of
perpendicular transport, which is diffusive in the absence
collisions and becomes subdiffusive due to the parallel c
lisional motion. A physical interpretation of this subdiffusiv
behavior is presented in Ref.@15# in terms of aparallel tra-
jectory trapping processdetermined by collisions which
force the particles to return along the magnetic lines in
correlated zone, i.e., in the range ofl i around the origin.
Consequently, the Lagrangian velocities remain correla
Since the parallel velocity changes its direction due to co
sions, this long-time correlation is negative and thus de
mines the decay of the running diffusion coefficientD0(t).

We consider now the nonlinear case that correspond
stochastic magnetic fields with finitel' and large magnetic
Kubo numbersKm.1. A process ofmagnetic line trapping
appears: the magnetic lines are constrained to turn around
small size contour surfaces of the potentialf(x,z) which are
elongated along thez axis, making many turns before the
can escape and possibly perform a long jump. The evolu
along thez axis of the magnetic lines is a stochastic seque
of trapping events~helicoidal segments of the magnetic lin!
and long perpendicular jumps. This process is identical w
the trapping of the trajectories determined by theE3B drift
in a two-dimensional stochastic potential: the evolution
the magnetic lines along thez axis is described by the sam
equations as the time evolution of these trajectories. The
cess of trajectory trapping has been studied by means o
decorrelation trajectory method in Ref.@19#, and the results
obtained there can be applied to the stochastic magn
lines.

The trapping of the magnetic lines has a strong influe
on particle trajectories which follow the magnetic lines a
evolve on helicoidal paths. We show that solutions~40!–~42!
describe this trapping process: in the zero Larmor radius
proximation (x'50) it leads to subdiffusive particle trans
port, provided thatb̃ is static (tc5`). In this case,n'(t)
51 and the Hamiltonian~34! depends on time only throug
the factor off i(t). It can be written as

H~XS,YS,t !5 f'~XS,YS! f i~ t !, ~48!

and consequently one can make a change of variable frot
to t(t) defined by

he

n
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dt

dt
5 f i~ t !, ~49!

and the equations for the decorrelation trajectories beco

dXS

dt
5M

] f'~XS,YS!

]YS
,

dYS

dt
52M

] f'~XS,YS!

]XS
.

~50!

The functiont(t) has a maximum and then decays to ze
The solution of the time-independent Hamiltonian equatio
~50! is a periodic function oft with XS(t) lying on the
closed path determined byf'(XS,YS)5 f'(0,0). The size of
the path depends only onp: it is infinite ~straight line! at p
50 and decays to zero asp increases. The period is propo
tional to (Mbh0)21. The decorrelation trajectories are th
obtained asXS

„t(t)… whereXS(t) is the solution of Eq.~50!.
This shows that the trajectories wind around the closed p
~for an incomplete turn or for many turns, depending onM
and on the parametersp, b, andh0); at the time correspond
ing to the maximum oft(t) they are all reflected and go bac
along the same path. Sincet(t)→0 when t→`, the
asymptotic value of the decorrelation trajectories
XS(t(t))→XS(0)50. All decorrelation trajectories eventu
ally stop at the origin. This behavior of the decorrelati
paths reflects the sticking of the particle trajectories on
trapped magnetic lines and the statistical characteristic
the collisional parallel motion. AsXS(t(t))→0, the equation
for diffusion coefficient~42! givesD(t)→0. Using Eqs.~49!

and ~35!, the functiont(t) is shown to bet(t)>(2x̄ it)
21/2

at large t and with the solution of Eq.~50! at XS!1 one
obtainsX(t)>Mbh0(2x̄ it)

21/2. Upon substitution into Eq
~41! the running diffusion coefficient is obtained asympto
cally as

D~ t;M ,x̄ i,0,̀ !→~nl'
2 !M2~2x̄ it !

21/2. ~51!

