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Magnetic line trapping and effective transport in stochastic magnetic fields
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The transport of collisional particles in stochastic magnetic fields is studied using the decorrelation trajectory
method. The nonlinear effect of magnetic line trapping is considered together with particle collisions. The
running diffusion coefficient is determined for arbitrary values of the statistical parameters of the stochastic
magnetic field and of the collisional velocity. The effect of the magnetic line trapping is determined. New
anomalous diffusion regimes are found.
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[. INTRODUCTION On the other hand, the Lagrangian nonlinearity deter-
mined by the space dependence of the stochastic magnetic

The problem of test particle diffusion in stochastic MaY-field was studied in the related problem of particle diffusion

netic fields has been studied by many authdrs19 and in electrostatic turbulence. The equations of BB drift

important progress was obtained. However, the general SOILf‘ﬁotion are mathematically identical with those for the mag-

tion has not yet been found. Particle trajectories in a magngsetic line “evolution” along the direction of the main mag-

tized plasm_a are determine_d_ by three stochastic Process&satic field. It was showiil7,18 that a process of trajectory
the magnetic field, the collisional velocity along magneticyapping by the irregularities of the fluctuating electrostatic
lines, and the collisional velocity perpendicular to the mag-potential appears at large Kubo numbers and strongly influ-
netic lines. These components of the stochastic collisionaénces the diffusion. Recently, a new statistical approach, the
velocities have very different effects. There are two impor-decorrelation trajectory methofdl9,20] was developed. It
tant difficulties appearing in this triple stochastic processprovides a rather detailed analytical analysis of the transport
One is related to the parallel collisional velocity which entersin the presence of trapping and evaluates the Lagrangian cor-
as a multiplicative noise in the equations of motion and theelation and the running diffusion coefficient for arbitrary
other with the Lagrangian nonlinearity which is determinedvalues of the Kubo number. Translated to the stochastic mag-
by the space dependence of the stochastic magnetic fieldetic field case, this trapping process leads to localized seg-
Each of these two problems has been recently studied, butents of the magnetic lines with helicoidal shapes at large
only considered separately. The complete model for particl&ubo numbers.
transport in stochastic magnetic fields was not analyzed until The aim of this paper is to study the general problem of
now. collisional particle diffusion in a stochastic magnetic field in
The problem is simplified whenever the study is restrictedthe guiding center approximation. More specifically, we de-
to stochastic magnetic fields with small amplitudes and/otermine the effect of the magnetic line trapping on the effec-
large perpendicular correlation lengths, for which the mag+tive transport. The running diffusion coefficient is deter-
netic Kubo numbefdefined belowis small. In this case the mined for arbitrary parameters of the stochastic magnetic
Lagrangian nonlinearity does not play an important role andield and of particle collisions. The decorrelation trajectory
the effect of the parallel collisional velocity could be deter-method is used for studying this rather complicated triple
mined. If the perpendicular collisional velocity is neglected,stochastic process. We show that the magnetic line trapping
this “quasilinear” problem has an exact solution that wascan strongly modify the diffusion coefficient and determines
obtained by several methofi$6]. It shows that the parallel anomalous diffusion regimes. The physical parameters corre-
collisional motion determines a subdiffusive transport acrossponding to these regimes are determined.
the confining magnetic field with the running diffusion coef-  The paper is organized as follows. The physical model is
ficient D(t) decaying to zero aB(t)~t Y2 It was shown described in Sec. Il. We derive in Sec. lll the Lagrangian
[15] that this subdiffusive transport is due to collision- velocity correlation and the running diffusion coefficient for
induced trajectory trapping along the magnetic lines. Thearbitrary values of the four specific parameters and for given
parallel collisional velocity forces the particles to return Eulerian correlation of the potential. This general result is
along the magnetic lines in the correlated region and conseghen analyzed by considering several particular cases of
guently generates the long time Lagrangian correlation of th@hysical interest: the subdiffusive transport in Sec. IV, the
stochastic velocity. If the perpendicular collisional velocity is effect of collisional cross-field diffusion in Sec. V and the
taken into account, the transport is diffusive and the diffusioreffect of a time variation of the stochastic magnetic field in
coefficient was estimated by several methfiis14]. Sec. VI. The conclusions are summarized in Sec. VII.
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Il. THE SYSTEM OF EQUATIONS <77Il(0) Wji(t»c: SiX. vR(pt), (8)

The particle guiding center motion is studied in a mag- ) . )
netic field with a stochastic component. The magnetic field igvhere(- - -). is the average over the coIhsm;naI velocity re-
taken to be a sum of a large constant fiBlg=Bye, and a alizations, v is the collision frequencyy=A\p,,v/2 is the
small fluctuating field perpendicular &, and depending on parallel collisional diffusivity,\ ., is the parallel mean free
the perpendicular coordinates=(x,y) and on the parallel Path, x, =p{»/2 is the perpendicular collisional diffusivity
coordinatez, and p, is the Larmor radius relative to the reference field.
R(vt) is a time decreasing function that is chosen as
B=By(e,+b(x,z,1)). (1)
R(vt)=exp —v|t|) 9
(Here the perpendicular and the parallel directions are de-
fined in relation to the direction d&,.) This is the usual slab for the explicit calculations presented in this paper.
model of the confining configuration in a tokamak plasma. We introduce dimensionless quantities in E@3.and(4)
Since the reduced magnetic field is divergence-f@eﬁ with the following units:\, for the perpendicular displace-
=0, its two components can be determined from a scalaments\ for the displacements along the reference magnetic

function $(x,z) as fie~ld and v~ for the time. The perpendicular velocify
5 5 =b#) is reduced wittv= By v, the parallel velocityn(t)
b(x,z,t)=V X ¢(x,z,t)e,. (2) with v x;v, and the perpendicular collisional velocigy (t)

. o ) with x, ». The equations of motion in these dimensionless
The system of equations for guiding center motitmdomi-  yariables(denoted by the same symbols as the physical)ones

nant ordey is var
e LR TIOE RS (3) dx - Y
o gt = Mb(x,z,t) 7y(t) + x\ . (1), (10)
dz t . .
3t . (4) a=;n”2m\(t)- w

