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Two-dimensional solitons and vortices in hormal and anomalous dispersive media
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We study solitons and vortices described by the+(9-dimensional fourth-order generalized nonlinear
Schralinger equation with cubic-quintic nonlinearity. Necessary conditions for the existence of such structures
are investigated analytically using conservation laws and asymptotic behavior of localized solutions. We derive
the generalized virial relation, which describes the combined influence of linear and nonlinear effects on the
evolution of the wave packet envelope. By means of refined variational analysis, we predict the main features
of steady soliton solutions, which have been shown to be in good agreement with our numerical results. Soliton
and vortex stability is investigated by linear analysis and direct numerical simulations. We show that stable
bright solitons exist in nonlinear Kerr media both in anomalous and normal dispersive regimes, even if only the
fourth-order dispersive effect is taken into account. Vortices occur robust with respect to symmetry-breaking
azimuthal instability only in the presence of additional defocusing quintic nonlinearity in the strongly nonlinear
regime. We apply our results to the theoretical explanation of whistler self-induced waveguide propagation in
plasmas, and discuss possible applications to light beam propagation in cubic-quintic optical materials and to
solitons in two-dimensional molecular systems.
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[. INTRODUCTION most popular and universal models describing the nonlinear
evolution of a wave envelope and, in particular, the possibil-
Various types of solitons and vortex solitogorticeg ity of stable coherent structure formation is the nonlinear
have been observed experimentally in different dispersivéchralinger equationNSE). We will be interested further
media: gravity waves in deep wat¢t], electromagnetic only in 2D localized structures, based on the so-called (2
waves in plasma$2—9], ultrashort light waves in optical +1)-dimensional NSE equation with some additional terms.
waveguidedfibers [10-12, light beams in self-defocusing As is well known, the ordinary 2D NSE
[13,14] and self-focusing medifl5,16], spin waves in fer-
romagnetic films[17]. These structures may be of the P
“bright” form, localized in space or timéspatial or temporal iW +DA, V+B|¥|?¥=0 (D)
solitong, or generally both in space and time. Also they may
be of the “dark” form, as dark holes embedded on a carrier
wave background. Vortex solitons have a phase circulatiotiwhere A, is a 2D Laplacian operatprdescribes spatial-
around the axis of propagation, which is equal ter@ In-  temporal dynamics of the wave packet envelope due to a
tegermis called a topological charge. Ordinary solitons havecompetition of the lowest-order dispersive and nonlinear
zero topological charge. Unlike ordinary solitons, vorticesself-interaction terms. It is also widely applied to a problem
have nonzero angular momentum and phase singularity in @f stationary(in time) propagation of bounded electromag-
wave front. netic beams along some directiarin the so-called paraxial
Optical solitons are considered now as probable elemeni@pproximation. In this case, the time variabie replaced by
for ultrahigh speed and effectively lossless communicatiorz in the basic dimensionless NSE). In the following, we
systems in the near futufd2]. Stable solitons are believed will refer to the variablet as time for definiteness. It is also
to play an important role for the transport of energy or elec-well known (see, for example, Ref16]) that in the case
trons in different one-dimensionélD) [18—2( and 2D mo- DB>0, NSE (1) has only an unstable soliton solution,
lecular (in particular, biological systemd16,21,23. Despite ~ which either disperses or collapses. And it has no soliton
the diversity of physical systems, where solitons and vorticesolutions at all ifDB<0. However, many experimental data,
have been observed, they reveal some universal featureshere solitons have been observed, contradict the above the-
They generally appear above some threshold of wave intereretical conclusions based on E@) in both case$3,8,16.
sity if linear dispersive(diffraction) effects and nonlinear The first case DB>0) is usually[23] referred to as anoma-
effects balance each other. One-dimensional and twdeus dispersive medigpositive group velocity dispersion,
dimensional structures frequently exhibit an instability indvy/9k>0) and the second ondd@<0) is referred to as
higher space dimensions. This instability may give rise tonormal dispersive medigegative group velocity dispersion,
nonlinear structures of higher dimension space. One of thev,/9k<0).
The problem of steady-state self-focusing in nonlinear op-
tics[16,24 and plasma physid®5,26 in anomalous disper-
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n(|¥|?)=ng+n,| |2+ n,| ¥4, 2) really gives rise to the stable 2D solitéwaveguide forma-
tion and even to stable vortices in the presence of cubic-
quintic nonlinearity.
where constants, andn, (n,n,<0) determine the nonlin- The key question is what corrections to NSE are most
ear response of the media with small wave beam intensitgssential. In a typical physical situation, when a wave beam
|¥|2. The dependencé&) may be good enough for some Self-contracts, its field intensity increade@sie to energy con-
optical material{27] even for intensities above the critical Servation, if strong dissipative processes are absEat the
value |¥.|?=|n,/(2n,)| when the derivativegn/g|¥|?> 2D NSE withBD>0, both additional nonlinear and linear
changes its sign. For a problem of wave beam propagatiorgffects can separately determine the stability of 2D solitons
this corresponds to a change of the self-focusing regime b§24,37, though they act together and could be of equal im-
the self-defocusing one. A variety of bright soliton and vor-portance. For the 2D NSE witBD<0, we will determine
tex solutions has been found using cubic-quintic NSE withthe appropriate model describing solitons and vortices in this
anomalous dispersion, and much attention has been paid RRPer.
the question of their stability16]. Spatial solitons have been ~ Here, we consider conditions for the formation of coher-
observed since 1965 in many optical mefil§]. They cor-  ent structures and their stability on the basis of the general-
respond to a stationary wave propagation in a self-induceé€d NSE(GNSE including second- and fourth-order disper-
waveguide with the intensity profile unchanged along thesion effects and cubic-quintic nonlinearity:
direction of wave propagation. The 2D vortex was experi- v
mentally created by passing the laser beam through a dif- . 2
fractingyplanar phasye F:ﬂaﬁksg]l. The other important ngnlin— ot +DAW A PATY + B[ WA+ KWW =0. (3)
ear stabilizing effect to NSE solitons is given by defocusing
nonlocal nonlinearities, which are essential for different elec\we will study GNSE(3) both in anomalouslB>0) and in
tromagnetic waves in plasm@28-3(@, for solitons in mo-  normal (DB<0) dispersive regimes. We are mostly inter-
lecular systemg18,20,2] and in many other applications ested in the case wheBK<0 (which corresponds to satu-
[31]. rable cubic-quintic nonlinearijyand PK>0 (when collapse
On the other hand, as was stressed by Karpf82/83,  can be preventgdThe main purpose of this paper is to in-
effects of higher-order dispersion may also play a significanyestigate the influence of a combination of higher-order dis-
role. The additional fourth-order dispersion term to N8E  persion and saturation of nonlinearity on the features of lo-
may be essential for electrostatic way&9,30 and electro-  calized solitons and vortices as well as to reveal the role of
magnetic waves, when two wave polarizations are taken int@ach of these supplementary effects.
account, in magnetized plasii@d]. It may be produced by a  Our paper is organized as follows. In Sec. Il we describe
nonlocal nonlinear dispersidi20] and in higher-order qua- our model, analyze some general dynamical properties of
sicontinuum models, which approximate discreteness in conocalized solutions, and reveal necessary conditions for soli-
densed matter physid46]. It was shown in Refs[32,33  ton existence. We obtain the virial relation for GN$®,
that in the anomalous dispersive regini®8>0) the fourth-  which generalizes the well known relati¢88] to the case
order dispersive term of the forlRA%W¥ leads to an exis- P+#0, and show that in the cageK>0, wave collapse is
tence of stable localized soliton solutiorHD<0. The pres- not expected. We investigate properties of solitons and
ence of two light polarizations has been considered in Refm-charged vorticesmi=1,2) in Secs. Ill and IV for different
[35] for nonlinear optical media using vectorlike cubic- dispersive regimes. For this purpose, we have used a varia-
quintic NSE, where stable solitonsn0) and vorticesifh  tional approach, taking into account the changing of soliton
=1 andm=2) have been discovered. Many other effectsspatial form with its energynumber of quanta Numerical
may also lead to a collapse arresting and to an appearance gflculations have shown very good agreement with our
stable 2D solitons and vortices, which have been discusseghriational approach. We have also analyzed analytically and
in literature. However, higher-order linear and nonlinear ef-numerically the stability of solitons and vortices with respect
fects have mostly been studied separately for the 2D NSE.to radial and azimuthal perturbations. The role of higher-
To our knowledge, there is no theory to explain that ex-order dispersion and quintic nonlinearity on the stability of
perimental data have indicated stationary self-induced wavesolitons and vortices, and their properties have been found to
guide propagation of electromagnetic way@s] in the case be quite different in anomalous and in normal dispersion
of normal dispersionB<0). In the presence of additional regimes. In Sec. V, we make conclusions and discuss some
quintic nonlinearity, described by a term of the form applications of our results to plasma physics, nonlinear op-
K|\I’|4‘I’ with DK<O0, soliton solutions of Eq(1) are un- tics, and molecular systems.
stable even in the 1D case. The conditions for the existence
of stable soliton solutions have been revealed for 1D NSE
with BD<<0 in the presence of quintic nonlinearity plus the
fourth-order dispersiofi36]. Though 1D and 2D systems are
rather different, one can expect that stable localized struc- We consider here wave packet evolution and stationary
tures may exist also in the 2D case wiBD<0, when localized structures in the framework of GN$8), which
higher-order dispersion is taken into account. We will showtakes into account the second- and fourth-order dispersion
that the fourth-order dispersion can prevent a collapse andffects (terms proportional td and P, respectively. Two