This subdiffusive behavior is identical with the asympto
behavior obtained from quasilinear solution~47!. Thus, the
magnetic line trapping that appears forKm.1 does not af-
fect either the asymptotic time dependence of the runn
diffusion coefficient or its dependence on the parameters

There is, however, a significant effect of the nonline
process of magnetic line trapping, but it appears to be lo
ized in time. It can be found by determining the whole tim
evolution of the running diffusion coefficient~42! using the
computer code we have developed.

The results are presented in Figs. 1 and 2 compare
solution ~46! and ~47! obtained forM!1. One can see tha
at small and large times the diffusion coefficient has
same expression asD0(t) in Eq. ~47!. For intermediate times
a transient decrease ofD(t) appears. This is determined b
the magnetic line trapping that is effective at times larg
than the flight time over the perpendicular correlation len
l' , which ~in the unit considered here! is t f l51/M . As seen
in Figs. 1 and 2, the running diffusion coefficient has a ma
mum att f l and the Lagrangian velocity correlation becom
negative. Then the diffusion coefficient decreases due to
02640
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trapping of the magnetic lines. This process is represente
the decorrelation trajectories corresponding to subensem
with large values of the parameterp5f0/b which have per-
formed many rotations around their paths~of small size! and
their contribution cancels by mixing in the integrals in E
~41!. Later in the evolution, another change of sign of t
Lagrangian correlation is observed att5t r , the average re-
turn time for the parallel motion. At this momentD(t) has a
minimum whileD0(t) has a maximum. It is determined b
the parallel motion and more exactly by the collisions whi
force the particles to reverse their direction along the m
netic lines. This is reflected in the decorrelation trajectori
which all evolve back on their paths in the perpendicu
plane at t.t r . In the absence of magnetic line trappin
~quasilinear conditions! this leads to the decay of the runnin
diffusion coefficient, because the perpendicular displacem
decreases in time and thusD0(t) decays att.t r . The effect
is inverse in the presence of magnetic line trapping. T
backward motion produces first the unmixing of the con
bution of the trajectories that evolve on trapped magne
lines. As time increases, the contributions of smaller a
smaller decorrelation paths are recovered in the Lagran
velocity correlation. The effect of magnetic line trapping th
produced the decay ofD(t) in the interval (t f l ,t r) is washed
out by the backward motion andD(t) recovers its value a
t;t f l . At this momenttb , the correlation build-up time
D(t) has a maximum. A positive bump appears in the L
grangian velocity correlation due to the trajectories unwin
ing around the decorrelation paths. Finally, all decorrelat
trajectories are ‘‘in phase’’ and approach the origin. This c
responds to the asymptotic regime in the evolution of
diffusion coefficientD(t) which is the same withD0(t).
Thus, the parallel collisional motion eliminates asympto
cally the nonlinearity determined by thex dependence of the
magnetic field fluctuations.

The above evolution of the diffusion appears whene
t f l,t r , and sincet f l5M 21 andt r'x̄ i

21/2, the condition is
Km.1 which corresponds to the magnetic line trappin
Whent f l.t r ~or Km!1), the running diffusion coefficien
is given by Eq.~47!.

We show in the subsequent sections that this rather n
trivial evolution of the running diffusion coefficient leads t
anomalous diffusion regimes when a decorrelation mec
nism is present.

V. DIFFUSIVE TRANSPORT INDUCED
BY COLLISIONAL DECORRELATION

We analyze in this section the effect of the cross-fie
collisional diffusion (x̄'Þ0) starting from general solution
~40!–~42!. The stochastic collisional velocityh'(t) in Eq.
~3! moves the particles away from the magnetic lines, a
consequently it has a decorrelation effect leading to diffus
transport. This collisional motion determines a characteri
time, the perpendicular decorrelation timet' . It is defined
by the condition that the collisional diffusion covers the pe
pendicular correlation length, 2x't'5l'

2 , and in the units

chosen here it ist̄'5(2x̄')21. The stochastic magnetic fiel
6-7
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is considered here to be static (t̄c5`) for a better under-
standing of the collisional decorrelation.

