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Two-dimensional solitons and vortices in normal and anomalous dispersive media

T. A. Davydova,* A. I. Yakimenko,† and Yu. A. Zaliznyak‡

Institute for Nuclear Research, Prospect Nauki 47, Kiev 03680, Ukraine
~Received 16 September 2002; published 5 February 2003!

We study solitons and vortices described by the (211)-dimensional fourth-order generalized nonlinear
Schrödinger equation with cubic-quintic nonlinearity. Necessary conditions for the existence of such structures
are investigated analytically using conservation laws and asymptotic behavior of localized solutions. We derive
the generalized virial relation, which describes the combined influence of linear and nonlinear effects on the
evolution of the wave packet envelope. By means of refined variational analysis, we predict the main features
of steady soliton solutions, which have been shown to be in good agreement with our numerical results. Soliton
and vortex stability is investigated by linear analysis and direct numerical simulations. We show that stable
bright solitons exist in nonlinear Kerr media both in anomalous and normal dispersive regimes, even if only the
fourth-order dispersive effect is taken into account. Vortices occur robust with respect to symmetry-breaking
azimuthal instability only in the presence of additional defocusing quintic nonlinearity in the strongly nonlinear
regime. We apply our results to the theoretical explanation of whistler self-induced waveguide propagation in
plasmas, and discuss possible applications to light beam propagation in cubic-quintic optical materials and to
solitons in two-dimensional molecular systems.
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I. INTRODUCTION

Various types of solitons and vortex solitons~vortices!
have been observed experimentally in different dispers
media: gravity waves in deep water@1#, electromagnetic
waves in plasmas@2–9#, ultrashort light waves in optica
waveguides~fibers! @10–12#, light beams in self-defocusing
@13,14# and self-focusing media@15,16#, spin waves in fer-
romagnetic films @17#. These structures may be of th
‘‘bright’’ form, localized in space or time~spatial or temporal
solitons!, or generally both in space and time. Also they m
be of the ‘‘dark’’ form, as dark holes embedded on a carr
wave background. Vortex solitons have a phase circula
around the axis of propagation, which is equal to 2pm. In-
tegerm is called a topological charge. Ordinary solitons ha
zero topological charge. Unlike ordinary solitons, vortic
have nonzero angular momentum and phase singularity
wave front.

Optical solitons are considered now as probable elem
for ultrahigh speed and effectively lossless communicat
systems in the near future@12#. Stable solitons are believe
to play an important role for the transport of energy or el
trons in different one-dimensional~1D! @18–20# and 2D mo-
lecular~in particular, biological! systems@16,21,22#. Despite
the diversity of physical systems, where solitons and vorti
have been observed, they reveal some universal feat
They generally appear above some threshold of wave in
sity if linear dispersive~diffraction! effects and nonlinea
effects balance each other. One-dimensional and t
dimensional structures frequently exhibit an instability
higher space dimensions. This instability may give rise
nonlinear structures of higher dimension space. One of
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most popular and universal models describing the nonlin
evolution of a wave envelope and, in particular, the possi
ity of stable coherent structure formation is the nonline
Schrödinger equation~NSE!. We will be interested further
only in 2D localized structures, based on the so-called
11)-dimensional NSE equation with some additional term
As is well known, the ordinary 2D NSE

i
]C

]t
1DD'C1BuCu2C50 ~1!

~where D' is a 2D Laplacian operator! describes spatial-
temporal dynamics of the wave packet envelope due t
competition of the lowest-order dispersive and nonline
self-interaction terms. It is also widely applied to a proble
of stationary~in time! propagation of bounded electroma
netic beams along some directionz in the so-called paraxia
approximation. In this case, the time variablet is replaced by
z in the basic dimensionless NSE~1!. In the following, we
will refer to the variablet as time for definiteness. It is als
well known ~see, for example, Ref.@16#! that in the case
DB.0, NSE ~1! has only an unstable soliton solution
which either disperses or collapses. And it has no soli
solutions at all ifDB,0. However, many experimental dat
where solitons have been observed, contradict the above
oretical conclusions based on Eq.~1! in both cases@3,8,16#.
The first case (DB.0) is usually@23# referred to as anoma
lous dispersive media~positive group velocity dispersion
]vg /]k.0) and the second one (DB,0) is referred to as
normal dispersive media~negative group velocity dispersion
]vg /]k,0).

The problem of steady-state self-focusing in nonlinear
tics @16,24# and plasma physics@25,26# in anomalous disper-
sive regime (DB.0) was usually considered taking into a
count some kind of saturable nonlinearity. A refractive ind
n(uCu2) can be approximated by
©2003 The American Physical Society02-1
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n~ uCu2!5n01n2uCu21n4uCu4, ~2!

where constantsn2 andn4 (n2n4,0) determine the nonlin-
ear response of the media with small wave beam inten
uCu2. The dependence~2! may be good enough for som
optical materials@27# even for intensities above the critica
value uCcru25un2 /(2n4)u when the derivative]n/]uCu2
changes its sign. For a problem of wave beam propaga
this corresponds to a change of the self-focusing regime
the self-defocusing one. A variety of bright soliton and vo
tex solutions has been found using cubic-quintic NSE w
anomalous dispersion, and much attention has been pa
the question of their stability@16#. Spatial solitons have bee
observed since 1965 in many optical media@16#. They cor-
respond to a stationary wave propagation in a self-indu
waveguide with the intensity profile unchanged along
direction of wave propagation. The 2D vortex was expe
mentally created by passing the laser beam through a
fracting planar phase mask@15#. The other important nonlin-
ear stabilizing effect to NSE solitons is given by defocus
nonlocal nonlinearities, which are essential for different el
tromagnetic waves in plasmas@28–30#, for solitons in mo-
lecular systems@18,20,21# and in many other application
@31#.

On the other hand, as was stressed by Karpman@32,33#,
effects of higher-order dispersion may also play a signific
role. The additional fourth-order dispersion term to NSE~1!
may be essential for electrostatic waves@29,30# and electro-
magnetic waves, when two wave polarizations are taken
account, in magnetized plasma@34#. It may be produced by a
nonlocal nonlinear dispersion@20# and in higher-order qua
sicontinuum models, which approximate discreteness in c
densed matter physics@16#. It was shown in Refs.@32,33#
that in the anomalous dispersive regime (DB.0) the fourth-
order dispersive term of the formPD2C leads to an exis-
tence of stable localized soliton solution ifPD,0. The pres-
ence of two light polarizations has been considered in R
@35# for nonlinear optical media using vectorlike cubi
quintic NSE, where stable solitons (m50) and vortices (m
51 and m52) have been discovered. Many other effe
may also lead to a collapse arresting and to an appearan
stable 2D solitons and vortices, which have been discus
in literature. However, higher-order linear and nonlinear
fects have mostly been studied separately for the 2D NS

To our knowledge, there is no theory to explain that e
perimental data have indicated stationary self-induced wa
guide propagation of electromagnetic waves@3,8# in the case
of normal dispersion (DB,0). In the presence of additiona
quintic nonlinearity, described by a term of the for
KuCu4C with DK,0, soliton solutions of Eq.~1! are un-
stable even in the 1D case. The conditions for the existe
of stable soliton solutions have been revealed for 1D N
with BD,0 in the presence of quintic nonlinearity plus th
fourth-order dispersion@36#. Though 1D and 2D systems ar
rather different, one can expect that stable localized st
tures may exist also in the 2D case withBD,0, when
higher-order dispersion is taken into account. We will sh
that the fourth-order dispersion can prevent a collapse
02640
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really gives rise to the stable 2D soliton~waveguide! forma-
tion and even to stable vortices in the presence of cu
quintic nonlinearity.

The key question is what corrections to NSE are m
essential. In a typical physical situation, when a wave be
self-contracts, its field intensity increases~due to energy con-
servation, if strong dissipative processes are absent!. For the
2D NSE with BD.0, both additional nonlinear and linea
effects can separately determine the stability of 2D solito
@24,37#, though they act together and could be of equal i
portance. For the 2D NSE withBD,0, we will determine
the appropriate model describing solitons and vortices in
paper.

Here, we consider conditions for the formation of coh
ent structures and their stability on the basis of the gene
ized NSE~GNSE! including second- and fourth-order dispe
sion effects and cubic-quintic nonlinearity:

i
]C

]t
1DD'C1PD'

2 C1BuCu2C1KuCu4C50. ~3!

We will study GNSE~3! both in anomalous (DB.0) and in
normal (DB,0) dispersive regimes. We are mostly inte
ested in the case whereBK,0 ~which corresponds to satu
rable cubic-quintic nonlinearity! andPK.0 ~when collapse
can be prevented!. The main purpose of this paper is to in
vestigate the influence of a combination of higher-order d
persion and saturation of nonlinearity on the features of
calized solitons and vortices as well as to reveal the role
each of these supplementary effects.