II. GENERAL PROPERTIES OF LOCALIZED
STRUCTURES IN THE FRAMEWORK OF GNSE
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last terms, proportional tB andK, describe cubic and quin- under consideration. Indeed, one can find the following esti-
tic nonlinearities. Our concern is only with the localized so-mate for the Hamiltoniaii7) in the normal dispersive regime
lutions W (x,y,t), for which the following integrals of mo- (9):

tion are finite:

H “ ” “ ” 1 l
(i) Number of quantd“energy” or “beam power”) H=D(NIp)2—Plo+ §|B|(N|K)l/2— §K|K

N:f |W|*d?r. (@) N{DZ 3 BT "

<—|—=+-—
4P 4K
(i) x andy components of momentum: ) . ) )
For the anomalous dispersive regin® one obtains the
. i more strict estimate

I=—§f (V*V¥ - V¥*)d?r, (5)

3NB?
H<

=

. (13
(iii) z component of angular momentum: 16K

i In Sec. Il B we will show that the Hamiltonian is positive for
M=—=| (P*[rxVW¥]-¥[rxV¥*])d?, (6) any localized stationary solution of GNSB) in cases(8)
2 and(9). Thus, in both dispersive regimes there exists at least
. I one stable soliton solution.
(iv) Hamiltonian

- - A. Virial relation

H_DJ V[P — PJ A, d Some insight about a combined action of linear and non-

linear effects on the evolution of a wave packet envelope and

_ EBJ P |4d2r — EKJ | |Bdi2r necessary conditions for an existence of localized stationary
2 3 solutions can be obtained using virial relation for the effec-

tive square beam widthZ,. The latter is defined by the

=DIp—Plp—3Blg—3Kl. @ relation

We will consider localized stationary solutions in two differ- 1

ent cases. rgﬁzﬁf r2|w|2d?r, (14)
(a) The so-called anomalous dispersive regime:

) wherer=\x*+y?. We have generalized the known virial

relation[see, e.g., Ref38] for GNSE(3) with P=0] to the
more general Eq3) with P#0. This virial relation may be

DB>0, PK>0, PB<O0, D<O0.

(b) The normal dispersive regime:

written as
DB<0, PK>0, PB<O0, D>0. 9 N d2r2
7 eff 2 2_ 2 2 2
To make it definite, we pub <0 in case(a@ andD >0 in 8 dt2 j [D [V¥[*—4DP|A, W™+ 4P VA, ¥

case(b), meaning some physical applicatiofsee the Ap-
pendiX. To avoid misunderstanding, we will refer to the
anomalous or normal dispersive regime by indicating the
sign of the producDB in line with the usually accepted rule

B 2K
—D|\If|4(§+ ?|«1r|2) —rP[(lV\If|2

[23]. +2—q,2)i(B|\P|2+K|\If|4)
In accordance with Lyapunov’s theorem, for the bounded ar | Jor
functionalH of field variablesW¥ (sufficiently for other inte- oy
grals of motion fixedN, I, , M) there exists a stable soliton + 2K(V|\If|)2u} d’r
solution that realizes its maximum or minimu(see, e.g., or
Refs.[37,39). —f (15)
eff -

Using the inequalities
From Eq. (15 one finds that(i) when P=K=0 and BD

Ip=<(NIp)*? (10 <0, GNSE(3) has no localized solutions at all, any wave
packet spreads out in the radial directigm) in the caseP
and =0, K#0 virial relation (15) gives both in the caseBD
la=(NI )2 (11) >0 andBD<0 that
. o . d?rZ, 1
for integrals defined in Eq(7), it is easy to show that the S _8D|H—-ZKl«]|,
functionalH is bounded from above, at fixéd in both cases dt? 3
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and predicts the collapse of any wave packet ha\irg
<0, DK>0; (iii) the sum of all linear terms, proportional to
D2, DP>0, andP? in the virial relation, is defocusing be-
cause

[DIp—Plp]?
=——>0.

(16)
Ip

eff

This estimate follows from the integral inequality

1/2
lp<

7

|Df VA, |22

If DP<O0, itis trivial thatf.s>0. Thus, any wave packet in
the linear approximationg=K=0) has a trend to asymp-
totically (att—o0) spread out. In the limiting cade=0 and
D+#0, it was found in Ref[23] that

2,4
d“r ey

dt?

2
=T eff

where the virial relatior{15) and the “uncertainty principle”

r2dp=N (18)

were used. Hence

dr2
rgﬁ(t)28D2t2+2trgﬁ(O)d—:ﬁ +1240).
t=0

Thus, rgﬁ asymptotically diverges at—«, at least as

VBIDIt, if reg(0)|(drEy/dt) ol <\8|D].
From inequalities

2 er.Zff
€
7 E(|r§ﬁ)4>(rgﬁ)3F>:«;2PZ, (19
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if a wave packet contracted. Such a repulsive “fordef
>0 makes self-similar global collapse impossible.