As in the preceding section, a stochastic magnetic fi
with small Kubo numberKm that does not generate the ma
netic line trapping is first considered. We show analytica
that the already known results are reproduced by the de
relation trajectory method. Then the nonlinear case is a
lyzed and new anomalous diffusion regimes are found. T
are determined by the nonlinear interaction of the magn
line trapping with the cross-field collisional diffusion.

In 1979 Kadomtsev and Pogutse@2# derived semiqualita-
tively an approximation for the cross-field diffusion coef
cient. This approximation is essentially a weak-nonlinea
regime, in which the magnetic field fluctuations are nonc
otic. It will be shown that this diffusion coefficient is ob
tained from general equations~40!–~42!, provided thatt r
,t',t f l . This condition is compatible with the relation
found in Ref. @10# where a detailed study of the diffusio
regimes in stochastic magnetic fields for fusion plasma
presented using the Corrsin approximation. In this case
XS dependence of the average velocity in Eqs.~37! and~38!
can be neglected and the equations for the decorrelation
jectories are~44! corrected by a factor ofn'

2 (t) that multi-
plies the right hand side terms. This leads to the follow
form of the Lagrangian velocity correlation,

LKP~ t !5n'
2 ~ t ! L0~ t !, ~52!

whereL0(t) is the subdiffusive Lagrangian velocity autoco
relation defined in Eq.~46!. Because of the factor ofn'

2 (t),
the integral ofLKP(t) no longer vanishes, and yields a fini
diffusion coefficient,DKP . It can be estimated analyticall
by using a step approximation of the functionn'(t),

n'~ t !>H 1 t,t'

0 t.t' .
~53!

It then follows that the diffusion coefficient is approximate
as

DKP>E
0

t'

dtL0~ t !52E
t'

`

dtL0~ t !, ~54!

because the integral ofL0(t) from t50 to infinity is zero.
Using the very simple asymptotic form ofL0(t) @obtained
from Eq. ~46! for t.t r ], the integral can be calculated an
lytically and one obtains~going to dimensional quantities!

DKP>b2
l i

l'

Ax ix', ~55!

which is the well-known Kadomtsev-Pogutse formu
@2,10,12#. This result is thus reproduced by Eqs.~40!–~43!.

We consider now the nonlinear case. When the time
flight t f l is smaller than the decorrelation timet' , the space
dependence of the magnetic field fluctuations cannot be
glected. It leads to magnetic line trapping. In the presenc
a perpendicular collisional diffusivity the decorrelation tr
jectories obtained from Eq.~38! are no longer closed curves
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However, trajectory winding can still be observed for som
range of the parameters that define the subensembles.
means that the process of magnetic line trapping still exi
Compared to the decorrelation trajectories obtained w
x'50, there now exist trajectories of several kinds. Some
them are still almost closed, performing a number of ro
tions and changing their sense of rotation att5t r . Some
other trajectories stop before reachingt r . Most important,
there exist open trajectories which actually have the m
important contribution to the diffusion coefficient. Th
shows that both the perpendicular and the parallel trapp
still exist. But due to the cross-field collisional diffusion
these two trapping processes appear only for a part of
decorrelation trajectories and are approximate or tempor
The perpendicular diffusionx' produces a releasing effec
both for perpendicular and parallel components of parti
motion. The asymptotic values of the decorrelation trajec
ries are not concentrated in the origin~as for x'50), but
spread in the (X,Y) plane. Consequently, a finite value of th
asymptotic diffusion coefficient is obtained from Eq.~41!.

The asymptotic diffusion coefficient is determined fro
Eqs.~41!–~43! using the numerical code we have develope
Some results are presented in Fig. 3, where the asymp
diffusion coefficient Eq.~43! is represented as a function o
x̄' . The two componentsDint and x̄' are also represented
One can see that at small collisional diffusionx̄'!1, the
nonlinear interaction term largely dominates the collision
term while at large collisional diffusionx̄'*1, the nonlinear
term is only a correction tox̄' . Thus, the subdiffusive trans
port appearing atx̄'50 is transformed by a small collisiona
cross-field diffusion into a diffusive transport with a diffu
sion coefficient that can be several orders of magnitu
larger thanx̄' . The dependence of the diffusion coefficie