Our paper is organized as follows. In Sec. II we descr
our model, analyze some general dynamical properties
localized solutions, and reveal necessary conditions for s
ton existence. We obtain the virial relation for GNSE~3!,
which generalizes the well known relation@38# to the case
PÞ0, and show that in the casePK.0, wave collapse is
not expected. We investigate properties of solitons a
m-charged vortices (m51,2) in Secs. III and IV for different
dispersive regimes. For this purpose, we have used a v
tional approach, taking into account the changing of soli
spatial form with its energy~number of quanta!. Numerical
calculations have shown very good agreement with
variational approach. We have also analyzed analytically
numerically the stability of solitons and vortices with respe
to radial and azimuthal perturbations. The role of high
order dispersion and quintic nonlinearity on the stability
solitons and vortices, and their properties have been foun
be quite different in anomalous and in normal dispers
regimes. In Sec. V, we make conclusions and discuss s
applications of our results to plasma physics, nonlinear
tics, and molecular systems.

II. GENERAL PROPERTIES OF LOCALIZED
STRUCTURES IN THE FRAMEWORK OF GNSE

We consider here wave packet evolution and station
localized structures in the framework of GNSE~3!, which
takes into account the second- and fourth-order disper
effects ~terms proportional toD and P, respectively!. Two
2-2
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TWO-DIMENSIONAL SOLITONS AND VORTICES IN . . . PHYSICAL REVIEW E67, 026402 ~2003!
last terms, proportional toB andK, describe cubic and quin
tic nonlinearities. Our concern is only with the localized s
lutions C(x,y,t), for which the following integrals of mo-
tion are finite:

~i! Number of quanta~‘‘energy’’ or ‘‘beam power’’!

N5E uCu2d2r . ~4!

~ii ! x andy components of momentum:

IW52
i

2E ~C*“C2C“C* !d2r , ~5!

~iii ! z component of angular momentum:

MW 52
i

2E ~C* @r3“C#2C@r3“C* # !d2r , ~6!

~iv! Hamiltonian

H5DE u“Cu2d2r2PE uD'Cu2d2r

2
1

2
BE uCu4d2r2

1

3
KE uCu6d2r

[DI D2PIP2 1
2 BIB2 1

3 KI K . ~7!

We will consider localized stationary solutions in two diffe
ent cases.

~a! The so-called anomalous dispersive regime:

DB.0, PK.0, PB,0, D,0. ~8!

~b! The normal dispersive regime:

DB,0, PK.0, PB,0, D.0. ~9!

To make it definite, we putD,0 in case~a! andD.0 in
case~b!, meaning some physical applications~see the Ap-
pendix!. To avoid misunderstanding, we will refer to th
anomalous or normal dispersive regime by indicating
sign of the productDB in line with the usually accepted rul
@23#.

In accordance with Lyapunov’s theorem, for the bound
functionalH of field variablesC ~sufficiently for other inte-
grals of motion fixed:N, IW' , Mz) there exists a stable solito
solution that realizes its maximum or minimum~see, e.g.,
Refs.@37,39#!.

Using the inequalities

I D<~NIP!1/2 ~10!

and

I B<~NIK!1/2, ~11!

for integrals defined in Eq.~7!, it is easy to show that the
functionalH is bounded from above, at fixedN, in both cases
02640
-

e

d

under consideration. Indeed, one can find the following e
mate for the Hamiltonian~7! in the normal dispersive regim
~9!:

H<D~NIP!1/22PIP1
1

2
uBu~NIK!1/22

1

3
KI K

<
N

4 FD2

P
1

3

4

B2

K G . ~12!

For the anomalous dispersive regime~8! one obtains the
more strict estimate

H<
3NB2

16K
. ~13!

In Sec. II B we will show that the Hamiltonian is positive fo
any localized stationary solution of GNSE~3! in cases~8!
and~9!. Thus, in both dispersive regimes there exists at le
one stable soliton solution.

A. Virial relation

Some insight about a combined action of linear and n
linear effects on the evolution of a wave packet envelope
necessary conditions for an existence of localized station
solutions can be obtained using virial relation for the effe
tive square beam widthr eff

2 . The latter is defined by the
relation

r eff
2 5

1

NE r 2uCu2d2r , ~14!

where r 5Ax21y2. We have generalized the known viria
relation@see, e.g., Ref.@38# for GNSE~3! with P50] to the
more general Eq.~3! with PÞ0. This virial relation may be
written as

N

8

d2r eff
2

dt2
5E H D2u“Cu224DPuD'Cu214P2u“D'Cu2

2DuCu4S B

2
1

2K

3
uCu2D2rPF S u“Cu2

12U]C

]r U
2D ]

]r
~BuCu21KuCu4!

12K~¹uCu!2
]uCu4

]r G J d2r

5 f eff . ~15!

From Eq. ~15! one finds that~i! when P5K50 and BD
,0, GNSE~3! has no localized solutions at all, any wav
packet spreads out in the radial direction;~ii ! in the caseP
50, KÞ0 virial relation ~15! gives both in the casesBD
.0 andBD,0 that

N
d2r eff

2

dt2
58DS H2

1

3
KI KD ,
2-3
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and predicts the collapse of any wave packet havingDH
,0, DK.0; ~iii ! the sum of all linear terms, proportional t
D2, DP.0, andP2 in the virial relation, is defocusing be
cause

f eff>
@DI D2PIP#2

I D
.0. ~16!

This estimate follows from the integral inequality

I P,S I DE u“D'Cu2d2r D 1/2

. ~17!

If DP,0, it is trivial that f eff.0. Thus, any wave packet i
the linear approximation (B5K50) has a trend to asymp
totically ~at t→`) spread out. In the limiting caseP50 and
DÞ0, it was found in Ref.@23# that

d2r eff
4

dt2
>r eff

2
d2r eff

2

dt2
>16D2,

where the virial relation~15! and the ‘‘uncertainty principle’’

r eff
2 I D>N ~18!

were used. Hence

r eff
4 ~ t !>8D2t212tr eff

2 ~0!
dreff

2

dt
U

t50

1r eff
2 ~0!.

Thus, r eff
2 asymptotically diverges att→`, at least as

A8uDut, if r eff(0)u(dreff
2 /dt) t50u,A8uDu.

From inequalities

1

4

d2

dt2
~r eff

2 !4.~r eff
2 !3

d2r eff
2

dt2
.32P2, ~19!

we have similarly found that a wave packet described by
GNSE with PÞ0, D5B5K50 will asymptotically spread
out not slower than according to the lawr eff

2 ;2A4 8AuPut. To
obtain Eq.~19! we have used the relation

E u“D'Cu2d2r>I P
2 /I D>N/~r eff

2 !3,

which is derived by taking into account inequalities~10!,
~17!, and~18!.

If BP,0, PK.0 the virial relation includes focusing
~proportional toBP) as well as defocusing~proportional to
PK) nonlinear terms. Thus, it is natural to expect that s
tionary nonlinear structures can exist in the framework
GNSE ~3!, both in anomalous@Eq. ~8!# and in normal@Eq.
~9!# dispersive regimes.

From scaling arguments one can expect that any w
packet is unable to collapse ifPK.0. Actually, two terms,
namely, those proportional toP2 and to PK in expression
~15!, would grow faster, than any other terms could chan
02640
e

-
f

e

,

if a wave packet contracted. Such a repulsive ‘‘force’’f eff
.0 makes self-similar global collapse impossible.

As known@37#, in the presence of the fourth-order dispe
sion (PÞ0), the ‘‘centroid’’

^r &5
1

NE r uCu2d2r ~20!

generally moves nonuniformly because GNSE~3! is not Gal-
ilean invariant. We will consider only the case when the ce
troid, located atr 50, is immobile, so that the radial compo
nent of momentum~5! is equal to zero. This is a typica
situation for a problem of wave beam propagation.

B. Stationary solutions of GNSE

We consider now stationary localized structures, wh
may appear as the result of a balance of wave packet dis
sion spreading and nonlinear compression. We are look
for a steady-state solution of the form

C~r ,t !5Ĉ~r !eiLt, ~21!

whereL is the nonlinear frequency shift. The functionĈ(r )
obeys the partial differential equation

2LĈ1DD'Ĉ1PD'
2 Ĉ1BuĈu2Ĉ1KuĈu4Ĉ50.

~22!

As known, Eq.~22! may be obtained from the constraine
variational problem for the Hamiltonian:d(H1LN)50.
Thus, the steady-state solution of the form~21! is a station-
ary point of the HamiltonianH at a fixed number of quanta

One yields a useful integral relation for steady-state so
tions, multiplying Eq.~22! by Ĉ* and integrating over spac
coordinates:

LN5PIP2DI D1BIB1KI K , ~23!

where the integralsI D , I P , I B , andI K are defined in Eq.~7!.
Multiplying Eq. ~22! by r 2]Ĉ* /]r , integrating and adding
the complex conjugate, another integral identity is found:

LN52PIP1BIB/21KI K/3. ~24!