As known[37], in the presence of the fourth-order disper-
sion (P+#0), the “centroid”

1
<r>=NJ r|w|%d?r (20)
generally moves nonuniformly because GN@Eis not Gal-
ilean invariant. We will consider only the case when the cen-
troid, located at =0, is immobile, so that the radial compo-
nent of momentum(5) is equal to zero. This is a typical
situation for a problem of wave beam propagation.

B. Stationary solutions of GNSE

We consider now stationary localized structures, which
may appear as the result of a balance of wave packet disper-
sion spreading and nonlinear compression. We are looking
for a steady-state solution of the form

W(r,t)=¥(r)e't, (21)
whereA is the nonlinear frequency shift. The functign(r)
obeys the partial differential equation

— AV +DA, ¥+ PA?¥ +B|TV|2T +K|P|*P=0.
(22

As known, EQ.(22) may be obtained from the constrained
variational problem for the Hamiltonians(H+ AN)=0.
Thus, the steady-state solution of the fof®1) is a station-
ary point of the Hamiltoniand at a fixed number of quanta.

One yields a useful integral relation for steady-state solu-
tions, multiplying Eq.(22) by ¥* and integrating over space
coordinates:

AN=PIlp—DIlp+Blg+Klg, (23

where the integralky , Ip, 15, andl are defined in Eq.7).

we have similarly found that a wave packet described by théultiplying Eq. (22) by r29¥*/ar, integrating and adding

GNSE withP#0, D=B=K=0 will asymptotically spread
out not slower than according to the lagy~24/8[P[t. To
obtain Eq.(19) we have used the relation

f|VAL\P|2d2r>I2P/IDzN/(rgﬁ)3,

which is derived by taking into account inequaliti€s0),
(17), and(18).

If BP<0, PK>0 the virial relation includes focusing
(proportional toBP) as well as defocusin@roportional to

the complex conjugate, another integral identity is found:

AN=—Plp+Blg/2+Kl /3. (24)
ExcludingA from Eqgs.(23) and(24) one finds the following
expressions for the Hamiltonian, valid for stationary solu-
tions:

H=PIlp+KIx/3=DIp/2—Blg/4. (25
One can see that the Hamiltonian is positive for any station-
ary solution of Eq(22) in two regimes(8) and (9), because

PK) nonlinear terms. Thus, it is natural to expect that staP>0 andK>0. Taking into account estimatés2) and(13)
tionary nonlinear structures can exist in the framework offor Hamiltonian(7), one concludes that in both regimes there

GNSE (3), both in anomalous$Eg. (8)] and in normalEq.
(9)] dispersive regimes.

exists a stable stationary localized solution, which corre-
sponds to the Hamiltonian’s global extremum.

From scaling arguments one can expect that any wave Using Egs.(23) and (24) and excluding terms propor-

packet is unable to collapse KK>0. Actually, two terms,
namely, those proportional tB? and to PK in expression

tional to K, it is straightforward to find that the nonlinear
frequency shiftA is negative for a stationary solution in the

(15), would grow faster, than any other terms could changeanomalous dispersive regini®. Furthermore, in the normal
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$(0)=0, AM™y(r)|,_o=0. (31)

lose its energy, due to a resonant radiation of linear waves

[37,40 with dispersionw(k)=Dk2—Pk*, if the nonlinear
frequency shift could be such that>—D?/4P. Thus, the
radiationless stationary wave packet should hakec
—D?/(4P) in regime(9). Note that, owing to the negative

value of A, stationary solutions are radiationless in the

anomalous dispersive regin@) too.

To estimate how the nonlinear frequency shiftis re-
stricted from below, we have used inequaliti&6) and(11).
Excluding terms proportional t® from integral equalities
(23), (24), we obtain A>—25B?%/K in the regime (8).
And in the regime(9) we obtain from Eq.(23) that
A>—D?/4P—B%4K.

Hence, the nonlinear frequency shift of a steady-state
radiationless localized solutiof21) is bounded from below

and above for both dispersion regimes. One obtains in the

anomalous dispersive regime,

27 B A<O 26
- @?< <0, (26)
and in the normal dispersive regime,
D2 BZ 2

Further, we are looking for stationary solutions of the follow-
ing form:

W(r,t)=g(r)emerN, (28)
where ¢ is the azimuthal angle, integen is the topological
charge. Solutions of the forn@8), with m=0 are called
solitonlike (or solitong and solutions withm#0 are called
vortexlike (or vortices. A simple “quantization rule”M,
=mN is fulfilled for the angular momentum of such solu-
tions.

The radial functiony(r) satisfies the ordinary differential
equation

— A+ DA™ g+ P(AM™) 2+ Bl 2+ K| | * =0,

where the operatat(™ is given by

d2 2

dr?

1d

r dr

m

r2

A =

The stationary equatio29) should be complemented by
boundary conditions at=0 and at infinity. A solitonlike
solution is an even function af, therefore the first pair of
boundary conditions for a solution witin=0 is

di(r)
dr

=0.
=0

d
=0, —A@yr) (30)
0 dr r

r=

The second pair of boundary conditions for localized solu-
tions is

lim[A{™ y(r)]=0.

r—o

lim (r)=0,

r—o

(32

We will now consider the asymptotic behavior of local-
ized solutions at infinity more carefully. The solutions of
linearized(at r—«) Eq. (29) have asymptotes of the form
hir ~Y2eki" wherek; are solutions of the following equation:

—A—k?D+k*P=0 (33
and are given by
D
k== \/E{li V1+4AP/D?). (34)

A localized solution should have ki-0. If DP<O0 [regime
(8)] this condition is fulfilled for anyA <0. If DP>0 [re-
gime (9)] the condition Ink>0 leads to a further restriction
on nonlinear frequency shift\ <—D?/4P. Thus, we have
found that in both regimes under consideration, the condition
of absence of radiation is fulfilled automatically for any lo-
calized solution. It is seen from E@4) that R&+0 for A
<—D?/4P, and so in this case the radial functigir) has
“oscillating tails.” These tails are especially noticeable for
the solution of GNSE29) at DP>0 whenA~ —D?%/4P. In
this case Irk occurs small compared to Rehence the func-
tion (r) slowly decreases at infinity (lk+-0 if A—
—D?/4P), while its spatial frequency of oscillations remains
finite (Re&k— D/2P).

In the special cas®=0, we see from Eq(33) that k?
=—A/D and Ink#0 only if AD>0. But, for any station-
ary radiationless solution, the nonlinear frequency shiit
negative. Thus, there is no robust localized solution in the
normal dispersive regimé€9), if higher-order dispersive ef-
fects are neglected.

The stationary GNSE(29) with boundary conditions
(30— (32 will be investigated further by the approximate
variational method and numerically both in the anomalous
(see Sec. Il and normal(see Sec. Y dispersive regimes.