FIG. 3. The asymptotic diffusion coefficient as a function

x̄' . The total diffusion coefficientD ~continuous lines! is compared

with the direct collisional contributionx̄' ~dotted line! and with the

interaction termDint ~dashed lines! for two values ofx̄ i . The nor-

malization constant isl'
2 n, M510, andt̄c5`.
6-8
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MAGNETIC LINE TRAPPING AND EFFECTIVE . . . PHYSICAL REVIEW E67, 026406 ~2003!
on x̄' is rather nontrivial. There is at very smallx̄' , an
increase ofD up to a maximum which corresponds tot'

>tb . Then, at largerx̄' , the nonlinear interaction of the
parallel and perpendicular trapping with the collisional de
rrelation generates an unusual transport regime, in which
effective diffusion coefficient decreases as the collisional
fusion x̄' increases. A minimum ofD is obtained whenx̄'

determines a decorrelation time of the order of the ret
time of the parallel motion,t'>t r . At larger x̄' ~whent'

,t r), the nonlinear contributionDint , increases again with
the increase ofx̄' but this contribution begins to be comp
rable and eventually negligible compared to the collisio
diffusion coefficientx̄' .

We note that the above results obtained with the deco
lation trajectory method are not similar with the heuris
estimation of the asymptotic diffusion coefficient of Reche
ter and Rosenbluth@1#. This is possibly due to the fact tha
the trapping of the magnetic lines, which is implied in t
above results, is neglected in the estimation@1# and also in
the more detailed calculations presented in Ref.@10#. The
latter estimation is based on the process of exponentia
crease of the average distance between two magnetic lin
a chaotic magnetic field, represented by the Kolmogo
length. An estimation of this length taking into account t
trapping of the magnetic lines should be necessary in o
to compare the results.

VI. DIFFUSIVE TRANSPORT IN TIME-DEPENDENT
STOCHASTIC MAGNETIC FIELDS

In a time-dependent stochastic magnetic field with fin
tc the configuration of the stochastic fieldb̃(x,z,t) changes,
the magnetic lines move and consequently the perpendic
velocity of the particles is decorrelated leading to diffusi
transport. We determine here the diffusion coefficient in su
time-dependent fields in the limit of zero Larmor radi
(x̄'50), starting from general solution~40! and ~41!. The
effect of time variation of the stochastic magnetic field on
effective diffusion was previously studied in Refs.@21–25#,
but only for weak magnetic turbulence (Km!1). We deter-
mine the effect of magnetic line trapping appearing in s
chastic magnetic fields atKm.1.

The decorrelation trajectories obtained from Eqs.~37! and
~38! are in this case~finite t̄c , x̄'50) located on closed
paths~except that forp50). A typical trajectory rotates on
the corresponding path, then it stops and turns back. Its
locity decays progressively and eventually the traject
stops somewhere on its path. This is the modification de
mined by the time variation of the magnetic field: all deco
relation trajectories stop at a time of the order oft̄c . As
follows from Eq.~42!, the running diffusion coefficient satu
rates. Depending on the relation between the decorrela
time t̄c and the three characteristic times of this motion,t f l ,
t r , tb ~see Fig. 2! several diffusion regimes are obtained.
time-dependent magnetic fields, att,tc , the running diffu-
sion coefficient is approximately the same as that obtai
for t̄c→`, and later, att.tc , D(t) saturates. Thus, th
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asymptotic diffusion coefficient can be evaluated as

lim
t→`

D~ t;M ,x̄ i,0,t̄c!>D~ t̄c ;M ,x̄ i,0,̀ !, ~56!

using the running diffusion coefficient obtained in the sta
case. Hence, it can be approximated by the value of the
ning diffusion coefficient for the subdiffusive case att

5 t̄c . Some results are presented in Fig. 4 where
asymptotic diffusion coefficient obtained from Eq.~42! for
finite t̄c is compared to the subdiffusive running diffusio
coefficient represented in Fig. 2. One can see that appr
mation ~56! is rather good for all values oft̄c .