ExcludingL from Eqs.~23! and~24! one finds the following
expressions for the Hamiltonian, valid for stationary so
tions:

H5PIP1KI K/35DI D/22BIB/4. ~25!

One can see that the Hamiltonian is positive for any stati
ary solution of Eq.~22! in two regimes~8! and ~9!, because
P.0 andK.0. Taking into account estimates~12! and~13!
for Hamiltonian~7!, one concludes that in both regimes the
exists a stable stationary localized solution, which cor
sponds to the Hamiltonian’s global extremum.

Using Eqs.~23! and ~24! and excluding terms propor
tional to K, it is straightforward to find that the nonlinea
frequency shiftL is negative for a stationary solution in th
anomalous dispersive regime~8!. Furthermore, in the norma
2-4
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TWO-DIMENSIONAL SOLITONS AND VORTICES IN . . . PHYSICAL REVIEW E67, 026402 ~2003!
dispersive regime~9! with DP.0, the wave packet would
lose its energy, due to a resonant radiation of linear wa
@37,40# with dispersionv(k)5Dk22Pk4, if the nonlinear
frequency shift could be such thatL.2D2/4P. Thus, the
radiationless stationary wave packet should haveL,
2D2/(4P) in regime ~9!. Note that, owing to the negativ
value of L, stationary solutions are radiationless in t
anomalous dispersive regime~8! too.

To estimate how the nonlinear frequency shiftL is re-
stricted from below, we have used inequalities~10! and~11!.
Excluding terms proportional toP from integral equalities
~23!, ~24!, we obtain L.2 27

128B2/K in the regime ~8!.
And in the regime ~9! we obtain from Eq. ~23! that
L.2D2/4P2B2/4K.

Hence, the nonlinear frequency shiftL of a steady-state
radiationless localized solution~21! is bounded from below
and above for both dispersion regimes. One obtains in
anomalous dispersive regime,

2
27

128

B2

K
,L,0, ~26!

and in the normal dispersive regime,

2
D2

4P
2

B2

4K
,L,2

D2

4P
. ~27!

Further, we are looking for stationary solutions of the follo
ing form:

C~r ,t !5c~r !eimw1 iLt, ~28!

wherew is the azimuthal angle, integerm is the topological
charge. Solutions of the form~28!, with m50 are called
solitonlike ~or solitons! and solutions withmÞ0 are called
vortexlike ~or vortices!. A simple ‘‘quantization rule’’Mz
5mN is fulfilled for the angular momentum of such sol
tions.

The radial functionc(r ) satisfies the ordinary differentia
equation

2Lc1DD r
(m)c1P~D r

(m)!2c1Bucu2c1Kucu4c50,
~29!

where the operatorD r
(m) is given by

D r
(m)5

d2

dr2
1

1

r

d

dr
2

m2

r 2
.

The stationary equation~29! should be complemented b
boundary conditions atr 50 and at infinity. A solitonlike
solution is an even function ofr, therefore the first pair of
boundary conditions for a solution withm50 is

dc~r !

dr U
r 50

50,
d

dr
D r

(0)c~r !U
r 50

50. ~30!

A vortexlike solution has the following asymptotic behavi
at r→0: c(r );hmr umu, wherehm5const. Thus, the vortice
(mÞ0) satisfy the conditions
02640
s

e

c~0!50, D r
(m)c~r !ur 5050. ~31!

The second pair of boundary conditions for localized so
tions is

lim
r→`

c~r !50, lim
r→`

@D r
(m)c~r !#50. ~32!

We will now consider the asymptotic behavior of loca
ized solutions at infinity more carefully. The solutions
linearized~at r→`) Eq. ~29! have asymptotes of the form
hir

21/2eiki r , whereki are solutions of the following equation

2L2k2D1k4P50 ~33!

and are given by

k56A D

2P
$16A114LP/D2%. ~34!

A localized solution should have Imk.0. If DP,0 @regime
~8!# this condition is fulfilled for anyL,0. If DP.0 @re-
gime ~9!# the condition Imk.0 leads to a further restriction
on nonlinear frequency shift:L,2D2/4P. Thus, we have
found that in both regimes under consideration, the condit
of absence of radiation is fulfilled automatically for any l
calized solution. It is seen from Eq.~34! that RekÞ0 for L
,2D2/4P, and so in this case the radial functionc(r ) has
‘‘oscillating tails.’’ These tails are especially noticeable f
the solution of GNSE~29! at DP.0 whenL'2D2/4P. In
this case Imk occurs small compared to Rek, hence the func-
tion c(r ) slowly decreases at infinity (Imk→0 if L→
2D2/4P), while its spatial frequency of oscillations remain
finite (Rek→AD/2P).

In the special caseP50, we see from Eq.~33! that k2

52L/D and ImkÞ0 only if LD.0. But, for any station-
ary radiationless solution, the nonlinear frequency shiftL is
negative. Thus, there is no robust localized solution in
normal dispersive regime~9!, if higher-order dispersive ef-
fects are neglected.

The stationary GNSE~29! with boundary conditions
~30!– ~32! will be investigated further by the approxima
variational method and numerically both in the anomalo
~see Sec. III! and normal~see Sec. IV! dispersive regimes.

III. SOLUTIONS OF GNSE IN THE ANOMALOUS
DISPERSIVE REGIME

A. Variational approach

In order to gain a deeper insight into properties of statio
ary solutions of GNSE~3! we introduce a simple semiana
lytical variational analysis. Most investigations~see, e.g.,
Refs.@41,42#!, based on the direct variational approach, ha
used a trial function of the form

C~r ,t !5h~ t ! f „r /a~ t !…eib(t)W„r /a(t)…1 iF(t)1 imw,

where the amplitudeh, beam widtha, phase front curvature
parameter~or chirp parameter! b, phaseF, amplitude profile
f, and phase profileW are real functions. The dynamica
2-5
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DAVYDOVA, YAKIMENKO, AND ZALIZNYAK PHYSICAL REVIEW E 67, 026402 ~2003!
equations that describe the evolution in time of soliton
vortex parameters have been obtained after the Ritz opt
zation in Ref.@34# for GNSE~3!. The serious shortcoming o
this approach is that the radial profile of the trial function
fixed. Therefore, such analysis is unable to account for
wave packet shape modification with energy~number of
quantaN), which occurs to be essential for GNSE~3!.

We restrict our variational analysis to the lowest-ord
solitonlike solutions (m50) of the form C(r ,t)
5c0(r )eiLt with zero momentum and angular momentu
Such solutions are stationary points of the Hamiltonian
constant number of quanta. In our treatment we will tak
proper account of the possible changing of the radial pro
c0(r ) with the number of quantaN. Previously, the varia-
tional problem, involving the super-Gaussian ansatz, w
solved in Ref.@27# for GNSE~3! at P50 andDB.0, show-
ing very good agreement with numerical results. We are
terested here rather in an analytically tractable analy
which reveals physical reasons for soliton shape modifi
tion, than in a more precise description of a soliton profil

One of the simplest appropriate trial functions for a loc
ized solitonlike solution, satisfying boundary conditions~30!
and ~32!, is

c0~r !5$h11h2m2r 2%e2(1/2)m2r 2
5mA N

2p
f ~j!, ~35!

wherej5mr . As is seen from Eq.~34!, in the caseDP,0
and 2D2/(4P),L,0, the soliton has no oscillating tail
(Rek50). Furthermore, ifL,2D2/(4P), the soliton solu-
tion decreases atr→` rather rapidly, not slower than th
decay rate Imk>AuD/(2P)u. Therefore, a possible changin
of the Gaussian-like soliton shape in the vicinity of the ce
ter (r 50) may be approximately described by a square fu
tion h11h2j2. The soliton amplitude at the centerh1
5c0(0) can be expressed throughN andh2 with the help of
the normalization condition~4!:

~h11h2!21h2
25

N

p
m2.

The accuracy of the variational approach with the trial fun
tion ~35! will be proved by numerical simulations~see be-
low!, even for solutions with nonlinear frequency shifts clo
to L'0, when their decay rates vanish (Imk'0).

One of the advantages of the trial function~35! with h2
.0 ~in comparison, for example, with the super-Gauss
ansatz@27#! is that it explains an appearance of a local mi
mum at the center of a soliton with sufficiently largeN. Such
‘‘hatlike’’ shape solitons have been discovered numerica
@see Figs. 1~a! and 1~b!#.