The three stochastic functiob$x,z,t), », (t), and 7)(t) are ) ) o
statistically independent: all cross correlations are zero. AlFOUr dimensionless parameters appear naturally in this prob-

these stochastic functions are assumed to be Gaussian, s@gl: the dimensionless perpendicular and parallel diffusivi-
tionary, and homogeneous, with zero averages. The autocdi€S: respectively,

relation function of the stochastic potentia(x,z,t) is mod-

—_ X —_ X
eled by = x=an (12
— — )\L 14 )\” 14
A(X,z,t)=($(0,0,0) H(x,z,1))
a dimensionless parameter that contains the effect of the sto-
ex;{ _ M) (5) chastic magnetic field

Tc

2 2 2
z X“+y
=B\ %exp — ——
. At a2

. L M = v _ @—1/2 13
where(- - -} is the average over the realizations of the sto- YRR X (13)

~ Ny
chastic potential$, B is the mean square value of the
reduced magnetic field, \| is the correlation length of and the dimensionless decorrelation time

the potential$ along the main magnetic fiel@,, \, is _
the correlation length in the plane perpendicular Bg, Te= TeV. (14

and 7. is the correlation time of. The autocorrelation ) ) )
tensor of the reduced magnetic field componets We note that the parameter which describes the evolution of

_ /R e — . : the magnetic lines, the magnetic Kubo numbkt,
;S<b,(0,0,0)bj(x,z,t)), hj=xy, is determined fromh(x,z) =B\|/\,, appears here as a factor M, which can be
written asM = K ,xj.
92 92 92 The aim of our calculation is to determine the Lagrangian
Byx=— a_yzA’ Byy=— ﬁA' Bxy:MA- (6)  autocorrelation of the effective perpendicular velocity
The collisional velocities are modeled by colored noises with V(x,z,t)=b(X,z,t) n)(t), (15

the correlations ] . . - i
which leads to the effective perpendicular diffusion coeffi-

(7)(0) m(t))c= x| ¥vR(t), (7)  cient.
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Ill. SOLUTION BY THE DECORRELATION average over the collisional parallel velocity was not per-
TRAJECTORY METHOD formed at this stagez in Eq. (18) is an Eulerian coordinate.
The problem of collisional particle motion in magnetic
turbulence(lO) and(11) is now formally reduced to doubly
(instead of triply stochastic process; the former can be writ-

and the supplementary difficulty of the magnetic problemten in terms of the field(x,z,t) generated by the modified

comes from structurél5) of the veIocityT/ which is the potential (x,z,t) = dx+ &(t),z,]:
product of two stochastic processes. They are statistically
independent, but in the Lagrangian frame they are correlated
through the trajectories due to the space dependence of the

magnetic field fluctuations. The latter makes this problem]-he Eulerian correlation of the componentshgk,z,t) are
strongly nonlinear. The trajectories also depend on the CO"'determmed from the EC of potentiél9) by equations simi-
sional velocity s, , and thus the velocity is a triply sto- |ar to Eq.(6), with A replaced byE. The Langevin equation

chastic process in the Lagrangian frame. (20) is similar to the two-dimensional divergence-free prob-
We now show that the problem is significantly simplified |em studied in Ref[19]. The velocity

by first averaging all quantities over the perpendicular colli-

We use the decorrelation trajectory method, following the,
recent calculations for the influence of particle collisions on
the diffusion in electrostatic turbulen¢20]. The difference

dx
qi- M b(x,z,t) 7(t). (20

sions. V(X,z,t)=b(X,z,t) 7(t) (22
We determine the collisional contributions to the perpen- _ . _
dicular displacement: has a much more complicated structure being determined by

the product of two stochastic processes. However, the
_1/2 method developed in Refl19] can be used here: we will
&= f 7, (7)dr, (16)  follow the same calculation steps as in Re0].
First, we define a set of subensemitBasf the realizations

and make the change of variabté(t) =x(t) — £t) in Eq. of the stochastic functions that have given values of the po-

(10), which introduces the collisional displacements in thet€ntial ¢, of the _magngtic field an(iof the parallel velocity
argument of the magnetic field fluctuations: 7 in the pointx=0, z=0 at timet=0:
L #(0,0,0=¢° b(0,0,0=b° 7(0)=7" (22
—=MDb[x'(t)+ &t),z,t t). 1 ) ) )
dt DA+ &0, 2.t (1) @ The correlation of the Lagrangian velocit21) can be rep-
_ ) resented by a sum over the subensembles of the correlations
We calculate ttle Eulerian correlatidC) of the mag-  appearing in each subensemble
netic fluctuationsb[ x+ &(t),z,t], averaged over both the
magnetic field fluctuations and over the perpendicular colli-

— 04RO 0 o 4,0 .0
sional velocity. We calculate first the EC of the modified L(t)_f depdo"d7"P(b%, 47 7°)(V(0.0,0MX(1),2(1), t])s

potential ¢(x,z,t) = @[ x+ &(t),z,t]: (23)
ighted by th bability P(b°, ¢°, 7% of havi
E= <<¢[X1+§(t )21, 1]¢[X2+§ 2):Z2,t1)) 1 \t/)vot?l(gO';e?o at ))/(:o,ezzp(r)oa?]dltlzo,( Wh(iﬁchﬂs)p(%oi(ﬁs\;g)g

= (Al + &) —Xo— &), i 2o ti—t5]), . (18 =P(BDP(B)P(¢°)P(7°) with P(X)=exp(~X/2)/\2.
This probability is a product of individual distributions, be-
The detailed calculation d& is given in Appendix A. The cause the stochastic variables are not correlatex=0, z
“perpendicular” average of the EC of the magnetic potential=0, t=0. The pointx=0, z=0 is taken as the initial con-
¢, A(x,z,7), is transformed intcE(x,z,7) [Eq. (18)] that  dition for the trajectories determined from E¢B0) and(11).
contains a supplementary time dependence in addition to th&ince the initial velocity in the subensemble Svi®,0,0)
determined by the finite correlation time of the stochastic=b°7° for all trajectories inS the subensemble average in
magnetic field Eq.(23) is

(v(0,0,0)v(x(t),2(t),t))s= b7V x(1),2(1),t])s,
E(x,z,r)=f déA(X+&z,7)P(&7). (19 (24

and thus the Lagrangian correlati&rft) is determined by

the average Lagrangian velocities in all subensembles. In
order to evaluate these quantities, we need to calculate the
average Eulerian velocity in the subensemBle