The following diffusion regimes can be observed in F
4, in the nonlinear conditions when the trapping of the ma
netic lines is effective (t f l,t r , or Km.1). The quasilinear
regime at small correlation times (t̄c,t f l) with D0'M2t̄c
is characterized by a fast time variation which prevents
trajectory trapping. At larger correlation times (t f l, t̄c
,t r) the magnetic lines can be trapped before the stocha
magnetic field changes and the parallel motion is ballistic
these conditions the diffusion regime is similar to that d
scribed in Ref.@20# for the electrostatic turbulence: the di
fusion coefficient decreases with the increase oft̄c . A mini-
mum of the diffusion coefficient appears att̄c>t r , followed
by an anomalous increase determined by the interactio
the parallel trapping with the magnetic line trapping whi
generates correlation of the Lagrangian velocities. At v
large correlation times (t̄c.tb) the diffusion coefficient de-
creases asD'Km

2 t̄c
21/2x̄ i

1/2.

We note that the regimes obtained fort̄c,t f l and for t̄c
.tb are similar to those reported in Refs.@21,22,6#. But
instead of the plateau found there at intermediatet̄c , we

FIG. 4. The asymptotic diffusion coefficient as a function oft̄c

for x̄ i50.1 ~circles! and x̄ i51 ~stars!. The continuous lines repre
sent the running diffusion coefficient as a function oft for the

subdiffusive transport corresponding to static magnetic fieldst̄c

5`). The normalization constant is (l'
2 n)M2, M510, x̄'50.
6-9
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VLAD et al. PHYSICAL REVIEW E 67, 026406 ~2003!
obtain here a smaller diffusion coefficient with a more co
plicated behavior. This is the effect of stochastic magne
line trapping: it leads to the decrease of the effective dif
sion coefficient with the increase oft̄c when the parallel
motion is ballistic and, on the contrary, to the increase oD

with the increase oft̄c when the parallel motion is diffusive
A minimum of the diffusion coefficient appears at the res
nance conditiont̄c>t r . As seen in Fig. 4, this nonlinea
effect can significantly reduce the diffusion.

VII. CONCLUSIONS

We have studied here the transport of collisional partic
in stochastic magnetic fields using the decorrelation tra
tory method. We have derived analytical expressions for
running diffusion coefficient and for the Lagrangian veloc
correlation in terms of a set of deterministic trajectorie
They are defined in subensembles of the realizations of
stochastic field as a solution of differential~Hamiltonian!
equations that depend on the given shape of the Eule
correlation of the stochastic potential. They are approxim
tions of the subensemble average trajectories, and repre
the dynamics of the decorrelation of the Lagrangian veloc
Since, in general, the equations for the decorrelation tra
tories cannot be solved analytically, a computer code w
developed for this purpose and for determining the runn
diffusion coefficient for arbitrary values of the four param
eters of this problem and for given Eulerian correlation
the potential.

We have shown that this rather complicated triple stoch
tic process is characterized by two kinds of trajectory tr
pings and contains two decorrelation mechanisms. The la
are produced by the collisional cross-field diffusionx̄'

and/or by the time variation of the stochastic magnetic fie
One of the trapping processes concerns the parallel

tion and is determined by collisions which constrain the p
ticles to return in the already visited places with probabil
one. This parallel trapping leads to a subdiffusive transpor
the absence of a decorrelation mechanism. This alre
known process is recovered by our method. The second
of trapping concerns the magnetic lines that wind around
extrema of the potential atKm.1. The effects of the mag
netic line trapping on the collisional particle transport
studied. We show that in the absence of a decorrela
mechanism, the magnetic line trapping determines a trans
decay of the running diffusion coefficientD(t) appearing at
t in the interval (t f l ,t r), i.e., before the parallel trapping i
effective. The simultaneous action of both trapping proces
determine a nonlinear build-up of Lagrangian velocity cor
lation, and eventually the parallel motion washes out the
fect of the magnetic line trapping. Consequently, t
asymptotic behavior of the running diffusion coefficient
exactly the same as in the quasilinear conditions when
stochastic magnetic field does not generate any magnetic
trapping.