Substituting the function~35! into Hamiltonian ~7!, we
obtain

H5Nm2$DI d~b!2m2PIp~b!2NBIb~b!2N2m2KI k~b!%,
~36!
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where m is the first variational parameter,b5h2 /(mAN)
.0 is the second variational parameter, and the follow
definitions are used:

I d~b!5E
0

`

@ f 8~j!#2jdj,

I p~b!5E
0

` H f 9~j!1
1

j
f 8~j!J 2

jdj,

I b~b!5
1

2~2p!
E

0

`

f 4~j!jdj,

I k~b!5
1

3~2p!2E0

`

f 6~j!jdj.

As indicated above, the soliton corresponds to a station
point of the Hamiltonian, provided thatN5const. Thus, a
solution of the set of equations

]H

]m
50,

]H

]b
50 ~37!

determines soliton parametersm0 and b0. The equation for
b0 may be written in the form

F~b0!50, ~38!

where

FIG. 1. Stationary solutions of GNSE in anomalous dispers
regime (k50.3): ~a! solitons (m50), ~b! asymptotic behavior of
the solitons near their centers and at larger, ~c! vortices (m51),
~d! vortices (m52). Values of nonlinear frequency shiftsl are
indicated near the curves.
2-6



d
t change

TWO-DIMENSIONAL SOLITONS AND VORTICES IN . . . PHYSICAL REVIEW E67, 026402 ~2003!
FIG. 2. Soliton solutions of GNSE in anomalous dispersive regime with differentk: ~a! variational parameterb0 vs number of quanta
N (b050 corresponds to Gaussian profile!, ~b! number of quanta vs nonlinear frequency shift,~c! effective width vs number of quanta. Soli
curves for numerical results; dashed curves for results obtained by variational analysis with a trial function, which takes into accoun
of soliton shape; dot-dashed curves for results with trial function with unchanged Gaussian profile.
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F~b!52Fpk

]Fdb

]b
2Fdb

]Fpk

]b
,

Fpk~b!5@PIp~b!1N2KI k~b!#,
~39!

Fdb~b!5@DI d~b!2NBIb~b!#.

The variational parameterm0 is given by the expression

m0
25

DI d~b0!2NBIb~b0!

2@PIp~b0!1N2KI k~b0!#
. ~40!

A stable soliton corresponds to the minimum or to t
maximum of the Hamiltonian. Actually, if the functio
c0(r ;m0 ,b0) realizes the extremum of the Hamiltonian~36!
at the point (m0 ,b0), then any deviation from this point in
the plane (m,b) leads to a change ofH, which is impossible
because of its conservation@43#. Hence, the soliton stability
criterion coincides with the condition that the Hamiltonia
reaches its minimum or maximum at the pointm5m0 , b
5b0:

h5H ]2H

]m2

]2H

]b2
2S ]2H

]b]m D 2J
m5m0 , b5b0

524m0
4N2

]F

]b U
b5b0

.0, ~41!

whereF(b) is given by the expression~39!. If the Gessianh
is negative, thenm5m0 , b5b0 is a saddle point of the
Hamiltonian, which corresponds to an unstable soliton so
tion. Therefore, in the framework of the variational a
proach, the stable solitonlike solution of GNSE in t
anomalous dispersive regime is described by the func
~35! with parametersm0 , b0, provided thatb0 satisfies the
stability condition

]F

]b U
b5b0

,0. ~42!
02640
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Let us consider how soliton features vary depending
the number of quanta. It is convenient to investigate theN
dependence of soliton parametersb0 andm0 at a fixed com-
binationk5(K/P)/(B/D)2 of GNSE coefficients. The poin
is that after a proper time and space variable rescaling
solution of stationary GNSE~29! will depend only on two
parameters: nonlinear frequency shift andk ~see Sec. III B
for details!. The parameterb0 versusN is plotted in Fig. 2~a!
for GNSE with differentk.

It follows from Eq. ~40! that the soliton solution of the
GNSE in the regime~8! exists only if the number of quant
exceeds the threshold valueN05(uDu/uBu)@ I d(0)/I b(0)#
54pD/B. Indeed,m0

2(N),0 for N,N0, which is impos-
sible @remember thatB,0 andD,0 in the regime~8!#. We
have obtained this well known result~see, e.g., Ref.@42#!
with the trial function~35!, which has a Gaussian profile fo
solitons with a small number of quanta (b050 if N'N0).
The thresholdN0 does not depend on coefficientsP and K
becausem0(N)→0 at N→N0 and higher-order corrections
proportional toP and K, become less significant. But, con
trary to the caseP5K50, in the regime~8! there exist
stable soliton solutions forN.N0 if at least one of the co-
efficientsP or K is not equal to zero.

Under the influence of focusing cubic nonlinearity, th
soliton effective width~14! decreases, and the soliton amp
tude increases correspondingly, while its number of quant
growing close to the thresholdN0. However, along with that,
the role of the higher-order dispersive term and defocus
quintic nonlinearity becomes more and more essential.
important feature of cubic-quintic nonlinear media is an e
istence of the self-defocusing regime, when the effect
soliton width increases withN above some valueNf @see Fig.
2~c!#. One can easily find from Eq.~40! that the minimum of
r eff

2 (N);1/m0
2 corresponds toN5Nf , where

Nf5N0H 11A11
PIp~0!

KI k~0!

@BIb~0!#2

@DI d~0!#2J
5N0~11A118/~9k!!, ~43!

andN0 is the threshold for soliton existence. It is seen fro
2-7
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DAVYDOVA, YAKIMENKO, AND ZALIZNYAK PHYSICAL REVIEW E 67, 026402 ~2003!
Eq. ~43! that the number of quantaNf , necessary to switch
regimes from the self-focusing to self-defocusing one, i
decreasing function of parameterk. In the limiting caseP
→0 (k→`), one obtainsNf52N0. Note that even in the
strongly nonlinear regime, the soliton profile is st
Gaussian-like (b050).

A soliton solution with unchanged Gaussian-like shape
stable if N0,N,N* , whereN* is defined from equation
(]F/]b)b5050, or

1

k
1

32N
*
2

27N0
2 S 12

N*
4N0

D50. ~44!

At N5N* the derivative (]F/]b)b050 @which, in accor-
dance with criterion~41!, determines the stability of a soli
ton# changes its sign. The solution withb050 becomes un-
stable if N.N* , but a new stable soliton appears withb0
.0. The value of parameterb0 sharply increases, and th
soliton’s shape becomes more and more flattened with
rise of the number of quanta aboveN* . The radial profile
c0(r ) even yields a local minimum atr 50 above some
other critical value ofN.N* . Note that the Gessian~41! is
equal to zero atN5N* , henceN* corresponds to the bifur
cation point of the Hamiltonian~36!. The fact that soliton
parameters abruptly change when the number of quanta
ceeds the bifurcation pointN* corroborates an interestin
conception@42# of phase transition or ‘‘light condensation
in nonlinear optical materials with cubic-quintic nonlineari
The authors of Ref.@42# revealed a surprising similarity be
tween light condensates~laser beams with powerN.N* )
and liquids. By numerical simulations of soliton collision
against planar boundaries and localized inhomogenei
they demonstrated that 2D ‘‘liquid solitons’’ behave like liq
uid droplets having a surface tension. As follows from E
~44!, the critical valueN* is a decreasing function ofk. In
particular,N* 516pD/B54N0 in the limiting caseP→0 or
k→`. It coincides with the critical point of the phase tra
sition obtained in Ref.@42# by the frequency spectrum analy
sis of the small amplitude oscillations of the perturbed s
tionary soliton solution. However, the condition for such
phase transition may be changed significantly with regard
the higher-order dispersion, especially ifk!1.

B. Numerical modeling of steady-state solutions

For numerical simulation it is useful to reduce th
number of parameters of Eq.~29! using the following rescal-
ing transformation: r 5rAP/uDu, L5lD2/P, c(r )
5U(r)AD2/uBuP. We are looking for a solution of the form
~28!, assuming that the radial functionU(r) is real. Then Eq.
~29! may be rewritten as

2lU1dDr
(m)U1~Dr

(m)!2U2U31kU550, ~45!

where d5sgn(D), k5(K/P)/(B/D)2. In this section we
analyze two-parameter families~with parametersl andk) of
solitonlike and vortexlike solutions of Eq.~45! for d521.

We have solved the boundary problem~45!, ~30!–~32!
numerically by the relaxation method in spectral space, w
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the trial function of the variational analysis~employed in
Ref. @34#! as the initial approximation. We have used t
Hankel spectral transformation, which is equivalent to
expansion of the radial functionU(r) in Bessel functions
Jm(kr). It gives a very suitable spectral representation
Eq. ~45! in polar coordinates. The stabilizing multiplie
method@44# has been used in order to obtain a converg
iterative process.