The Gaussian distribution functid, (£, 7) is defined in Ap-
pendix A, Eq.(A3). As noted in Ref[20], E is the solution

of a diffusive equation and the effect of collisions consists in
progressively smoothing out the EC of the magnetic poten-
tial and in eliminating asymptotically the dependence of VS(X,t)EW[X,Z(t),t]>S:<b[X,z(t),t]7,H(t)>s, (25)
E(x,z,7). Since the integral ovex of E is constant, the time

dependence introduced by collisions in E49) does not where(---)g is the average over the two stochastic pro-
destroy the correlation but only spreads it out. Note that theesses restricted to the realizationsSiand z(t) is the sto-
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chastic parallel displacement obtained from Etjl). The
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tions (5) and(9). Since the stochastic magnetic field consid-

details of the calculation of this quantity are given in Apen-ered here is isotropic, the Hamiltonian could be simplified in

dix B. The resulting average velocit{25) in the suben-
sembleSis

VS(x,t)zJ' dzBS(x,z,t)My(z,t), (26)
where
B® =(b A AP
(X,Z,t)=< (X,Z,t)>s— a_le_a_xl (X,Z,t),
27

with the average potential in the subensemtiig(x,z,t)
given by

DS(x,2,t) = ¢°E(X,z,t) + bYE; 4(x,2,1),

where Eis(x,2,t)=(b;i(0,0,0) p(x,z,t))=—
X E(Xx,z,t). The second factor in Eq26) is

(28)

Sll(a/(?XJ)

J
7°R(t) — x[*D()[1— R(t)]ﬂ PS(z,1),
(29

MH(Z,t):

where PS(z,t) is the probability of having a parallel dis-

placement at timet taken for the trajectories in the suben-
sembleS: it is a Gaussian function defined in Appendix B,
Eqg. (B9), and the reduced parallel running diffusion coeffi-

cient is[see, Eq(A5)]

W(t
D(t)=§%=l—exq—t). (30

The next step in the decorrelation trajectory method con-

sists of finding adeterministictrajectoryX>(t) in each sub-
ensembleS as the solution of the equation

dXS(t)
dt MVIXX(t)

(31)

with X5(0)=0. Using Egs.(26) and(27) one can show that

ten as
dX3(t) IHS(XS,YS 1)
a M s ’
A XS=XS(t)
dys(t) IHS(XS,YS 1)
“adt M - s ) (32
X XS=XS(t)
with the Hamiltonian
HS(XS,t)=f dz®S(XS,z,H)M(z,t). (33

This Hamiltonian represents the average potential in the sub-
ensembleS. Its explicit expression is calculated for correla-

a given subensemble by taking theaxis alongb®. One
obtains

H3(X5,YS,)=b7n°(p+n, () Y)n, (1)

xexp{ - %m(t)[(XS)ZHYS)Z]] fi(0),

(34)

where

fj(t)=n"R—xyn) () D[ 1-R(1)]}

1 _
Xexr{— E(ﬂo)zn(t)XnDz(t)} (39

N (O=[1+x, Y)Y  no=[1+s¥1)] ™
(36)

The parameters of the subensemBeare in Eq.(34), b
=|b%, p=¢%b, and °. The equations for the decorrela-
tion trajectory(32) obtained from the Hamiltonia(B4) are

xS

dt_Mb” FH1=-pYS—n,(Y9?]
xexp(—%mux%%(vs)ﬂ), (37)

dd—YtS=Mbn°nifo<p+mYS>
xexp(—%nl[<x5>2+<v~°'>2]. (38)

The main assumption of the decorrelation trajectory
method is the following(see, Ref[20]): the average La-
grangian velocity is approximated by the average Eulerian
velocity along the deterministic decorrelation trajectory

(VIX(1),2(1) 1) s=VIX(), 1], (39

S . .
this is a Hamiltonian system of equations which can be writWhereX=>(t) is the solution of Eqs(37) and (38).

We finally obtain using Eq923), (24), and (39) the au-
tocorrelation of the perpendicular Lagrangian velocity
vx(t),z(t),t]=b[x(t),z(t),t]»|(t) for arbitrary values of
the four dimensionless parametdi?)—(14) and for given
Eulerian correlations of the three stochastic processes that
combine in equations of motiof8) and (4):

_ 1 »
L(t;My)(HaXLvTc):(V}\L)ZMZE JO dp

o b2
xf dbb3ex;{——(p2+1)
0 2

[ o -

— | VI(X3(1),1).

(40)
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The total perpendicular running diffusion coefficient is theticular conditions also allows the understanding of the scal-
sum of two terms: a direct contribution of the collisional ing laws of the diffusion coefficient determined by the
velocity #, obtained from Eq(A4), and the contribution of presence of a decorrelation mechanism.

the velocity(15), First we study in this section the quasilinear case corre-
o o sponding to small magnetic Kubo numbeks,,= BN /\
D(t;M, x|, x1 ,rc):XLD(t)nL(v)\f)Dim(t;M,XH X1 Te)- <1, where the magnetic lines are not trapped. In the limit

(41 A, —, an exact analytical solution has been determined in
) ) ) ) . Ref.[16]. It was shown that particle perpendicular transport
The latter is the time integral of the Lagrangian correlation,s s,,pdiffusive with the running diffusion coefficient going
(40) and can be written as asymptotically to zero as Y2 This particular case is used
- — — here as a test for our general resute)—(43). We show that
Dint(EM. x| XL 5 7e) the exact solution is found in this limit. Then the nonlinear
M (= o b2 problem corresponding to finite, and large magnetic Kubo
= 2—[ dpJ db b3ex;{— ?(p2+ 1) number is studied. We show that the existence of magnetic
mJo 0 line trapping does not change the asymptotic behavior of the
- 72 diffusion coefficient: a similar subdiffusive regime is ob-
xf dnonoexr( - 7) XS(t), (42)  tained from Eq.(42) with D(t)~t~ Y2 This nonlinear pro-
- cess has a strong effect but it is localized in time: it deter-
[0
WheeX'() s he componentlon i o e soaton 105 3 ETLIEC109so D). T vt et
of Eq. (32). It depends on the parametdvls x;, x, , and7.  subsequent sections, to complex anomalous regimes when
as well as on the shape of the Eulerian correlations. This

contribution(42) results from the nonlinear interaction of the X1#0 orwhenr is finite.