Ill. SOLUTIONS OF GNSE IN THE ANOMALOUS
DISPERSIVE REGIME

A. Variational approach

In order to gain a deeper insight into properties of station-
ary solutions of GNSE3) we introduce a simple semiana-
lytical variational analysis. Most investigatior{see, e.g.,
Refs.[41,42), based on the direct variational approach, have
used a trial function of the form

\;[,(r ,t) — h(t)f(r/a(t))eib(t)W(r/a(t))+i<I)(t)+im<p'

A vortexlike solution has the following asymptotic behavior where the amplitudé, beam widtha, phase front curvature

atr—0: ¢(r)~h.r'™ whereh,,=const. Thus, the vortices
(m=#0) satisfy the conditions

parametefor chirp parameterb, phased, amplitude profile
f, and phase profil@V are real functions. The dynamical
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equations that describe the evolution in time of soliton or
vortex parameters have been obtained after the Ritz optimi-
zation in Ref[34] for GNSE(3). The serious shortcoming of
this approach is that the radial profile of the trial function is %Ij": \
fixed. Therefore, such analysis is unable to account for the
wave packet shape modification with energumber of
guantaN), which occurs to be essential for GN$B.

We restrict our variational analysis to the lowest-order
solitonlike  solutions (=0) of the form W(r,t)
= o(r)e" ™ with zero momentum and angular momentum.
Such solutions are stationary points of the Hamiltonian at
constant number of quanta. In our treatment we will take a§ I
proper account of the possible changing of the radial profile ,,
Po(r) with the number of quantdl. Previously, the varia-
tional problem, involving the super-Gaussian ansatz, was
solved in Ref[27] for GNSE(3) atP=0 andDB>0, show-
ing very good agreement with numerical results. We are in-

ter_ested here rathe_r in an analytically tractable anal_y_sis, FIG. 1. Stationary solutions of GNSE in anomalous dispersive
Wthh revgals physical reasons f(_)r _Sollton Shape mOd'_ﬂcar'egime (k=0.3): (a) solitons (M=0), (b) asymptotic behavior of
tion, than in a more precise description of a soliton profile. y,o solitons near their centers and at lapge(c) vortices M=1),

. One _of th.e simple;t appr_opri_ate trial functions fp_r a Iocal—(d) vortices =2). Values of nonlinear frequency shifts are
ized solitonlike solution, satisfying boundary conditidB8)  indicated near the curves.

and(32), is

where u is the first variational parameteB=h,/(u\N)

2021 o (12212 N >0 is the second variational parameter, and the following
Po(r)=thythourse 9 = u\[5—F(&), (39  definitions are used:

whereé= ur. As is seen from Eq(34), in the caseDP<0 14(B) = fw[f’(g)]zgdg
and —D?/(4P)<A <0, the soliton has no oscillating tails 0 '
(Re&k=0). Furthermore, ifA <—D?/(4P), the soliton solu-

tion decreases at—o rather rapidly, not slower than the . 9
decay rate Irk=/|D/(2P)|. Therefore, a possible changing | (B):f [fu(g)Jr}fI(g)] gdé
of the Gaussian-like soliton shape in the vicinity of the cen- P 0 £ '
ter (r=0) may be approximately described by a square func-

tion h;+h,&2. The soliton amplitude at the centér;

. 1 o
= 1/5(0) can be expressed throubhandh, with the help of [ = _J’ 4 dé,
the normalization conditiof4): o(A) 2(2m) Jo (§)¢de

N
(hy+ho)?+h3=—u? l(B)=

J “15(&) e

3(2m)?Jo
The accuracy of the variational approach with the trial func-
tion (35) will be proved by numerical simulationsee be-
low), even for solutions with nonlinear frequency shifts close
to A=0, when their decay rates vanish m0).

One of the advantages of the trial functi(8b) with h,
>0 (in comparison, for example, with the super-Gaussian ﬁ_o H
ansatZ27]) is that it explains an appearance of a local mini- du ' 9B
mum at the center of a soliton with sufficiently larje Such

“hatlike” shape solitons have been discovered numerically . . .
[see Figs. @) and 1b)] determines soliton parametess and B;. The equation for

Bo may be written in the form

As indicated above, the soliton corresponds to a stationary
point of the Hamiltonian, provided thai=const. Thus, a
solution of the set of equations

=0 (37)

Substituting the function(35) into Hamiltonian(7), we
obtain
F(Bo)=0, (38)

H=Nu?{Dly4(B) — u?Ply(B)—NBIly(B) —N?uKl(B)},
(36) where
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FIG. 2. Soliton solutions of GNSE in anomalous dispersive regime with differeitdq) variational paramete8, vs number of quanta
N (8o=0 corresponds to Gaussian profjléo) number of quanta vs nonlinear frequency slifj,effective width vs number of quanta. Solid
curves for numerical results; dashed curves for results obtained by variational analysis with a trial function, which takes into account change
of soliton shape; dot-dashed curves for results with trial function with unchanged Gaussian profile.

F gp IF pk Let us consider how soliton features vary depending on
F(B)=2Fk——0 9B deﬁ’ the number of quanta. It is convenient to investigate khe
dependence of soliton paramet@&sand uq at a fixed com-
Fol B)=[P1,(8)+N2KI(B)], bination k= (K/P)/(B/D)? of GNSE coefficients. The point
P P (39) is that after a proper time and space variable rescaling, a
Fao(8)=[Dl4(B)—NBIy(8)]. solution of stationary GNSKE29) will depend only on two
parameters: nonlinear frequency shift andsee Sec. Il B
The variational parametgr, is given by the expression for detailg. The parameteB, versusN is plotted in Fig. 2a)
for GNSE with differentx.
,  Dlg(Bo)—NBIly(Bo) It follows from Eg. (40) that the soliton solution of the
MOZZ[PI (Bo)+ N2KI(Bo)] (400 GNSE in the regimég8) exists only if the number of quanta
pLo0 kA0 exceeds the threshold valuly=(|D|/|B|)[14(0)/1,(0)]

A stable soliton corresponds to the minimum or to the=47D/B. Indeed,ui(N)<0 for N<No, which is impos-
maximum of the Hamiltonian. Actually, if the function Sible[remember thaB<<0 andD <0 in the regimg@8)]. We
wo(r; o, Bo) realizes the extremum of the Hamiltonig@s) ~ have obtained this well known resulsee, e.g., Refl42])
at the point fq,80), then any deviation from this point in With the trial function(35), which has a Gaussian profile for
the plane ,) leads to a change 1, which is impossible ~ solitons with a small number of quant@{=0 if N~No).
because of its conservatiga3]. Hence, the soliton stability The threshold\, does not depend on coefficierfisand K
criterion coincides with the condition that the Hamiltonian becauseuo(N)—0 atN—Nq and higher-order corrections,
reaches its minimum or maximum at the pojat ug, B proportional toP and K, become less significant. But, con-

= Bo: trary to the caseP=K=0, in the regime(8) there exist
stable soliton solutions foN> N, if at least one of the co-
J?H 9°H 9?H \? efficientsP or K is not equal to zero.
= —2—2—(%&#) Under the influence of focusing cubic nonlinearity, the
Iu” Ip u=ug, B=By soliton effective width(14) decreases, and the soliton ampli-
tude increases correspondingly, while its number of quanta is
- 4M0N2 IF ~0 (41) growing close to the threshol,. However, along with that,
apB ' the role of the higher-order dispersive term and defocusing

quintic nonlinearity becomes more and more essential. An
whereF (B) is given by the expressio39). If the Gessiarh ~ important feature of cubic-quintic nonlinear media is an ex-
is negative, thenu= g, B=P, is a saddle point of the istence of the self-defocusing regime, when the effective
Hamiltonian, which corresponds to an unstable soliton solusoliton width increases witN above some valul; [see Fig.
tion. Therefore, in the framework of the variational ap- 2(0)] One can easily find from E¢40) that the minimum of
proach, the stable solitonlike solution of GNSE in therZi(N)~1/u§ corresponds ti\=N;, where

anomalous dispersive regime is described by the function
(35) with parametersuy, By, provided thatd, satisfies the NN 1 \/1+ P1,(0) [Bl,(0)]?
stability condition = KI(0) [D14(0)]?