Numerically obtained radial profiles of solitonlike solu
tions (m50) are shown in Fig. 1. It is seen in Figs. 1~a! and
1~b! that the soliton shape over some critical value ofN ~very
close toN* , found in Sec. III A! drastically changes: it be
comes flat topped. Above some higher value ofN, a local
minimum on the profileU(r) appears atr50 @see Fig.
1~b!#. These features are in a qualitative correspondence
the variational analysis described in Sec. III A. As w
pointed out in Sec. II B, solutions of GNSE~22! with L,
2D2/(4P) ~after rescalingl,20.25) have oscillating tails
and they are seen in Fig. 1~b!. It follows from Eq. ~26! that
l.20.25 for all solutions of Eq.~45! with k.27/32.
Therefore, only solutions asymptotic, monotonic at infini
exist in this case. The radial profiles of vortices with top
logical chargesm51 andm52 are presented in Figs. 1~c!
and 1~d!. The 2D intensity shape for vortices is of the rin
like form with the dark ‘‘hole’’ at the center. Vortices als
change radial profiles if their numbers of quanta exce
some critical valueNcr , which is a decreasing function ofk.
The valueNcr increases with topological chargem.

Let us compare energy-dispersion diagram~EDD!: num-
ber of quanta~soliton energy! N versus nonlinear frequenc
shift l and theN dependence of the soliton effective wid
r eff(N), obtained numerically and by the variational meth
with different trial functions. Results with the ansatz~35!,
restricted by the single variational parameterm (h2[0 or
b[0), are given in Figs. 2~b! and 2~c! by dot-dashed curves
solid curves correspond to numerical solutions, das
curves to the variational approach with a trial function th
can change a profile, having two variational parametersm
and b. The EDD for solitonlike (m50) and vortexlike so-
lutions ~with m51 andm52) of Eq. ~45! at differentk are
presented in Fig. 2~b! and in Figs. 3~a! and 3~b!, respectively.
To excite a structure with topological chargem, one must
exceed some threshold valueNm for the number of quanta
which corresponds to the gap ofN(l) at l→0. The thresh-
old valueNm increases with topological chargem. We have

FIG. 3. Number of quanta vs nonlinear frequency shift for vo
tices in anomalous dispersive regime with differentk: ~a! m51,
~b! m52. Dashed curves for unstable vortices, curves with circ
for stable vortices.
2-8
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TWO-DIMENSIONAL SOLITONS AND VORTICES IN . . . PHYSICAL REVIEW E67, 026402 ~2003!
obtained numerically the following threshold values:N0

'12 ~variational approach of Sec. III A predictsN054p),
N1'47, N2'88. Figure 2~c! presents theN dependence o
the effective soliton widthr eff , determined by expressio
~14!. As was predicted in Sec. III A,r eff→` at N→N0,
since, according to Eq.~40!, m0(N0)50. Note that the soli-
ton shape begins to change noticeably in the self-defocu
regime@see Figs. 1~a!, 1~b!, and 2#.

Thus, our variational analysis with the trial function~35!
gives a good description both of the effective soliton wid
r eff(N) and of theN(l) diagram@see Figs. 2~b! and 2~c!#. A
rather good quantitative correspondence of the variatio
analysis with numerical results for large number of qua
N.N* is achieved only by taking into account the change
soliton profile.

However, one cannot study the stability of solitons a
vortices with respect to radially asymmetric perturbations
the framework of any variational approach with a radia
symmetric trial function. Stability conditions of steady-sta
solutions, regarding small general 2D perturbations, may
obtained by a linear stability analysis.

C. Linear stability analysis

It is very important for many applications to verif
whether steady-state solutions are stable. For GNSE~3! with
P50 in the anomalous dispersive regime, it was found p
viously that solitons are robust, but vortices may be sta
against small radially symmetric perturbations and unsta
against azimuthal perturbations. As a result of instability
vortex breaks up into several solitons, which fly off tange
tially to the initial ring, conserving the total angular mome
tum ~5!. Such behavior was considered as a consequenc
modulational instability~see, e.g., Refs.@45,46#!. However,
detailed recent investigations@47,48# have shown that stabl
one-charged (m51) and two-charged (m52) vortex solu-
tions of the cubic-quintic GNSE withP50 do exist in the
self-defocusing regime. Nevertheless, the complete supp
sion of vortex symmetry-breaking instability is not explain
yet. It is remarkable that even 3D completely stable vorti
have been recently theoretically discovered in cubic-quin
nonlinear media@49# and also in the media with quadrat
nonlinearity combined with self-defocusing cubic nonline
ity @50#. This gives rise to the view@50# that the stability
property of vortices with large enough energy~number of
quanta! is a universal feature of the media with competi
nonlinearities.

Evidently, a thorough examination of soliton and vort
stability is needed also in the case under consideration w
PÞ0. We will start an investigation of their stability by
linear analysis of the dynamics of small perturbations, wh
are taken as a superposition of azimuthal Fourier mo
~similar to the analysis in Refs.@45,47–50#!. Let us consider
some stationary solution of GNSE~3! of the form ~28!,
which is perturbed radially and azimuthally:

C~r ,t !5$c~r !1a1~r ,t !eiLw1a2~r ,t !e2 iLw%

3exp$ imw1 iLt%, ~46!
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whereL50, 1, 2, . . . is theazimuthal number of perturba
tion. Substituting Eq.~46! in Eq. ~3! and neglecting nonlin-
ear ~with respect toa6) terms, we obtain the set of two
complex equations generalizing the set, obtained in R
@47#, to the case of the GNSE withPÞ0:

S i
]

]t
1Q̂6Da6~r ,t !1q~r !@a7~r ,t !#* 50, ~47!

where

Q̂652L1DD r
(m6L)1P~D r

(m6L)!212Bucu213Kucu4,

q~r !5Bucu212Kucu2c2.

Unstable perturbations are supposed to be localized in sp
growing exponentially with time:a6;eGLt. Thus, the
growth rateGL can be obtained as a solution of the eige
value problem. We have solved this problem numerically
Hankel spectral space.

Solitons have been found to be stable with respect
modulational instability: growth rates for anyL are equal to
zero. However, the vortex is unstable if its number of qua
is below some critical valueNcr . The maximum growth rates
of all unstable eigenmodes for vortices withm51 and m
52, as functions of nonlinear frequency shiftl, are pre-
sented in Fig. 4. Integers near the curvesGL(l) correspond
to azimuthal numbersL. Radially symmetric perturbation
~modeL50) has zero growth rate. For a one-charged vor
(m51), we have found that only azimuthal modes withL,
falling in the interval 1<L<Lmax53, are unstable. For the
two-charged vortex (m52), the maximum azimuthal num
ber Lmax of the unstable mode is equal to 6. The large
growth rate corresponds to the mode with median numbeL.
All unstable modes have nonzero growth rates at least
small vicinity of the thresholdNm , which corresponds tol
'0. Note, that small-scaled perturbations~with the largest
L) are completely suppressed even for the number of qu
close to the threshold. A perturbation with the azimuth
numberL52 has always the widest instability region. It
that mode which defines the edge of the stability region
kÞ0, there are stable vortices with number of quanta ab
the critical valuesNcr , for which modulational instability is
completely suppressed. Similar to the critical number
quantaN* for solitons, Ncr increases as parameterk de-

FIG. 4. Maximum growth rates of all unstable azimuthal eige
modes vs nonlinear frequency shift for vortex solutions in anom
lous dispersive regime (k50.3): ~a! m51, ~b! m52. Integers near
the curves indicate azimuthal numbersL.
2-9



-

DAVYDOVA, YAKIMENKO, AND ZALIZNYAK PHYSICAL REVIEW E 67, 026402 ~2003!
FIG. 5. Spatial-temporal evolution of inten
sity distribution of unstable vortex solution in
anomalous dispersive regime (m52, k50.3):
~a! l520.05, ~b! l520.54 ~close to the edge
of unstable region! vortex decays into two-hump
structures.
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creases, andNcr→` in the limiting caseK→0. Thus, the
growth rates are monotonically increasing functions ofN,
i.e., vortex solutions of GNSE~3! with K50, PÞ0 are al-
ways unstable.

Obviously, the linear stability analysis is unable to d
scribe the nonlinear evolution of unstable vortices. But it
natural to suppose that, due to the development of mod
tional instability against perturbation with azimuthal peri
T52p/L, the vortex would break up intoL stable solitons,
where 1<L<Lmax. The origin of the upper limit on the
number of appearing solitons is quite clear. During evo
tion, any localized structure must conserve its number
quantaN. To exciteL solitons, one should at least exceed t
threshold value:N>LN0, whereN0 is the threshold for a
single stable soliton excitation. Since an instability region
the mode with largest numberL is concentrated in the neigh
borhood ofl'0 ~or N'Nm), the numberLmax can be esti-
mated as the ratio of the thresholds for the vortexNm and for
the solitonN0:

Lmax<FNm

N0
G , ~48!