/ In the limit A, —o the Lagrangian nonlinearity deter-
thr_ee StOCh"’.‘St'C Processes. '_F_hese resuits and (41) A€ mined by thex dependence of the stochastic magnetic field
written as dimensional quantities. The asymptotic diffusion

coefficient is disappears and the problem simplifies considerably. The
equations for the decorrelation trajectori@8) reduce to

D(M,x.x1 +70)=(?A2)[ X1+ Dine( M, x| x1 7o), axS(t) dvS(t)
(43 dt :_bﬂof”(t), at =

0, (44)

where Din(M,xy.x..7c) is the limit for t—o of . . "
ﬂt(— XlXL 7o) - where the dimensional quantities were used. Thus the aver-

Dind(tEM. Xy x1 7). age Lagrangian velocity i§ involved in the Lagrangian ve-
A computer code that calculates the running diffusion CO'Io%:ity c%rrel%tion(40) isyvf(t)= —bﬂofu(t)- Tkg1e ingtegrals

efficient starting from analytical expressiqd2) has been 0 . .
developed. It determines the decorrelation trajecto(@s g\t;tea:i%st.), andy" can easily be performed in E(10), and one

for a large enough number of subensembles and performs the

integrals in Eq(42). The code was tested and the parameters

in the numerical calculation were established using the ana- | .05, 0s0)=V2
. . . . O(tl lX”l ,OO)

lytical results concerning the subdiffusive transport. Namely,

as shown in the following section, the asymptotic expression _

for the decorrelation trajectories and for the diffusion coeffi- - x| D*(H[1-R(1)T}, (45

cient can be determined for an arbitravy and;”, in the

case Wher<a7l =0 and?cz o, This provides a very good test
for the code and permits the optimization of the choice of the

ST

which after algebraic transformations becomes

parameters. Lo(t;0,x,00) = V2 ——— _ XHEZ(") .

The analysis of the collisional particle transport in sto- AL []_-{—X”\II(t)]l/z 1+ x P (1)
chastic magnetic fields obtained by means of the decorrela- (46)
tion trajectory method resuligl0)—(43) is the subject of the
subsequent three sections. This is precisely identical with the exact analytical solution

determined in Refl16] by means of a different method. The
IV. SUBDIFEUSIVE TRANSPORT perpendicular running diffusion coefficient can be obtained
by time integration of Eq(46) as

We consider in this section a static stochastic magnetic
field (r.— ) and the zero Larmor radius limit correspond- . D(t)
ing to negligible cross-field collisional diffusiol, =0. Itis Do(t;O,X”,O,oo)=(V2/v) ———. (47)
interesting to study separately this particular case, because it [1+x V(1]

leads to a subdiffusive transport determined, as shown below, ) ) ) .
by two kinds of trapping processes. Moreover, the time deThis exact solution obtained fax, — is also valid for
pendence of the diffusion coefficient obtained for these parfinite A, as long agVl = Km;||1’2<1. Actually this is the con-
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-4

10

FIG. 1. The Lagrangian velocity correlation for the subdiffusive
transport f, =0, 7,=%). Lo(t) corresponds td1 <1 and is given
by Eq.(46) andL(t) is the nonlinear result obtained in the presence
of magnetic line trapping at larg&,, (M =10, §”=o.1). The

PHYSICAL REVIEW E 67, 026406 (2003

that the Lagrangian correlation has a long negative tail at
larget; its contribution exactly compensates the positive part
appearing at small time such that its time integral is zero.
More precisely,D,~t~ 2 for long time. The zero of the
Lagrangian correlatiofand the maximum ob,) occurs at a
time 7, called the average return time; it is a decreasing

function of y; scaling approximately ag; “*. It is remark-
able to note that in the limiting case of the absence of colli-
sions (#=0), Eq. (47) yields a finite diffusion coefficient
[16]. In this case;(”v:V$/2 (whereVr is the thermal veloc-

ity) and a small time expansion in E@7) leads to the result

of Jokipii and Parkef3], D;p=8?\V+/\2. This is also
well known as the Rechester and Rosenbluth collisionless
diffusion coefficient[1], in the form Drg=D V1, Where

D, is the diffusion coefficient of the magnetic linesee also
Refs.[10,12)).

Thus, the collisions determine a very strong change of the
perpendicular transport, which is diffusive in the absence of
collisions and becomes subdiffusive due to the parallel col-
lisional motion. A physical interpretation of this subdiffusive
behavior is presented in RéfL5] in terms of aparallel tra-

dashed parts of the two curves represent negative values of thjectory trapping processdetermined by collisions which

Lagrangian correlations. The normalization constant \i

=\, vM)2

dition for neglecting the perpendicular displacements and th

force the particles to return along the magnetic lines in the
correlated zone, i.e., in the range »f around the origin.

Consequently, the Lagrangian velocities remain correlated.
&ince the parallel velocity changes its direction due to colli-

x dependence of the magnetic field fluctuations. Consesions, this long-time correlation is negative and thus deter-

quently, Eqs(46) and(47) have physical relevance for toka-
mak plasmas, althougk, is of the order of 1 cm, and it is
smaller tharm\ | by at least a factor of 10 Due to the small
values of 8 which are usually of the order of 10 the pa-
rameterM can be small.

The _absolute value  of Lo(t;M,;H,O,OO) and
Do(t;M, x|,0%) are plotted in Figs. 1 and 2. One can see

10*

10°

t

FIG. 2. The running diffusion coefficient corresponding to the
Lagrangian velocity correlations in Fig. Dy(t) is the integral of
Lo(t) and is given by Eq(47) andD(t) is the integral ofL(t) and

mines the decay of the running diffusion coeffici@&y(t).

We consider now the nonlinear case that corresponds to
stochastic magnetic fields with finite, and large magnetic
Kubo numberK > 1. A process oimagnetic line trapping
appears: the magnetic lines are constrained to turn around the
small size contour surfaces of the potentdk,z) which are
elongated along the axis, making many turns before they
can escape and possibly perform a long jump. The evolution
along thez axis of the magnetic lines is a stochastic sequence
of trapping eventshelicoidal segments of the magnetic line
and long perpendicular jumps. This process is identical with
the trapping of the trajectories determined by BB drift
in a two-dimensional stochastic potential: the evolution of
the magnetic lines along theaxis is described by the same
equations as the time evolution of these trajectories. The pro-
cess of trajectory trapping has been studied by means of the
decorrelation trajectory method in R¢.9], and the results
obtained there can be applied to the stochastic magnetic
lines.