JF _
B=Bo andNy is the threshold for soliton existence. It is seen from
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Eq. (43) that the number of quantd;, necessary to switch .« T ] e
regimes from the self-focusing to self-defocusing one, is a ] {7 ew @ f el 3TV O
decreasing function of parameter In the limiting caseP 10001 ' 1 e

—0 (k—), one obtaindN;=2N,. Note that even in the ™| 1, ]

strongly nonlinear regime, the soliton profile is still 1 o]

Gaussian-like 8,=0). > ‘ < I

A soliton solution with unchanged Gaussian-like shape is et I I

stable if Ng<N<N, , whereN, is defined from equation OO A2 L0 08 06 08 03 0020 A8 6 4 12 110 208 86 204 42 00

(0F19B) s=0=0, or

FIG. 3. Number of quanta vs nonlinear frequency shift for vor-
1 32Ni N, tices in anomalous dispersive regime with differant(a) m=1,
—+ > ( - m) =0 (44) (b) m=2. Dashed curves for unstable vortices, curves with circles
K 2/Ng 0 for stable vortices.

At N=N, the derivative ¢F/Jp)z -0 [which, in accor-

| L . . . the trial function of the variational analysi@mployed in
dance with criterion41), determines the stability of a soli- ysiemploy

L . o Ref. [34]) as the initial approximation. We have used the
ton] changes its sign. The solution wiff,=0 becomes un- Hankel spectral transformation, which is equivalent to an

stable ifN>N, , but a new stable solitqn appears wig expansion of the radial functiob(p) in Bessel functions
>0.' T,he value of parametg$, sharply increases, and_the Jm(kp). It gives a very suitable spectral representation of
soliton’s shape becomes more and more flattened with thgq. (45) in polar coordinates. The stabilizing multiplier

rise of the number of quanta abob, . The radial profile  o1hoqd[44] has been used in order to obtain a convergent
¥o(r) even yields a local minimum at=0 above some jiarative process.

other critical value oN>N, . Note that the Gessia#1) is Numerically obtained radial profiles of solitonlike solu-
equal to zero aN=N,, henceN, corresponds to the bifur-  5ns m=0) are shown in Fig. 1. It is seen in Figgaland
cation point of the Hamiltoniar§36). The fact that soliton 1(b) that the soliton shape over some critical valudakery
parameters abruptly change when the number of quanta €Xjose toN, , found in Sec. Il A drastically changes: it be-

ceeds the bifurcation poirfi, corroborates an interesting -gmes flat topped. Above some higher valueNbfa local
conception[42] of phase transition or “light condensation” :ivum on the profileU(p) appears ap=0 [see Fig.

in nonlinear optical materials with cubic—ggintic_nqnlihearity. 1(b)]. These features are in a qualitative correspondence with
The authors of Refl42] revealed a surprising similarity be- yhe “\ariational analysis described in Sec. Il A. As was
tween light condensatefaser beams with poweN>N,) ninted out in Sec. Il B, solutions of GNS22) with A<

and liquids. By numerical simulations of soliton collisions —D2/(4P) (after rescaling. < —0.25) have oscillating tails
against planar boundaries and localized inhomogeneitie%nd they are seen in Fig(t. It follows from Eq.(26) that
they demonstrated that 2D “liquid solitons” behave like lig- \>—0.25 for all solutions of Eq.45) with x>27/32.

uid droplet-s.havmg a sur.face tenS|0n_. AS follqws from Eq'Therefore, only solutions asymptotic, monotonic at infinity,
(44), the critical valueN, is a decreasing function of. N gyigt in this case. The radial profiles of vortices with topo-
particular,N, =167D/B=4N in the limiting case®—0 or logical chargesn=1 andm=2 are presented in Figs(d

K—0. It cpincides with the critical point of the phase tran- 44 1d). The 2D intensity shape for vortices is of the ring-
sition obtained in Ref.42] by the frequency spectrum analy- |ixe form with the dark “hole” at the center. Vortices also

sis of the small amplitude oscillations of the perturbed Sta‘change radial profiles if their numbers of quanta exceed
tionary soliton solution. However, the condition for such agqa critical valudl,,, which is a decreasing function af
phasg transition may be.changed ;ignif_icantly with regard tg,q valueN,, increases with topological charge
the higher-order dispersion, especiallyxif 1. Let us compare energy-dispersion diagréEDD): num-
ber of quantasoliton energy N versus nonlinear frequency
B. Numerical modeling of steady-state solutions shift A and theN dependence of the soliton effective width

For numerical simulation it is useful to reduce theei(N), obtained numerically and by the variational method
number of parameters of E(R9) using the following rescal- With different trial functions. Results with the ansd@5),
ing transformation: r=p\P/[D], A=ADZP, y(r) restricted by the single variational parameger(h,=0 or
= U(p) VDZ[B[P. We are looking for a solution of the form A=0). are given in Figs. ®) and 2c) by dot-dashed curves,

(28), assuming that the radial functiah(p) is real. Then Eq. solid curves cor_re_spond to numeri_cal so_lutions,_ dashed
(29) may be rewritten as curves to the variational approach with a trial function that

can change a profile, having two variational paramegers
—\U+ 5A’(Jm)u + (A,(Jm))Zu —U34+kU%=0, (45 andp. The EDD for solitonlike (n=0) and vortexlike so-
lutions (with m=1 andm=2) of Eq.(45) at different« are
where 6=sgn(D), «=(K/P)/(B/D)2. In this section we presented in Fig.(®) and in Figs. 8a) and 3b), respectively.
analyze two-parameter familiéwith parametera andx) of ~ To excite a structure with topological charge one must
solitonlike and vortexlike solutions of Eg45) for 6= —1. exceed some threshold valiyg, for the number of quanta,
We have solved the boundary proble@b), (30)—(32)  which corresponds to the gap Nf{A) atA—0. The thresh-
numerically by the relaxation method in spectral space, withold valueN,, increases with topological charge We have

026402-8



TWO-DIMENSIONAL SOLITONS AND VORTICES IN . ... PHYSICAL REVIEW B57, 026402 (2003

obtained numerically the following threshold valueNj 03— 030
~12 (variational approach of Sec. Il A predictéy=41), 025,

N;~47, N,~88. Figure 2c) presents thé&\ dependence of goan

the effective soliton widthro;, determined by expression gors

(14). As was predicted in Sec. Il Argg— at N—Ny, Eauo

since, according to Eq40), uo(Ny) =0. Note that the soli- 00

ton shape begins to change noticeably in the self-defocusin¢ | | [ [ N
regime[see Figs. (@), 1(b), and 2. R

Thus, our variational analysis with the trial functi¢sb)
gives a good description both of the effective soliton width
rer(N) and of theN(A) diagram[see Figs. @) and 2c)]. A Ious dispersive regimex(=0.3): (a) m=1, (b) m=2. Integers near
rather good quantitative correspondence of the variationg] . ., ves indicate azimuthal numbérs. '
analysis with numerical results for large humber of quanta
N>N, is achieved only by taking into account the change 0fwhereL=0, 1, 2,... is theazimuthal number of perturba-

sol|i_t|on profile. dv th bility of soli dtion. Substituting Eq(46) in Eqg. (3) and neglecting nonlin-
lowever, one cannot study the stability of solitons andg,, (with respect toa™) terms, we obtain the set of two
vortices with respect to radially asymmetric perturbations in

e . .2 "complex equations generalizing the set, obtained in Ref.
the framework of any variational approach with a radlally[47] to the case of the GNSE witR=0-
symmetric trial function. Stability conditions of steady-state™ '
solutions, regarding small general 2D perturbations, may be
obtained by a linear stability analysis.