FIG. 6. Effective widths of localized structures in different di
persive regimes vs number of quanta (k50.3). Numerical results:
~a! anomalous dispersive regime,~b! normal dispersive regime
Solid curves for solitons, dashed curves for unstable vortic
curves with circles for stable vortices.
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where square brackets@f# mean the integer part off. Relation
~48! gives the upper estimate for the number of solitons t
can appear, because some portion of energy~number of
quanta! of the unstable vortex can be carried out by fr
waves.

Thus, the linear stability analysis gave us the sufficie
conditions of instability and revealed the region of the nu
ber of quanta where vortex solutions are stable. On the b
of obtained results, we predict a possible fission scenario
unstable vortices.

Strictly speaking, to study the stability of solitons an
vortices with respect to finite 2D perturbations, a nonline
spatial-temporal problem should be solved. This is the aim
the following section.

D. Numerical simulation of the nonstationary GNSE

All results about the stability of solitons and vortices ha
been verified by simulations of the nonstationary GNSE~3!
with perturbed steady-state solutions as initial conditions
numerical investigations, most authors modeled rand
physical inhomogeneities by imposing an asymmetric per
bation ~for example, Gaussian noise@45#! on a stationary
solution. However, in the experimental setup, some kind
symmetric artificial obstacles can be purposely mounted
the path of the wave beam in order to influence on the
namics of the unstable vortex. Because of this, we have
vestigated how different types of finite perturbations
radially symmetric, azimuthally periodical@as in linear
analysis, see Eq.~46!#, and general asymmetric ones—
influence the evolution of perturbed stationary solutions
the GNSE.

For simulation of nonstationary GNSE~3!, the split-step
Fourier transform method~see, e.g., Ref.@11#! with monitor-
ing of conservation of integrals~4!–~7! has been used.

Simulations mainly confirm even quantitative prediction
given by linear analysis. Solitons have been found to
stable in the whole region where they exist. Vortices are
stable with respect to the modulational instability in the

s,
2-10
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FIG. 7. Stationary solutions of GNSE in nor
mal dispersive regime (k50.3) for different non-
linear frequency shiftsl: ~a! solitons (m50),
~b! vortices (m51), ~c! vortices (m52).
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gion of diagramN(l), predicted by linear analysis. If a pe
turbation with azimuthal numberL is imposed on steady
vortices and they have nonzero growth ratesGL(N), then it
necessarily grows up in numerical simulations. But line
analysis describes only an initial stage of instability. Nonl
ear dynamics of unstable vortices in the general case is
intricate. If the growth rate of the perturbation is small b
nonzero@0,GL(N)!1# and the perturbation has azimuth
periodT52p/L, thenL filaments begin to develop. But w
have observed that in the process of unstable vortex ev
tion, some filaments may fuse or break into pieces and so
final number of solitons that fly away may be not equal toL.
We have found that, if a radially symmetric, asymmetric,
periodical perturbation with azimuthal numberL.Lmax is
imposed, then the vortex with number of quantaN,Ncr fi-
nally breaks up too. The number of filaments in this case
a rule, corresponds to the azimuthal mode with the maxim
growth rate for givenN. In all probability, the vortex choose
unstable modes from the spectrum of imposed asymme
perturbation or from numerical noise. The perturbation w
the largest growth rate develops faster and usually do
nates. Nevertheless, in most cases one cancontrol the num-
ber of appearing solitons by imposing perturbation with
definite azimuthal period on the unstable vortex.

Typical examples, illustrating the spatial-temporal evo
tion of intensity distribution of unstable vortices with top
logical chargem52, are shown in Fig. 5. Figure 5~a! repre-
sents the dynamics of the vortex from the middle of unsta
region with a perturbationL55. Figure 5~b! represents an
interesting dynamics of two-hump structures, which som
times appear at the edge of the unstable region of diag
N(l). These structures fly away just after formation, each
them revolves on its axis, and peaks of the intensity perio
02640
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cally flow from one hump to another. It was found in nume
cal simulations that anearly stablevortex with number of
quantaN'Ncr always breaks up into two fragments. How
ever, sometimes each of the appearing filaments finally
cays into several solitons and free waves.

The dynamics of perturbed solitons and perturbed sta
vortices is found to be quasiperiodic. The effective width a
amplitude of a stable structure oscillate. Near the unsta
region the amplitude of oscillations can be rather large, bu
stable vortex still survives. Performing long-term numeric
simulations~duration of over hundred typical oscillation pe
riods!, we have confirmed the main result of our linear ana
sis about the stability of vortices with number of quan
above some critical valueNcr .

Thus, though in the framework of GNSE~3! with the
fourth-order dispersive term and Kerr-type nonlinearity (K
50) in the anomalous dispersive regime~8! stable solitons
do exist, vortices are unstable in this case. Vortex may
stable only in the self-defocusing regime when its effect
width increases with the number of quanta@see Fig. 6~a!#.
For our model, this regime is realized under the influence
a saturable cubic-quintic nonlinearity (BK,0). Moreover,
even in the self-defocusing regime, the vortex becom
stable only above some critical number of quantaNcr , when
its radial profile is flattened.

IV. SOLUTIONS OF GNSE IN THE NORMAL
DISPERSIVE REGIME

A. Variational approach

In this section we consider only solitonlike solutions wi
topological chargem50 by means of the procedure de
scribed above. We choose the trial function in the form of
function,
FIG. 8. Soliton solution of GNSE in normal dispersive regime with differentk: ~a! variational parameterb0—number of soliton
oscillations on characteristic soliton width (;1/m0) vs number of quanta,~b! number of quanta vs nonlinear frequency shift,~c! effective
width vs number of quanta. Solid curves for numerical results; dashed curves for results obtained by variational analysis with a trial
which takes into account soliton oscillations; dot-dashed curves for trial function with Gaussian profile.
2-11
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product of two functions as in Sec. III A. One of the
~Gaussian-like! mainly describes the spatial localization of
soliton. But the choice of the second function is not
straightforward as it was for GNSE withDP,0, regime~8!.
According to the analysis of the linear asymptotic of GNS
with DP.0 ~see Sec. II B!, localized stationary solution
oscillate and slowly decay at infinity, especially ifL'
2D2/(4P). Thus, to obtain the proper trial function, for a
possibleL, one should accurately take into account the l
ear asymptotic of the solution. Since the Bessel funct
J0(gr ) is an eigenfunction of linear operatorsD r

(0) and
(D r

(0))2, the suitable trial function for a localized solitonlik
solution is supposed to be

c0~r !5hJ0~gr !e2(1/2)m2r 2
5mA N

2p
f ~j;b!, ~49!

where the normalized functionf (j;b) depends on the vari
ablej5mr and parameterb5g/m. The normalizing factor
h can be expressed throughN, using the definition~4!. The
first variational parameterm mainly characterizes the solito
width. The second one, namely,b5g/m characterizes the
number of oscillations on the characteristic soliton wid
;m21. Formulas determine soliton parametersm0 and b0
remain the same as in Sec. III A~except for changing of the

FIG. 9. Number of quanta vs nonlinear frequency shift for v
tex solutions of GNSE in normal dispersive regime with differe
k: ~a! m51, ~b! m52. Dashed curves for unstable vortices, curv
with circles for stable vortices.
02640
-
n

sign of coefficientD and values of integrals! and are given
by Eqs.~40! and ~38! and Eq.~42!, respectively.

An existence of the threshold number of quanta for so
ton excitation is not so obvious now from formula~40! as in
Sec. III A, because in the case under consideration, all te
in this formula are positive. However, one can show thatm0
tends to zero whenN tends to the finite threshold valueN0.
To show this, let us note that, according to expression~34!,
Rek'AD/(2P)@Imk near the largest possible value of th
nonlinear frequency shiftL52D2/(4P), and so the oscil-
lating nature of the soliton solution becomes essential. T
spatial frequency of oscillations,g, remains finite when the
parameterm0, characterizing decay rate, tends to zero,
that parameterb05g/m0 simultaneously tends to infinity
@see Fig. 8~a!#. Therefore, the threshold value ofN for soliton
existence may be determined at the limitb0→`. This limit
may be found from Eq.~38!. It is easy to see that the thresh
old value N0 does not depend onK, because the integra
I k(b0) tends to infinity forb0→` slower than the integra
I p(b0). One can finally find thatN05C0uDu/uBu, where

C05 lim
b0→`

2I pI d82I p8I d

I p8I d22I pI d8
'2.2.