The trapping of the magnetic lines has a strong influence
on particle trajectories which follow the magnetic lines and
evolve on helicoidal paths. We show that solutif8—(42)
describe this trapping process: in the zero Larmor radius ap-
proximation (v, =0) it leads to subdiffusive particle trans-

port, provided thab is static (.=). In this casen, (t)
=1 and the Hamiltoniat34) depends on time only through
the factor off|(t). It can be written as

H(X3, Y5, =f,(X5,Y5) (1), (48)

shows the effect of the magnetic line trapping. The normalizatiorand consequently one can make a change of variable from

constant is X2 v)M.

to 7(t) defined by
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T trapping of the magnetic lines. This process is represented by
at fi(t), (49 the decorrelation trajectories corresponding to subensembles
with large values of the parameter= ¢°b which have per-
and the equations for the decorrelation trajectories becomeformed many rotations around their path$ small siz¢ and
their contribution cancels by mixing in the integrals in Eq.
dxs af (XSYS)  dYS af | (XS,YS) (41). Later in the evolution, another change of sign of the
—_ M- — =M ——=. Lagrangian correlation is observedtat 7, , the average re-
turn time for the parallel motion. At this momermd(t) has a
(50 minimum while Dy(t) has a maximum. It is determined by
the parallel motion and more exactly by the collisions which
force the particles to reverse their direction along the mag-
Shetic lines. This is reflected in the decorrelation trajectories,
which all evolve back on their paths in the perpendicular
plane att>r,. In the absence of magnetic line trapping
(quasilinear conditionghis leads to the decay of the running
diffusion coefficient, because the perpendicular displacement

dr ENS odr IXS

The function7(t) has a maximum and then decays to zero.
The solution of the time-independent Hamiltonian equation
(50) is a periodic function ofr with XS(7) lying on the
closed path determined Hy (X5, YS)=f,(0,0). The size of
the path depends only gm it is infinite (straight ling at p
=0 and decays to zero g@sincreases. The period is propor-

tional to (M bsﬂo)_l- The degorrglation trajectories are thus yo reases in time and thg(t) decays at> 7, . The effect
obtained a™(r(t)) whereX™(r) is the solution of EQ(S0). 5 inverse in the presence of magnetic line trapping. The

This shows that the trajectories wind around the closed pathg, cyyard motion produces first the unmixing of the contri-
(for an incomplete turn or for many turns, dependinghdn

; bution of the trajectories that evolve on trapped magnetic
and on the parameteps b, and7°); at the time correspond- ] PP g

¢ ' lines. As time increases, the contributions of smaller and
ing to the maximum of(t) they are all reflected and go back gmgjier decorrelation paths are recovered in the Lagrangian
along the same path. Since(t)—0 when t—ow, the

: ! - " . velocity correlation. The effect of magnetic line trapping that
asymptotic value of the decorrelation trajectories ISproduced the decay @ (t) in the interval ¢, , 7,) is washed

X3(7(t))—X(0)=0. All decorrelation trajectories eventu- o+ by the backward motion ar(t) recovers its value at
ally stop at the origin. This behavior of the decorrelatlontNTﬂ_ At this momentr,, the correlation build-up time

paths reflects the sticking of the particle trajectories on th‘b(t) has a maximum. A positive bump appears in the La-

trapped magnetic lines and the Sstat|st|cal characteristics Qfrangian velocity correlation due to the trajectories unwind-
the collisional parallel motion. AX™(7(t)) —0, the equation 4 araund the decorrelation paths. Finally, all decorrelation
for diffusion coefficient42) givesD(t)—0. Using Eqs(49)  yrajectories are “in phase” and approach the origin. This cor-
and (35), the function7(t) is shown to ber(t)=(2xt) 2  responds to the asymptotic regime in the evolution of the
at larget and with the solution of Eq(50) at X°<1 one diffusion coefficientD(t) which is the same wittD(t).
obtainsX(t)sMbnO(Z;Ht)_”Z. Upon substitution into Eq. Thus, the parallel collisional motion eliminates asymptoti-
(41) the running diffusion coefficient is obtained asymptoti- cally the nonlinearity determined by tixedependence of the

cally as magnetic field fluctuations.
B - The above evolution of the diffusion appears whenever
D(t;M, x|,000) = (vAT)MZ(2xt) "2 (6)  7y<r, and sincery=M ! andr,~y; "%, the condition is

Kn>1 which corresponds to the magnetic line trapping.
This subdiffusive behavior is identical with the asymptotic When ;> r, (or K,;<1), the running diffusion coefficient
behavior obtained from quasilinear solutié#i7). Thus, the s given by Eq.(47).
magnetic line trapping that appears #p>1 does not af- We show in the subsequent sections that this rather non-
fect either the asymptotic time dependence of the runningrivial evolution of the running diffusion coefficient leads to

diffusion coefficient or its dependence on the parameters. anomalous diffusion regimes when a decorrelation mecha-
There is, however, a significant effect of the nonlinearnism is present.

process of magnetic line trapping, but it appears to be local-

ized in time. It can be found by determining the whole time

evolution of the running diffusion coefficiert##2) using the V. DIFFUSIVE TRANSPORT INDUCED
computer code we have developed. BY COLLISIONAL DECORRELATION
o 2 e pesrle i) s 18302 TSI 10, gy i s secton e et of e cross e
at small and large times the diffusion coefficient has thecollisional diffusion (¢, #0) starting from general solution
same expression &(t) in Eq. (47). For intermediate times  (40)—(42). The stochastic collisional velocity, (t) in Eq.

a transient decrease Bi(t) appears. This is determined by (3) moves the particles away from the magnetic lines, and
the magnetic line trapping that is effective at times largeicOnsequently it has a decorrelation effect leading to diffusive
than the flight time over the perpendicular correlation lengtHransport. This collisional motion determines a characteristic
X, , which (in the unit considered herés ;= 1/M. As seen  time, the perpendicular decorrelation time. It is defined

in Figs. 1 and 2, the running diffusion coefficient has a maxi-2Y the condition that the collisional diffusion covers the per-
mum atr;, and the Lagrangian velocity correlation becomesPendicular correlation length,x2 7, =A1, and in the units
negative. Then the diffusion coefficient decreases due to thehosen here itis, =(2y,) ~*. The stochastic magnetic field
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is considered here to be statie,E ) for a better under-
standing of the collisional decorrelation.