FIG. 4. Maximum growth rates of all unstable azimuthal eigen-
modes vs nonlinear frequency shift for vortex solutions in anoma-

a“(r,)+q(nfa“(r,n]*=0,  (47)

e
9 e
at Q

C. Linear stability analysis where

It is very important for many applications to verify — Q*=—A+DAM*Y 4+ p(AM=L)24 2B|y|2+3K]|y|*,
whether steady-state solutions are stable. For GI8ith
P=0 in the anomalous dispersive regime, it was found pre- q(r)=B|y|?+ 2K | |2y
viously that solitons are robust, but vortices may be stable
against small radially symmetric perturbations and unstablgjnstable perturbations are supposed to be localized in space,
against azimuthal perturbations. As a result of instability, agrowing exponentially with time:a®*~e't!. Thus, the
vortex breaks up into several solitons, which fly off tangen-growth ratel’, can be obtained as a solution of the eigen-
tially to the initial ring, conserving the total angular momen- ygj,e problem. We have solved this problem numerically in
tum (5). Such behavior was considered as a consequence pfankel spectral space.
modulational instability(see, e.g., Refd45,4€). However, Solitons have been found to be stable with respect to
detailed recent investigatioiid 7,48 have shown that stable gqulational instability: growth rates for aryare equal to
one-chargedri=1) and two-chargednj=2) vortex solu-  zero, However, the vortex is unstable if its number of quanta
tions of the cubic-quintic GNSE witl?=0 do exist in the s pelow some critical valubl,,. The maximum growth rates
self-defocusing regime. Nevertheless, the complete suppregs gl unstable eigenmodes for vortices with=1 and m
sion of vortex symmetry-breaking instability is not explained =2 a5 functions of nonlinear frequency shift are pre-
yet. It is remarkable that even 3D completely stable vorticegented in Fig. 4. Integers near the curfgg)\) correspond
have been recently theoretically discovered in cubic-quintiGy azimuthal numbers.. Radially symmetric perturbation
nonlinear medid49] and also in the media with quadratic (modeL =0) has zero growth rate. For a one-charged vortex
nonlinearity combined with self-defocusing cubic nonlinear- m=1), we have found that only azimuthal modes wiith
ity [50]. This gives rise to the vieW50] that the stability falling in the interval =L<L =3, are unstable. For the
property of vortices with large enough energyumber of two-charged vortexro=2), the maximum azimuthal num-
quar_lta is_g universal feature of the media with competing e, Lnax Of the unstable mode is equal to 6. The largest
nonlinearities. o _ growth rate corresponds to the mode with median nurhber

Evidently, a thorough examination of soliton and vortex x| ynstable modes have nonzero growth rates at least in a
stability is needed also in the case under consideration whegp, i vicinity of the thresholdN,,, which corresponds ta
P#0. We will start an investigation of their stability by a _ g Note, that small-scaled pn(]arturbatiomith the largest
linear analysis of the dynar_n_ics of smz_ill perturbatio_ns, Whici‘\_) are completely suppressed even for the number of quanta
are taken as a superposition of azimuthal Fourier modegioge to the threshold. A perturbation with the azimuthal
(similar to the analysis in Ref45,47-50). Let us consider \ \nher| =2 has always the widest instability region. It is
some stationary solut[on of GNS.B) of the form (28),  that mode which defines the edge of the stability region. If
which is perturbed radially and azimuthally: x# 0, there are stable vortices with number of quanta above

W(r,t)={y(r)+a* (r,H)ele+a (r,t)e el the critical valueN,,, for which modulational instability is
completely suppressed. Similar to the critical number of
Xexpg{lime+iAt}, (46) guantaN, for solitons, N, increases as parameter de-
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FIG. 5. Spatial-temporal evolution of inten-
sity distribution of unstable vortex solution in
anomalous dispersive regimenE2, «=0.3):
(& N=-0.05, (b) A\=—0.54 (close to the edge
of unstable regionvortex decays into two-hump
structures.
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creases, andl,— in the limiting caseK—0. Thus, the ~where square brackeft§ mean the integer part 6f Relation

growth rates are monotonically increasing functionsNyf ~ (48) gives the upper estimate for the number of solitons that

i.e., vortex solutions of GNSE3) with K=0, P+#0 are al- can appear, because some portion of endigymber of

ways unstable. guanta of the unstable vortex can be carried out by free
Obviously, the linear stability analysis is unable to de-waves.

scribe the nonlinear evolution of unstable vortices. But it is  Thus, the linear stability analysis gave us the sufficient

natural to suppose that, due to the development of modulzonditions of instability and revealed the region of the num-

tional instability against perturbation with azimuthal period ber of quanta where vortex solutions are stable. On the basis

T=2=/L, the vortex would break up intb stable solitons, ©f obtained results, we predict a possible fission scenario for

where I<L<L,,. The origin of the upper limit on the unstable vortices.

number of appearing solitons is quite clear. During evolu- Strictly speaking, to study the stability of solitons and

tion, any localized structure must conserve its number o¥ortices with respect to finite 2D perturbations, a nonlinear

quantaN. To exciteL solitons, one should at least exceed thespatial-temporal problem should be solved. This is the aim of

threshold valueN=LN,, whereN, is the threshold for a the following section.

single stable soliton excitation. Since an instability region for

the mode with largest numbéris concentrated in the neigh- D. Numerical simulation of the nonstationary GNSE

borhood ofA=~0 (or N~N,,), the numbeL ., can be esti-

mated as the ratio of the thresholds for the voitgxand for

the solitonNg:

All results about the stability of solitons and vortices have
been verified by simulations of the nonstationary GNSE
with perturbed steady-state solutions as initial conditions. In

N numerical investigations, most authors modeled random
Lmaxg|:_m}, (48) physical inhomogeneities by impos'ing an asymmetric pertur-
N bation (for example, Gaussian noi4d5]) on a stationary

solution. However, in the experimental setup, some kind of
@ ® symmetric artificial obstacles can be purposely mounted in
T T T the path of the wave beam in order to influence on the dy-
namics of the unstable vortex. Because of this, we have in-
vestigated how different types of finite perturbations—

[

m=2

¥ m=1 '.54.3,‘\‘\—- ] radially symmetric, azimuthally periodicdlas in linear

‘] ] ab i 1 analysis, see Eq(46)], and general asymmetric ones—
] 210 ) influence the evolution of perturbed stationary solutions of
] ' 1 the GNSE.