-
t
s

FIG. 10. Maximum growth rates of eigenmodes with the wid
unstable region, corresponding to mode with azimuthal numbeL
52, for vortex solutions in normal dispersive regime at differentk:
~a! vorticesm51, ~b! vorticesm52.
-
n

FIG. 11. Spatial-temporal evolution of inten
sity distribution of unstable vortex solutions i
normal dispersive regime (l520.75, k50.3):
~a! m51, ~b! m52.
2-12
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Note that the threshold valueN0 is much lower than it was in
the regime of anomalous dispersion~coefficient C0, found
by the variational analysis of Sec. III A, was equal to 4p).

The accuracy of variational analysis in determining t
threshold valueN0 for existence of solitons and their stab
ity is confirmed by our numerical calculations~see Sec. IV B
for details!. Figures 8~b! and 8~c! represent the EDD andN
dependence of the effective width for soliton solution (m
50). One can see from Fig. 8~b! that variational and nu-
merical approaches for the EDD fit each other much bette
the case when soliton profile oscillations are taken into
count in the trial function. The threshold valueN0 corre-
sponds toL52D2/(4P) or l520.25 on this figure. Varia-
tional analysis predictsbistability of solitons in the normal
dispersive regime—coexistence of two stable solutions w
different number of quanta but with equal nonlinear fr
quency shifts. Figure 8~c! represents effective soliton widt
as a function of number of quanta, obtained numerically a
by variational analysis. Note, that the trial function~49!,
which does not take into account oscillations (g50) is not
able to reproduce asymptotic behavior of soliton width
N→N0 even qualitatively. We conclude that our variation
approach with the trial function that correctly describes
linear asymptotic of the solutions gives qualitatively app
priate description of the EDD@Fig. 8~b!# and of theN depen-
dence of the effective soliton width@Fig. 8~c!#.

B. Numerical modeling

Numerical soliton andm-charged vortex solutions of Eq
~45!, with boundary conditions~30!–~32! at d51 and at dif-
ferent l are presented in Fig. 7. The profiles with equall
~but differentN) illustrate the coexistence of solutions fro
the lower and upper branches of diagramN(l) @see also Fig.
8~b! and Fig. 9#. It is seen in Fig. 7 that closer to the edge
the region, where localized solutions exist@in the regime~8!
it corresponds tol'20.25], their oscillating tails becom
more pronounced.

Figure 9 represents the EDD for vortices withm51 and
m52. The nonlinear frequency shift for a localized soluti
in the normal dispersive regime is bounded from abovel
,20.25, as was pointed out in Sec. II B. The thresh
valuesNm—number of quanta necessary to excite a soli
(m50) or vortex (mÞ0)—are less than the correspondin
thresholds for the GNSE in the anomalous dispersive regi
which were indicated in Sec. III B. The valuesNm increase
with the topological chargem. In the case under conside
ation @regime~9!# we have found numerically the following
threshold values:N0'2.15, N1'4.5, N2'6.6.

As in Sec. III C, we have investigated the stability
obtained solutions by linear analysis. The radially symme
mode (L50) is found to have a zero growth rate for an
soliton or vortex solutions. Solitons are found to be sta
also with respect to any perturbations withLÞ0. But vorti-
ces can break up because of modulational instability. A
muthal perturbation withL52 has the widest instability re
gion, as before~see Sec. III C!. Therefore, a suppression o
the modulational instability of the mode withL52 leads to a
complete stability of the vortex in the framework of line
stability analysis. Figure 10 represents the maximum gro
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rates for this most dangerous mode. Note, that the instab
region becomes wider for lower values of coefficientk. As it
was for the anomalous dispersive regime~8!, GNSE ~3! in
the caseK50 has only unstable vortexlike solutions, an
their growth rates increase monotonically withN. It is con-
nected with the fact that in the absence of a saturable n
linearity (K50), there is no self-defocusing regim
(dreff /dN,0 for all N) for the solutions of Eq.~3!. We have
found that only perturbations with azimuthal numbersL
51,2 . . . ,Lmax have nonzero growth rates. For vortices wi
topological chargem51 we have obtainedLmax52, and
Lmax53 for vortices withm52. The valueLmax gives an
upper estimate for the number of stable solitons, which m
appear as a result of the modulational instability of a vor
with topological chargem. This number can be estimate
also from Eq.~48!.

All results, obtained in the linear approximation, ha
been verified by long-term simulations of Eq.~3! with per-
turbed steady-state solutions as initial conditions. Solito
have been found to be stable with respect to all investiga
types of finite perturbations. The spatial-temporal evolut
of localized structures in the normal dispersive regime
similar to that described in Sec. III D. In Fig. 11 we represe
examples of unstable vortices breaking up intoLmax stable
solitons. Simulations confirm the existence of stable vorti
with the number of quanta above someNcr in the self-
defocusing regime@see Fig. 6~b!#. The dynamics of stable
perturbed structure is found to be quasiperiodic.

Thus, solitons and vortices in the framework of GNSE~3!
with Kerr-type (K50) and cubic-quintic nonlinearities in
the normal dispersive regime do exist only if the fourth-ord
dispersive effect is taken into account. IfDP.0, but K
50, there is no self-defocusing regime: the effective wid
of any localized structure is a monotonically decreas
function of N, in this case only solitons occur stable. As f
vortices, they are stable in the normal dispersive regime o
under acombinedinfluence of higher-order dispersion an
quintic nonlinearity.

V. DISCUSSION AND APPLICATIONS

The main conclusion of our investigation is that in th
framework of GNSE~3! with fourth-order dispersion and
cubic-quintic nonlinearity, stable solitonlike and vortexlik
structures can exist both in anomalous@Eq. ~8!# and normal
@Eq. ~9!# dispersive regimes.

Our model is relevant first of all to a problem of prop
gation of intensive electromagnetic waves in magnetiz
plasmas. These waves may have rather complicated dis
sive and polarization properties. Especially, it concerns wh
tler waves, which exist in a wide frequency range from i
plasma frequency to electron cyclotron frequencyvBe .
Whistlers~or helicons! are often observed in the ionosphe
and magnetosphere of the Earth, in a laboratory gas pla
and in an electron plasma of solids. Properties of small a
plitude whistler waves are well described by the theory,
many experimental observations of propagation of large a
plitude whistler waves are not explained yet. In particular
concerns an existence of stationary self-focusing not only
2-13
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anomalous but also in normal dispersive regimes@3,8#. We
have shown above that solitons~or stationary waveguides!
are robust against rather large symmetric and asymm
perturbations, even in the Kerr nonlinear medium@Eq. ~3!
with K50], if the fourth-order dispersion effect is taken in
account (PÞ0). Dispersive or polarization effects becom
very essential for whistlers with frequency close tovBe/2,
where the coefficientD in Eq. ~3! vanishes~see the Appen-
dix!. We think that our model gives an appropriate quali
tive explanation of these experiments.~See the Appendix for
the derivation of the model equation for whistler wave se
focusing propagation and a comparison of our theoret
results with experiments.!

We have introduced simple variational analysis, wh
was found to be in very good agreement with our numer
simulations of solitons. In the normal dispersive regim
change of soliton parameters with the number of quanta
been correctly predicted by our variational approach, rega
ing the soliton profile oscillations in this regime. In th
anomalous dispersive regime higher accuracy of variatio
results was achieved by means of the trial function, wh
takes into account the modification of the soliton shape w
N. This provides an insight into the existence of some criti
number of quantaN* at which a soliton abruptly changes i
radial profile. We have shown that the valueN* coincides
with the point of gas-liquid phase transition, obtained in R
@42# for laser light in optical cubic-quintic media. We hav
found that this transition comes within the self-defocus
regime and have investigated an influence of the higher-o
dispersive effect and quintic nonlinearity on soliton prop
ties in both phase states.

Vortexlike envelope electromagnetic wave structures h
not been discovered in plasmas yet. However, localized
tical vortex structures have been observed in nonlinear o
cal materials and became a subject of many theoretical
experimental investigations. We have studied the influenc
quintic nonlinearity and fourth-order dispersive effect on t
properties and stability of vortices. Both in the anomalo
and normal dispersive regimes, vortices can be stable on
their effective widths increase withN. But even in such a
strongly nonlinear self-defocusing regime, vortices oc
stable exceptionally above some critical valueNcr for the
number of quanta. At the same time, in the normal dispers
regime bright robust vortices may exist only in the prese
of higher-order dispersion (PÞ0). Therefore, vortices in this
regime may be stable only under the influence of both
effects considered in this paper: fourth-order dispersionP
Þ0) and quintic nonlinearity (KÞ0).