As in the preceding section, a stochastic magnetic field
with small Kubo numbeK,, that does not generate the mag- o
netic line trapping is first considered. We show analytically
that the already known results are reproduced by the decor
relation trajectory method. Then the nonlinear case is ana
lyzed and new anomalous diffusion regimes are found. They
are determined by the nonlinear interaction of the magnetic
line trapping with the cross-field collisional diffusion. 10° |

In 1979 Kadomtsev and Pogutk®] derived semiqualita-
tively an approximation for the cross-field diffusion coeffi- .
cient. This approximation is essentially a weak-nonlinearity R
regime, in which the magnetic field fluctuations are noncha- 3
otic. It will be shown that this diffusion coefficient is ob-
tained from general equationg0)—(42), provided thatr, 10"
<7, <74 . This condition is compatible with the relations 1
found in Ref.[10] where a detailed study of the diffusion S o _
regimes in stochastic magnetic fields for fusion plasmas is_ FIG. 3. The asymptotic diffusion coefficient as a function of
presented us|ng the Corrsin approx|mat|on In this case th&. - The total diffusion coefficiend (antinuous |ine)SiS Compal’ed
XS dependence of the average velocity in E@F) and(38) with the direct collisional contributioly, (dotted ling and with the
can be neglected and the equations for the decorrelation trénteraction termD;, (dashed lingsfor two values ofy;. The nor-
jectories arg(44) corrected by a factor of’(t) that multi-  malization constant i&2? », M =10, andr,=c.
plies the right hand side terms. This leads to the following
form of the Lagrangian velocity correlation,

However, trajectory winding can still be observed for some
LKp(t)=nf(t) Lo(b), (52) range of the parameters that define Fhe sube.nsem'bles.. This
means that the process of magnetic line trapping still exists.
whereL y(t) is the subdiffusive Lagrangian velocity autocor- Compared to the decorrelation trajectories obtained with
relation defined in Eq(46). Because of the factor off_(t), x. =0, there now exist trajectories of several kinds. Some of
the integral ofLp(t) no longer vanishes, and yields a finite them are still almost closed, performing a number of rota-
diffusion coefficient,Dxp. It can be estimated analytically tions and changing their sense of rotationtatr, . Some

by using a step approximation of the function(t), other trajectories stop before reaching Most important,
there exist open trajectories which actually have the most
1 t<7, important contribution to the diffusion coefficient. This
n, ()= 0 t>r,. (53 shows that both the perpendicular and the parallel trapping

still exist. But due to the cross-field collisional diffusion,
It then follows that the diffusion coefficient is approximated these two trapping processes appear only for a part of the
as decorrelation trajectories and are approximate or temporary.
The perpendicular diffusiory, produces a releasing effect
il °° both for perpendicular and parallel components of particle
Dyp= fo dtlo(t)=— L dtlo(1), (54 motion. The asymptotic values of the decorrelation trajecto-
* ries are not concentrated in the origias for y, =0), but

because the integral dfy(t) from t=0 to infinity is zero. ~SPread in theX,Y) plane. Consequently, a finite value of the
Using the very simple asymptotic form afy(t) [obtained —@symptotic diffusion coefficient is obtained from Hgl).
from Eq.(46) for > r,], the integral can be calculated ana- _ The asymptotic diffusion coefficient is determined from

lytically and one obtainggoing to dimensional quantities ~ Eds-(41)—(43) using the numerical code we have developed.
Some results are presented in Fig. 3, where the asymptotic

)Y diffusion coefficient Eq(43) is represented as a function of
DKPEBZ_”\/W (595 = X,
A, XL X, - The two componentB;,; and y, are alsoiepresented.
One can see that at small collisional diffusign<<1, the
which is the well-known Kadomtsev-Pogutse formulanonlinear interaction term largely dominates the collisional
[2,10,13. This result is thus reproduced by E¢0)—(43). %erm while at large collisional diffusiog, =1, the nonlinear

We consider now the nonlinear case. When the time ot ) | tion t Thus. th bdiffusive t
flight 7, is smaller than the decorrelation time, the space '©/M IS Only a correction ty, . Thus, the subdiftusive trans-

dependence of the magnetic field fluctuations cannot be ndort appearing a, =0 is transformed by a small collisional
glected. It leads to magnetic line trapping. In the presence ofross-field diffusion into a diffusive transport with a diffu-
a perpendicular collisional diffusivity the decorrelation tra- Sion coefficient that can be several orders of magnitude
jectories obtained from E@38) are no longer closed curves. larger thany, . The dependence of the diffusion coefficient
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-1

on z is rather nontrivial. There is at very sm&)Tt, an 10
increase ofD up to a maximum which corresponds to

=r1,. Then, at largery, , the nonlinear interaction of the

parallel and perpendicular trapping with the collisional deco-
rrelation generates an unusual transport regime, in which the
effective diffusion coefficient decreases as the collisional dif-

fusion y, increases. A minimum ob is obtained whery,
determines a decorrelation time of the order of the return,q2

time of the parallel motiony, =7, . At Iarger;l (when 7,
<,), the nonlinear contributio®,,,;, increases again with

the increase of, but this contribution begins to be compa-
rable and eventually negligible compared to the collisional

diffusion coefficienty, .

We note that the above results obtained with the decorre-
lation trajectory method are not similar with the heuristic 10 , , , ,
estimation of the asymptotic diffusion coefficient of Reches- 107 10° T 10° 10

ter and Rosenbluthl]. This is possibly due to the fact that ¢

the trapping of the magnetic lines, which is implied in the £G4 The asymptotic diffusion coefficient as a functionpf
tahbove resglt?’ .IIS dnegllec'[le?. in the eStlTac;ﬁﬂ.]h aFrE]gﬂils'l(')hm for ;H=0.1 (circles and;”=1 (starg. The continuous lines repre-
I e more_ e.al e. (E)a Cu; |onshpresen e "} : ? ¥ sent the running diffusion coefficient as a function tofor the
atter estimation Is asg on the process o expongnt!a Ins'ubdiffusive transport corresponding to static magnetic fields (
crease of the average distance between two magnetic lines n h lizati tant 5 )M2, M=10, y, =0

a chaotic magnetic field, represented by the Kolmogorov ). The normalization constant ia{»)M*, M =10, x, =0.
length. An estimation of this length taking into account the
trapping of the magnetic lines should be necessary in ordé?

to compare the results.