T 20 a0 e slooNléoo 1500 1400 1600 1800 0 %0 10 1o z;o 250 300 350 400 For simulation of nonstationary GNS(B), the Split-step

Fourier transform methotsee, e.g., Ref.11]) with monitor-
FIG. 6. Effective widths of localized structures in different dis- INg of conservation of integralg})—(7) has been used.

persive regimes vs number of quante=(0.3). Numerical results: Simulations mainly confirm even quantitative predictions,

(@) anomalous dispersive regimép) normal dispersive regime. given by linear analysis. Solitons have been found to be

Solid curves for solitons, dashed curves for unstable vorticesstable in the whole region where they exist. Vortices are un-

curves with circles for stable vortices. stable with respect to the modulational instability in the re-
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©

FIG. 7. Stationary solutions of GNSE in nor-
mal dispersive regimex=0.3) for different non-
linear frequency shifts\: (@) solitons (n=0),
(b) vortices (n=1), (c) vortices m=2).

gion of diagramN()\), predicted by linear analysis. If a per- cally flow from one hump to another. It was found in numeri-

turbation with azimuthal numbek is imposed on steady cal simulations that aearly stablevortex with number of

vortices and they have nonzero growth ratggN), then it  quantaN~N,, always breaks up into two fragments. How-

necessarily grows up in numerical simulations. But linearever, sometimes each of the appearing filaments finally de-

analysis describes only an initial stage of instability. Nonlin-cays into several solitons and free waves.

ear dynamics of unstable vortices in the general case is very The dynamics of perturbed solitons and perturbed stable

intricate. If the growth rate of the perturbation is small butvortices is found to be quasiperiodic. The effective width and

nonzero[ 0<I' (N)<1] and the perturbation has azimuthal amplitude of a stable structure oscillate. Near the unstable

periodT=2mx/L, thenL filaments begin to develop. But we region the amplitude of oscillations can be rather large, but a

have observed that in the process of unstable vortex evolwstable vortex still survives. Performing long-term numerical

tion, some filaments may fuse or break into pieces and so th@mulations(duration of over hundred typical oscillation pe-

final number of solitons that fly away may be not equalto riods), we have confirmed the main result of our linear analy-

We have found that, if a radially symmetric, asymmetric, orsis about the stability of vortices with number of quanta

periodical perturbation with azimuthal numbeeL ., is  above some critical valull,.

imposed, then the vortex with number of quahta N, fi- Thus, though in the framework of GNSE) with the

nally breaks up too. The number of filaments in this case, afourth-order dispersive term and Kerr-type nonlineariky (

a rule, corresponds to the azimuthal mode with the maximun+0) in the anomalous dispersive regirt® stable solitons

growth rate for giverN. In all probability, the vortex chooses do exist, vortices are unstable in this case. Vortex may be

unstable modes from the spectrum of imposed asymmetristable only in the self-defocusing regime when its effective

perturbation or from numerical noise. The perturbation withwidth increases with the number of quaritee Fig. 6a)].

the largest growth rate develops faster and usually domiFor our model, this regime is realized under the influence of

nates. Nevertheless, in most cases onecagantrol the num-  a saturable cubic-quintic nonlinearityB K<0). Moreover,

ber of appearing solitons by imposing perturbation with aeven in the self-defocusing regime, the vortex becomes

definite azimuthal period on the unstable vortex. stable only above some critical number of quaNta, when
Typical examples, illustrating the spatial-temporal evolu-its radial profile is flattened.

tion of intensity distribution of unstable vortices with topo-

logical chargem=2, are shown in Fig. 5. Figure(® repre- IV. SOLUTIONS OF GNSE IN THE NORMAL

sents the dynamics of the vortex from the middle of unstable DISPERSIVE REGIME

region with a perturbatioh. =5. Figure %b) represents an

interesting dynamics of two-hump structures, which some-

times appear at the edge of the unstable region of diagram In this section we consider only solitonlike solutions with

N(N). These structures fly away just after formation, each otopological chargem=0 by means of the procedure de-

them revolves on its axis, and peaks of the intensity periodiscribed above. We choose the trial function in the form of the

A. Variational approach

4.0 T T T T T T T

2.50 T T T T 160

T
x=0.1y,
140 !i ®) ] ©
I"i 3.5 B
2254 120 ,I,.i' -
/} k=02 3.0 4
100+ // p J
i J
- E 77 f 4
2.00 80 7/ Y k03
o 64 /7 F/
i 4 '
{ 4 Y
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- / ’ ]
204 Nk {,\
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N,
N A N

FIG. 8. Soliton solution of GNSE in normal dispersive regime with different(a) variational parameteg;—number of soliton
oscillations on characteristic soliton width-(L/.q) vs number of quantab) number of quanta vs nonlinear frequency sHif), effective
width vs number of quanta. Solid curves for numerical results; dashed curves for results obtained by variational analysis with a trial function,
which takes into account soliton oscillations; dot-dashed curves for trial function with Gaussian profile.
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FIG. 9. Number of quanta vs nonlinear frequency shift for vor- ~ FIG. 10. Maximum growth rates of eigenmodes with the widest
tex solutions of GNSE in normal dispersive regime with different unstable region, corresponding to mode with azimuthal nurhber
x: (@ m=1, (b) m=2. Dashed curves for unstable vortices, curves= 2, for vortex solutions in normal dispersive regime at different
with circles for stable vortices. (a) vorticesm=1, (b) vorticesm=2.

product of two functions as in Sec. IIl A. One of them
(Gaussian-likemainly describes the spatial localization of a

soliton. But the choice of the second function is not so ™~ y " ictance of the threshold number of quanta for soli-

straightforward as it was for GNSE wihP <0, regime(8). ton excitation is not so obvious now from formul0) as in

Agcording to the analysis of the I_inear asymptotic of C.;NSESec. Il A, because in the case under consideration, all terms
with DP>0 (see Sec. Il B localized stationary solutions

(is[c)lyla'fpanghslovllly gtegaythat |nf|n|ty,t .els?em?_lly ‘iff I tends to zero whei tends to the finite threshold valid,.
(4P). Thus, to obtain the proper trial function, for a To show this, let us note that, according to expressi),

possibleA, one should accurately take into account the lin-, DI(2P)> .
ear asymptotic of the solution. Since the Bessel f”nCtiorﬁ;«nlinegr/E‘rzeF;)ue:gll( theig ihf IIDaZr/g(is;)pO;?ébIseovtilgeogli;[_he

JO((%/)r)z IS an glgenfupct|on Qf linear opergtomr .and' lating nature of the soliton solution becomes essential. The
(A; ) , 'Fhe suitable trial function for a localized solitonlike spatial frequency of oscillations;, remains finite when the
solution is supposed to be parameteru,, characterizing decay rate, tends to zero, so
N that pgramete;[%O:y/,uo simultaneously tends to iqfinity
Yo(r)=hJqo( ,yr)e—(1/2),u2r2:/_L A /_f(g;lg)' (49) [se_e Fig. 89)]. Therefore, the threshold value Nffor soliton
2m existence may be determined at the lifg— . This limit
_ _ ~may be found from Eq(38). It is easy to see that the thresh-
where the normalized functiof(¢;8) depends on the vari- old value N, does not depend oK, because the integral
able £=pur and paramete=y/u. The normalizing factor |, (g.) tends to infinity forB,—o slower than the integral

h can be expressed through using the definition(4). The 1,(Bo). One can finally find thaNo=C,|D|/|B|, where
first variational paramete mainly characterizes the soliton

width. The second one, namelg=vy/u characterizes the

number of oscillations on the characteristic soliton width 2010 —17]
-1 . . T p'd P d