The effect of the two decorrelation mechanisms is stud
afterwards. We show that the effective diffusion coefficie
and its dependence on the parameters result from a com
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tition between the trapping and the decorrelation proces
and more precisely from the temporal ordering of the ch
acteristic times of these processes. Each one of the two d
rrelation mechanisms leads to the already known diffus
laws when the magnetic line trapping is not present (Km
!1). The trapping of the magnetic lines~at Km.1) pro-
duces a complicated nonlinear interaction between the th
stochastic processes which determines new scaling law
the diffusion coefficient. They appear when the decorrelat
time is longer than the flight timet f l , but smaller than the
correlation build-up timetb . The first condition ensures th
magnetic line trapping and the second prevents the elim
tion of this trapping effect by the parallel collisional motio
A particularly interesting regime is obtained for collision
decorrelation and consists of an effective diffusion coe
cient that decreases when the collisional perpendicular di
sion increases~Fig. 3!.

This rather complex dependence of the diffusion coe
cients on the plasma parameters can be used in experim
for controlling the transport. Even without changing th
characteristics of the stochastic magnetic field, the cross-fi
diffusion coefficient can be strongly influenced by the p
rameters that describe particle collisions. A minimum of t
diffusion coefficient was obtained for decorrelation times
the order of the average return time for the parallel motio

Several directions of research can be envisaged for
further development of the present work. One consists
studying the effect of trajectory fluctuations in the sube
semble. Another important extension should be the esti
tion of the particle density distribution as was already do
for simpler cases@14,26#. We also expect interesting effec
from the periodic configuration of the magnetic field whic
determines magnetic islands and resonant surfaces.
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APPENDIX A

The average of the potential autocorrelation over the p
pendicular collisional velocity, Eq.~18!, can be calculated
using the two-point Gaussian probability density,

E5E E dj1dj2A@x12x21j12j2 , z12z2 ,t12t2#

3P2~j1 ,t1 ;j2 ,t2!, ~A1!

whereP2(j1 ,t1 ;j2 ,t2) is the probability density for having
j(t1)5j1 andj(t2)5j2. It is determined as the average ov
perpendicular collisions of the corresponding product od
functions:

P2~j1 ,t1 ;j2 ,t2!5^d„j~ t1!2j1…d„j~ t2!2j2…&' .

This probability can be calculated using the Fourier rep
sentation of thed functions and the cumulant expansion
the resulting exponential. Since the collisional displaceme
6-10
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are Gaussian, only the first two cumulants appear. One
tains the two-point probability density for the perpendicu
collisional displacements as

P25E E dq1dq2expS iq1•j11 iq2•j22
q1

2^j2~ t1!&c

2

2
q2

2^j2~ t2!&c

2
2^q1•j~ t1! q2•j~ t2!&cD ~A2!

which, introduced in Eq.~A1!, using the dependence of th
EC on the differencej5j12j2 and performing the integral
over q1 , q2, and j1, yields Eq.~19! of the main text. The
one-point probability density for the perpendicular col
sional displacementsP'(j,t) is

P'~j,t!5
1

2p^j2~t!&c

expS 2
j2

2^j2~t!&c
D . ~A3!

The mean square displacement for the collisional perp
dicular displacements is
l

pr

e

io

02640
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^@j~ t2!2j~ t1!#2&c5^j2~t!&c5x̄'C~t!, ~A4!

wheret[ut22t1u andC(t), the reduced mean square pe
pendicular collisional displacement, is

C~t!52E
0

t

~t2t !R~ t !dt52@t1exp~2t!21#. ~A5!

APPENDIX B

In order to calculate the average of the Eulerian veloc
in the subensembleS, Eq. ~25!, we first note that the stochas
tic parallel displacementz(t) is obtained from Eq.~11! as

z~ t !5x̄ i
1/2E

0

t

dth i~t!. ~B1!