4

symptotic diffusion coefficient can be evaluated as

lim D(t;M,x,0,70)=D(7¢;M,x,0%),  (56)

VI. DIFFUSIVE TRANSPORT IN TIME-DEPENDENT

STOCHASTIC MAGNETIC FIELDS using the running diffusion coefficient obtained in the static

case. Hence, it can be approximated by the value of the run-
In a time-dependent stochastic magnetic field with finitening diffusion coefficient for the subdiffusive case tt

7. the configuration of the stochastic fidddx,z,t) changes, =r.. Some results are presented in Fig. 4 where the
the magnetic lines move and consequently the perpendiculasymp_totic diffusion coefficient obtained from E@?2) for
velocity of the particles is decorrelated leading to diffusivefinite 7, is compared to the subdiffusive running diffusion

transport. We determine here the diffusion coefficient in suchgefficient represented in Fig. 2. One can see that approxi-
time-dependent fields in the limit of zero Larmor radius mation (56) is rather good for all values Cch

(x.=0), starting from general solutio0) and (41). The The following diffusion regimes can be observed in Fig.
effect of time variation of the stochastic magnetic field on thes, in the nonlinear conditions when the trapping of the mag-
effective diffusion was previously studied in Ref21-25,  netic lines is effective £, <r,, or K,,>1). The quasilinear
but only for weak magnetic turbulenc& (<1). We deter- regime at small correlation time§&< 7) with DOMMZZ

mine the effect of magnetic line trapping appearing in St055 characterized by a fast time variation which prevents the

chastic magnetic fields &> 1. . . At | lati . Sy
The decorrelation trajectories obtained from E&S) and trajectory trappmg._ t larger correlation timesri(< 7. .
<1,) the magnetic lines can be trapped before the stochastic

(38)h are in thii Cafsdﬁﬂ“e Te Xi.:?) located on closed ., etic field changes and the parallel motion is ballistic. In
paths(except that fop=0). A typical trajectory rotates on <o conditions the diffusion regime is similar to that de-

the corresponding path, then it stops and turns back. Its Vesyineq in Ref[20] for the electrostatic turbulence: the dif-
locity decays progressively and eventually the trajectory, . Hicient d ith the | = of A mini
stops somewhere on its path. This is the modification detefuSion coefficient decreases with the increaseof A mini-

mined by the time variation of the magnetic field: all decor-mum of the diffusion coefficient appearsze= . , followed
relation trajectories stop at a time of the order7_gf As by an anomalous increase determined by the interaction of
follows from Eq.(42), the running diffusion coefficient satu- the parallel trapping with the magnetic line trapping which

rates. Depending on the relation between the decorrelatioBenerates correlation of the Lagrangian velocities. At very

time?C and the three characteristic times of this motiof large correlation time25_71Q> 7p) the diffusion coefficient de-
. . . . U K2 —UZ 12
7., T (see Fig. 2 several diffusion regimes are obtained. In creases ab~ K7, ““x|™.

time-dependent magnetic fields,tat 7., the running diffu- We note that the regimes obtained %< 77 and for?C
sion coefficient is approximately the same as that obtained>7, are similar to those reported in Ref®1,22,4. But

for 7,—o, and later, att>r,, D(t) saturates. Thus, the instead of the plateau found there at intermediate we
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obtain here a smaller diffusion coefficient with a more com-tition between the trapping and the decorrelation processes,
plicated behavior. This is the effect of stochastic magneti@and more precisely from the temporal ordering of the char-
line trapping: it leads to the decrease of the effective diffu-acteristic times of these processes. Each one of the two deco-
sion coefficient with the increase of. when the parallel Irelation mechanisms leads to the already known diffusion

motion is ballistic and, on the contrary, to the increas@®of laws when the magnetic line trapping is not presei, (

with the increase of, when the parallel motion is diffusive. <1). The trap.ping of thg magﬂe“" ”r?é"“ Km>1) pro-

A minimum of the diffusion coefficient appears at the reso_duces a complicated nonlinear interaction between the three
L= - . . stochastic processes which determines new scaling laws of

nance conditionr.=7,. As seen in Fig. 4, this nonlinear

effect can significantly reduce the diffusion the d!ffusion coefficient. They appear when the decorrelation
' time is longer than the flight timey,, but smaller than the
correlation build-up timer, . The first condition ensures the
magnetic line trapping and the second prevents the elimina-
tion of this trapping effect by the parallel collisional motion.
We have studied here the transport of collisional particlesA particularly interesting regime is obtained for collisional
in stochastic magnetic fields using the decorrelation trajeceecorrelation and consists of an effective diffusion coeffi-
tory method. We have derived analytical expressions for theient that decreases when the collisional perpendicular diffu-
running diffusion coefficient and for the Lagrangian velocity sion increasesrFig. 3).
correlation in terms of a set of deterministic trajectories. This rather complex dependence of the diffusion coeffi-
They are defined in subensembles of the realizations of theients on the plasma parameters can be used in experiments
stochastic field as a solution of differentidtHamiltonia  for controlling the transport. Even without changing the
equations that depend on the given shape of the Euleriagharacteristics of the stochastic magnetic field, the cross-field
correlation of the stochastic potential. They are approximadiffusion coefficient can be strongly influenced by the pa-
tions of the subensemble average trajectories, and represenmeters that describe particle collisions. A minimum of the
the dynamics of the decorrelation of the Lagrangian velocitydiffusion coefficient was obtained for decorrelation times of
Since, in general, the equations for the decorrelation trajedhe order of the average return time for the parallel motion.
tories cannot be solved analytically, a computer code was Several directions of research can be envisaged for the
developed for this purpose and for determining the runningurther development of the present work. One consists in
diffusion coefficient for arbitrary values of the four param- studying the effect of trajectory fluctuations in the suben-
eters of this problem and for given Eulerian correlation ofsemble. Another important extension should be the estima-
the potential. tion of the particle density distribution as was already done
We have shown that this rather complicated triple stochasfor simpler case§14,2€. We also expect interesting effects
tic process is characterized by two kinds of trajectory trap{from the periodic configuration of the magnetic field which
pings and contains two decorrelation mechanisms. The lattetetermines magnetic islands and resonant surfaces.

are produced by the collisional cross-field diﬁusi&l
and/or by the time variation of the stochastic magnetic field. ACKNOWLEDGMENT

One of the trapping processes concerns the parallel mo- . .
tion and is determined by collisions which constrain the par NQTfooer;ﬁ%? s,Guran;r!c\lfoc;rF')[rSa-\r/.gI;G.?rzzsgir:ma:kor}otvx:;
ticles to return in the already visited places with probability 9 P PP 9

: ) e > collaboration.