It was demonstrated numerically that vortex rapid
changes its shape if the number of quanta exceeds the cr
number of quantaNcr for vortex stability. Its profile become
flat topped, similar to the radial profile of a soliton in a liqu
phase state, when the number of quanta is above the cr
point N* . Therefore, it is reasonable to conclude thatNcr
corresponds to the point of phase transition for a vort
Using an analogy with fluid mechanics, one can say that o
the liquid vortex becomes robust, because it has the effec
surface tension strengthening such a vortex. If a vortex
unstable, it decays into solitons that fly away, conserving
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total angular momentum of the system. Using the numbe
quanta conservation law, we have found the upper estim
for a number of stable solitons that can appear after fissio
an unstable vortex.

As was pointed out in Ref.@16#, the fourth-order disper-
sion effect may be of importance also in discrete molecu
2D systems: due to the nonlocal linear dispersion effect@20#
and due to the next order approximation of linear 2D diffe
ence operators by differential operators in the quasic
tinuum limit. Also it may describe competing short- an
long-range dispersive interactions@22#. The quasicontinuum
model for such a system was obtained in Ref.@22#. And then
it was discussed on the basis of a simplified equation, wh
coincides with GNSE~3! in the particular caseD5K50.
Taking into account the presence of some kind of satura
nonlinearity (KÞ0), in the caseD50 it is possible to obtain
not only stable soliton solutions but also stable vortices.
was shown above, it is also possible to extend a quasic
tinuous analysis to the case where the second-order dis
sion term does not vanish. In Ref.@22#, soliton solutions
have been found numerically on the basis of the discr
model in two qualitatively different regimes, which corre
spond to the anomalous and normal dispersive regimes
our ‘‘language.’’ There is an interesting similarity betwee
the results of our continuum model and the discrete mo
considered in Ref.@22#, namely, betweenN(l) diagrams,
dependence of the critical powerN0 on the linear dispersion
parameter@corresponding toD in Eq. ~3!#, and in the form of
solitons radial profiles, which may be monotonic or no
monotonic~‘‘staggered’’!, depending on the regime consid
ered.

We believe that our investigation provides a broad sp
trum of further applications in different physical system
such as upper-hybrid 2D structures in magnetized plasm
bright solitons and vortices in nonlinear optical media, Bo
Einstein condensates, and in 2D discrete molecular syste

APPENDIX: STATIONARY WHISTLER WAVE
BEAM PROPAGATION

Our model provides the theoretical background for an
planation of whistler wave propagation in self-induc
waveguides, observed in the laboratory experiments car
out by Stenzel@3#. Above some threshold value of inpu
high-frequency power, the strong density depression w
formed first in the near-antenna region in these experime
After some time it saturated into a long external magne
field-aligned density trough, in which the whistler wave w
captured~ducted!. This process was accompanied by a stro
plasma electron heating. It is remarkable that the s
trapping into channels with depressed plasma density
observed at different values of pump frequency,both in
anomalous and in normal dispersive regimesof whistler
waves.

Here we obtain the model GNSE for nonlinear whist
wave beam stationary propagation in the direction of
external magnetic fieldB5B0ez , supposing that the main
nonlinear effect is connected with Joule heating and with
extraction of plasma from regions of stronger plasma pr
2-14
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sure, caused by an increase of electron temperature in
strong wave field. The plane linear whistler wave, whi
obeys the dispersion relation

v~k!5
c2kkzvBe

vpe
2 1c2k2

~A1!

~here vpe is the electron plasma frequency,vpe@vBe , k
5Akz

21k'
2 ), is an electromagnetic left-hand polarized wav

if it propagates along the magnetic field (k'50). However,
a whistler wave beam, localized in the plane, transvers
the direction of propagation, becomes elliptically polariz
and yields a significant longitudinal componentEz of electric
field. Linear whistler wave beam propagation along the m
netic field ~with frequencyv and parallel wave numberkz)
is described by Maxwell equations

“3E52
1

c

]B

]t
, “3B5

1

c

]D

]t
, ~A2!

whereD(v,kz)5 «̂E(v,kz),

«̂5S «' ig 0

2 ig «' 0

0 0 « uu

D ,

and «'52vpe
2 /(v22vBe

2 ), « i52vpe
2 /v2, and g

5(vBe /v)vpe
2 /(v22vBe

2 ) are components of the dielectr
tensor in the cold plasma approximation (v@kzvTe , where
vTe is the electron thermal velocity!. We seek solutions of the
system~A2! of the form f (r')exp(2ivt1 ikzz). One can
reduce the system~A2! to the set of equations for compo
nentsEz(r') andBz(r') of the whistler wave field:

S D'1
v2

c2
«'2kz

2D Bz1
ivg

ckz
S D'1

v2

c2
« i D Ez50

F2kz
2« i1«'S D'1

v2

c2
« i D GEz1

ikzv

c
gBz50.

Other components of the electromagnetic field can be fo
straightforwardly using Eqs.~A2!. For a plane wave with
k'50, this set yields two independent dispersion relatio
for the left- and right-hand polarized waves:

kz
22

v2

c2
«'56

v2

c2
g.

However, they are coupled in the wave beam, where com
nentsBz andEz depend on transverse coordinates. Exclud
Bz from the above set, we obtain one equation for the pa
lel component of the electric field:
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F S 2kz
22

« i

«'

kz
21

v2

c2
~« i1«'!2

v2

c2

g2

«'
D D'1D'

2

1
« i

«'
H S kz

22
v2

c2
«'D 2

2
v4

c4
g2J GEz50. ~A3!

To restore the equation for a spatial-temporal evolution
the wave beam envelope, it is sufficient to putkz→kz0
1 i (]/]z), v→v02 i (]/]t), supposing that the frequenc
v0 satisfies the dispersion relation~A1!, and that corrections
due to wave beam localization in the transverse direction
small~paraxial approximation!. The termD'

2 Ez formally cor-
responds to the fourth-order dispersion effect. The main n
linear effect, connected with plasma electron heating, may
implemented in our model by replacingv→v01vnl
2 i (]/]t), where~see Ref.@51#!

vnl

v0
52

v0
21ne

2

2ne
2 SA11

4ne
2

v0
21ne

2 UEz

Ep
U2

21D . ~A4!

For a steady-state wave propagation we put the oper
i (]/]t) equal to zero. Expanding expression~A4! up to
terms of order ;uEz /Epu4 @where Ep

5A3mT(v0
21ne

2)a/e2, a'2m/M , ne is the effective fre-
quency of electron collisions,T is the electron temperature#,
we obtain the corresponding nonlinear terms, which are to
added to Eq.~A3!. Thus, wave beam propagation is d
scribed by GNSE~3!, whereC5Ez /F0 , F05A12pTn0a,
n0 is the electron plasma density. For a stationary wa
propagation, timet should be replaced byz in dimensionless
GNSE~3!. Here, dimensionless spatial coordinatesz, x, y, are
measured in units ofc/v0. Coefficients of the GNSE are

D5
v0

2vpe
H S vBe

2v0
D 2

21J , P5
1

8 S v0

vpe
D 3

,

B52S vpe

v0
D 3

, K5
ne

2

v0
2 S vpe

v0
D 5

. ~A5!

Note that dispersion of the perpendicular group veloc
for whistlers (]2v/]2k'

2 ) changes its sign from plus to minu
at v0'vBe/2 when frequencyv increases. However, to
avoid a contradiction with our previous notations, we w
still call the caseDB,0 (v,vBe/2) the normal dispersive
regime and the caseDB.0 (v.vBe/2) the anomalous dis
persive regime.

Let us compare our theoretical and experimental result
Ref. @3#. The stationary whistler wave self-focusing has be
observed in both dispersive regimes~for v,vBe/2 and for
v.vBe/2). Referring to the plasma parameters of the e
perimental setup@3#, we obtain an estimate for the paramet
k5KD2/PB2'(1 –2)31023. In normalized units, used fo
numerical calculations, the parallel whistler wavelengthl i
510 cm corresponds to the dimensionless parameterlmax
'0.5. Since the absolute value of the nonlinear shift of wa
number should be much smaller thanlmax, the experimental
conditions correspond to the lower values of energy
2-15
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energy-dispersion diagramsN(l) @Figs. 2~b! and 8~b!#,
where they slowly change withl. We find that the perpen
dicular scale of whistler waveguides is of the order of a f
centimeters, which is in good agreement with the experim
tally observed scale. However, the theoretical value of fi
amplitude is approximately ten times smaller than exp
mental values. This discrepancy may be connected with
underestimate of collision frequency~authors of Ref.@3# sup-
m
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posed it to be of the order ofne'1022vBe , as for electron-
neutral collision frequency!. It gives a too small value for
coefficientK of GNSE ~3! and for normalization factorEp ,
and therefore it gives understated values for the whistler
tensity. Using larger values of the effective collision fr
quency, due to the anomalous scattering of electrons by w
fluctuations in turbulent plasma, one gets, accordingly
larger estimate for a ducted whistler intensity.
ys.
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