Next, we note that thei th component of the average ve
locity in S is defined by the following conditional average
Vi
S5

Š^bi@x,z~ t !,t#h i~ t ! d@b02b~0,0,0!#d@f02f~0,0,0!#d@h02h i~0!#&‹i

P~b0,f0,h0!
. ~B2!
riva-
n

ce-
Introducing a functiond@z2z(t)# and using the statistica
independence ofb andh i one can write

Vi
S5E dz

^bi~x,z,t ! d@b02b~0,0,0!# d@f02f~0,0,0!#&
P~b0,f0!

3
^h i~ t ! d@z2z~ t !#d@h02h i~0!#& i

P~h0!
. ~B3!

The first average over the stochastic magnetic field re
sents the subensemble average ofbi(x,z,t) in Sand is given
by Eq. ~27! of the main text. The average potential in th
subensembleS, FS(x,z,t)[^f(x,z,t)&S , is calculated as in
Ref. @20# and is obtained in the form of Eq.~28! of the main
text.

The second average in Eq.~B3! over the collisional par-
allel velocity can be written using the Fourier representat
of the d functions as

M i[^h i~ t !d@z2z~ t !#d@h02h i~0!#& i
1

P~h0!

5
1

P~h0!
E E dkdqexp~2 ikz2 iqh0!

3^h i~ t !exp@ ikz~ t !1 iqh i~0!#& i . ~B4!
e-

n

The average in this equation can be calculated as the de
tive with respect toa of the following average, evaluated i
a50,

^exp@ah i~ t !1 ikz~ t !1 iqh i~0!#& i

5expF2
a2

2
2

k2

2
^z2~ t !&c2

q2

2
1 iak^h i~ t !z~ t !&c

1 iaqR~ t !2kq^h i~0!z~ t !& iG , ~B5!

where

^h i~0!z~ t !& i5x̄ i
1/2E

0

t

dtR~t!5x̄ i
1/2D~ t !, ~B6!

^h i~ t !z~ t !& i5x̄ i
1/2E

0

t

dtR~ t2t!5x̄ i
1/2D~ t !, ~B7!

^z2~ t !& i5E
0

tE
0

t

dt1dt2R~ ut12t2u!5x̄ iC~ t !. ~B8!

For the correlationR in Eq. ~9!, the reduced parallel running
diffusion coefficient is defined in Eq.~30!, and the reduced
mean square parallel displacement isC(t) defined in Eq.
~A5!, the same as for the perpendicular collisional displa
ment.

Straightforward calculations lead from Eq.~B4! to the
parallel averageM i , given in the main text in Eq.~29!, in
6-11
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which PS(z,t) is the probability of having a parallel dis
placementz at time t taken for the trajectories in the sube
sembleS. This was obtained as a Gaussian distribution w
an average displacement^z(t)&S and a modified dispersion
s(t)5^@z(t)2^z(t)&S#2&S

1/2,

PS~z,t !5
1

A2ps~ t !
expF2

@z2^z~ t !&S#2

2s2~ t !
G . ~B9!

The parallel average displacement is the integral of the
allel average velocity inS,

^h i~ t !&S5h0R~ t ! ~B10!

and is obtained as
an

ev

hy

s.

.H

m

02640
h

r-

^z~ t !&S5h0x̄ i
1/2D~ t !. ~B11!

The parallel dispersion of the trajectories inS is

s2~ t !5^z2~ t !&2x̄ iD 2~ t !5x̄ i„C~t!2D2~ t !…. ~B12!

Thus the dispersion of the parallel component of the traj
tories in a subensemble S is always smaller than the dis
sion of the whole set of trajectories^z2(t)&. It grows slowly
~ast3) at smallt and att@1, it reaches the global dispersio
^z2(t)&. The parallel running diffusion coefficient in the sub
ensembleS is D i

S(t)5x̄ iD(t)@12R(t)#. It behaves at smal
time as t2 and at t@1, it is equal to the global diffusion
coefficient of the whole set of trajectories,x̄ iD(t).
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