one. This parallel trapping leads to a subdiffusive transport in
the absence of a decorrelation mechanism. This already

known process is recovered by our method. The second kind APPENDIX A
of trapping concerns the magnetic lines that wind around the The average of the potential autocorrelation over the per-

extrema of the potential a,>1. The effects of the mag- pendicular collisional velocity, Eq(18), can be calculated

netic line trapping on the collisional particle transport is ysing the two-point Gaussian probability density,
studied. We show that in the absence of a decorrelation

VII. CONCLUSIONS

mechanism, the magnetic line trapping determines a transient

decay of the running diffusion coefficieB(t) appearing at E:f f dé1dEAIX —XoF+ &1 &2, 217 2,11~ 1o

tin the interval @, ,7,), i.e., before the parallel trapping is

effective. The simultaneous action of both trapping processes XPa(€1,11:6,12), (A1)

determine a nonlinear build-up of Lagrangian velocity corre- . . o : :
lation, and eventually the parallel motion washes out the efvherePy(£;,11:£5,t;) is the probability density for having

fect of the magnetic line trapping. Consequently, thed(t1) = & andg{(t;) = £. Itis determined as the average over
asymptotic behavior of the running diffusion coefficient is perpendicular collisions of the corresponding productsof

exactly the same as in the quasilinear conditions when thgmctlons:
fr'g)ggiiztlc magnetic field does not generate any magnetic line  p_(g t.: £, t,)=(8(&(ty) — &) (&t — £)), .

The effect of the two decorrelation mechanisms is studied’his probability can be calculated using the Fourier repre-
afterwards. We show that the effective diffusion coefficientsentation of thes functions and the cumulant expansion of
and its dependence on the parameters result from a compthe resulting exponential. Since the collisional displacements
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are Gaussian, only the first two cumulants appear. One ob- t)— &1)12) .= (£2 =y v Ad
tains the two-point probability density for the perpendicular ([8(t2) = ft) )e=(EX(m)e=x, W (7), A4

collisional displacements as where r=|t,—t;| and¥'(7), the reduced mean square per-

qX(£2(11))e pendicular collisional displacement, is

Pzzf J'dQ1dQ2eXF{iQ1'§1+iQ2'§2_T

£(t2))c
e g, g q2-§<tz>>c) (R2)

\P(r)=2fo(T—t)R(t)dt=2[r+exp(—T)—l]. (AB)
which, introduced in Eq(A1), using the dependence of the APPENDIX B

EC on the differencé&= &, — &, and performing the integrals
overq;, g,, and g, yields Eq.(19 of the main text. The
one-point probability density for the perpendicular colli-
sional displacementB, (£,7) is

In order to calculate the average of the Eulerian velocity
in the subensemblg, Eq. (25), we first note that the stochas-
tic parallel displacemer(t) is obtained from Eq(1l) as

2 t
P (§1)= ¢ ) (A3) Z(t)=ﬁ’2fodmu(r). (B1)

1 exp( — .
27(&%(7))¢ 2(EX(7))e

The mean square displacement for the collisional perpen- Next, we note that théth component of the average ve-
dicular displacements is locity in Sis defined by the following conditional average:

s {bilxz(®), tlm(t) 8[b°—b(0,0,018[ #°— $(0,0,0016[ n°— 7 (O) 1))
' P(b° ¢°,7° '

(B2)

Introducing a functiond[ z—z(t)] and using the statistical The average in this equation can be calculated as the deriva-

independence db and 7, one can write tive with respect ta of the following average, evaluated in
a=0,
Vs_f q (bi(x,z,t) 8[b°~0(0,0,0)] & ¢°— #(0,0,0)]) (exdan(t) +ikz(t) +ig 7 (0)])
I P(b° ¢) p[ 2 K2 =
=expg — = — = (Z2(t))o— = +iak(ny(t)z(t)
() olz= 2] n°= 7)) ©3) 7~ F W g Ak 2O
P(7°) ' .
+|aqR(t)—kq<77H(0)z(t))“ , (B5)
The first average over the stochastic magnetic field repre; are
sents the subensemble averagb;¢k,z,t) in Sand is given
by Eq. (27) of the main text. The average potential in the t
subensembl&, ®5(x,z,t)=($(x,z,t))s, is calculated as in <7I|\(0)Z(t)>\|:;\\1/2JOdTR( )= Xx["*D(1), (B6)
Ref.[20] and is obtained in the form of E8) of the main
text. t
The second average in E@3) over the collisional par- (77||(t)z(t))”=;ul’zf drR(t—r)zﬁ’zD(t), (B7)
0

allel velocity can be written using the Fourier representation
of the § functions as

(A= ftfthldT2R(|Tl_T2|):;H\P(t)- (B8)
0Jo

For the correlatiorR in Eq. (9), the reduced parallel running
P(7°) diffusion coefficient is defined in Eq30), and the reduced
mean square parallel displacement¥gt) defined in Eq.

My=(7(t) [ z—z(t) 18] n°— 7, (0)1)

1 [ isi i -

- P( O)f J dkdgexp(—ikz—iq7°) ﬁ?:r)]t the same as for the perpendicular collisional displace
! Straightforward calculations lead from E@4) to the
X (q(t)exdikz(t)+igy(0)]1);. (B4)  parallel averageV, given in the main text in Eq(29), in
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which PS(z,t) is the probability of having a parallel dis- (z(1)) :7’0;1/2@(0 (B11)
placement at timet taken for the trajectories in the suben- s I '

sembleS. This was obtained as a Gaussian distribution withthe parallel dispersion of the trajectoriesSris

an average displaceme(®(t))s and a modified dispersion

_ 2 — _
s(t)=([z(t) —(z(1))s]*)s”, $2(1)=(Z2(1)) — x/DA(t) = x| (¥ (1) — DA(1)). (B12)
s .1 [z2—(z(1))s]? Thus the dispersion of the parallel component of the trajec-
P3(z,t)= ———exg —————|. (B9) Co ! ;
[2ms(t) 252(t) tories in a subensemble S is always smaller than the disper-
sion of the whole set of trajectorigg?(t)). It grows slowly
The parallel average displacement is the integral of the parast®) at smallt and att>1, it reaches the global dispersion
allel average velocity 1§, (Z%(t)). The parallel running diffusion coefficient in the sub-
_ .0 ensembleSis Df(t) =xD(H[1—-R(t)]. It behaves at small
(m()s= 7R B10  {ime ast? and att>1, it is equal to the global diffusion
and is obtained as coefficient of the whole set of trajectorieg,D(t).
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