~pup~~. Formulas determine soliton parameters and B, Co= lim 211

remain the same as in Sec. lll(Axcept for changing of the Bo—='pd p'd

sign of coefficientD and values of integralsand are given
by Egs.(40) and(38) and Eq.(42), respectively.

in this formula are positive. However, one can show gt

FIG. 11. Spatial-temporal evolution of inten-
sity distribution of unstable vortex solutions in
normal dispersive regimexE —0.75, k=0.3):
(@ m=1, (b) m=2.
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Note that the threshold vallé, is much lower than it was in  rates for this most dangerous mode. Note, that the instability
the regime of anomalous dispersi¢eoefficientC,, found  region becomes wider for lower values of coefficientAs it
by the variational analysis of Sec. Ill A, was equal ta)4 was for the anomalous dispersive regi®, GNSE (3) in

The accuracy of variational analysis in determining thethe caseK=0 has only unstable vortexlike solutions, and
threshold valueN for existence of solitons and their stabil- their growth rates increase monotonically with It is con-
ity is confirmed by our numerical calculatiofsee Sec. IVB  nected with the fact that in the absence of a saturable non-
for details. Figures 8b) and 8c) represent the EDD anl  |inearity (K=0), there is no self-defocusing regime
dependence of the effective width for soliton solutiam ( (dreﬁ/d N<O for all N) for the solutions of Eq(3) We have

=0). One can see from Fig.(1§ that variational and nu- found that only perturbations with azimuthal numbérs
merical approaches for the EDD fit each other much betterin.q 5 L max have nonzero growth rates. For vortices with

the case when soliton profile oscillations are taken into aCfopological chargem=1 we have obtained. =2, and

count in the trial function. The threshold valid, corre- L =3 for vortices withm=2. The valueL ,, gives an

_ 2 _ . . . .
sponds to\ = —D?/(4P) or A =—0.25 on this figure. Varia-  nner estimate for the number of stable solitons, which may
tional analysis predictbistability of solitons in the normal appear as a result of the modulational instability of a vortex

dispersive regime—coexistence of two stable solutions with;ip, topological chargem. This number can be estimated
different number of quanta but with equal nonlinear fre- 554 from Eq.(49).

qguency shifts. Figure (8) represents effective soliton width All results, obtained in the linear approximation, have
as a fu_nc_tion of numb.er of quanta, obtaingd numerically angheen verified by long-term simulations of E@) with per-
by variational analysis. Note, that the trial functi¢d9),  (rhed steady-state solutions as initial conditions. Solitons
which does not take into account oscillationg<0) is not  paye peen found to be stable with respect to all investigated
able to reproduce asymptotic behavior of soliton width atynes of finite perturbations. The spatial-temporal evolution
N— Ny even qualitatively. We conclude that our variational of |gcalized structures in the normal dispersive regime is
approach with the trial function that correctly describes thesimilar to that described in Sec. Il D. In Fig. 11 we represent
Iin.ear asymptqtic of the soluti_ons gives qualitatively appro-examples of unstable vortices breaking up ihig,, stable
priate description of the EDEFig. 8(b)] and of theN depen-  gqjitons. Simulations confirm the existence of stable vortices
dence of the effective soliton widflkig. 8(c)]. with the number of quanta above somg, in the self-

B. Numerical modeling defocusing regimésee Fig. @)]. The dynamics of stable
perturbed structure is found to be quasiperiodic.

Thus, solitons and vortices in the framework of GNSIE
with Kerr-type (K=0) and cubic-quintic nonlinearities in
the normal dispersive regime do exist only if the fourth-order
dispersive effect is taken into account. IP>0, but K
=0, there is no self-defocusing regime: the effective width
of any localized structure is a monotonically decreasing
function of N, in this case only solitons occur stable. As for
vortices, they are stable in the normal dispersive regime only
under acombinedinfluence of higher-order dispersion and
quintic nonlinearity.

Numerical soliton andn-charged vortex solutions of Eq.
(45), with boundary condition§30)—(32) at =1 and at dif-
ferent\ are presented in Fig. 7. The profiles with equal
(but differentN) illustrate the coexistence of solutions from
the lower and upper branches of diagriif\) [see also Fig.
8(b) and Fig. 9. It is seen in Fig. 7 that closer to the edge of
the region, where localized solutions eXist the regime(8)
it corresponds to\~ —0.25], their oscillating tails become
more pronounced.

Figure 9 represents the EDD for vortices with=1 and
m=2. The nonlinear frequency shift for a localized solution
in the normal dispersive regime is bounded from above,
<-—0.25, as was pointed out in Sec. Il B. The threshold
valuesN,,—number of quanta necessary to excite a soliton The main conclusion of our investigation is that in the
(m=0) or vortex (n+0)—are less than the corresponding framework of GNSE(3) with fourth-order dispersion and
thresholds for the GNSE in the anomalous dispersive regimeubic-quintic nonlinearity, stable solitonlike and vortexlike
which were indicated in Sec. Il B. The valudk, increase structures can exist both in anomaldigs. (8)] and normal
with the topological chargen. In the case under consider- [Eq. (9)] dispersive regimes.
ation[regime(9)] we have found numerically the following Our model is relevant first of all to a problem of propa-
threshold valuesNy~2.15, N;~4.5, N,~6.6. gation of intensive electromagnetic waves in magnetized

As in Sec. Il C, we have investigated the stability of plasmas. These waves may have rather complicated disper-
obtained solutions by linear analysis. The radially symmetricsive and polarization properties. Especially, it concerns whis-
mode (=0) is found to have a zero growth rate for any tler waves, which exist in a wide frequency range from ion
soliton or vortex solutions. Solitons are found to be stableplasma frequency to electron cyclotron frequeney..
also with respect to any perturbations witl 0. But vorti- ~ Whistlers(or helicong are often observed in the ionosphere
ces can break up because of modulational instability. Aziand magnetosphere of the Earth, in a laboratory gas plasma
muthal perturbation with. =2 has the widest instability re- and in an electron plasma of solids. Properties of small am-
gion, as befordsee Sec. Il ¢ Therefore, a suppression of plitude whistler waves are well described by the theory, but
the modulational instability of the mode with=2 leadsto a many experimental observations of propagation of large am-
complete stability of the vortex in the framework of linear plitude whistler waves are not explained yet. In particular, it
stability analysis. Figure 10 represents the maximum growtltoncerns an existence of stationary self-focusing not only in

V. DISCUSSION AND APPLICATIONS
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anomalous but also in normal dispersive regirf&$8]. We  total angular momentum of the system. Using the number of
have shown above that solitoifsr stationary waveguidgs quanta conservation law, we have found the upper estimate
are robust against rather large symmetric and asymmetriior a number of stable solitons that can appear after fission of
perturbations, even in the Kerr nonlinear medifify. (3)  an unstable vortex.

with K= 0], if the fourth-order dispersion effect is taken into  As was pointed out in Ref16], the fourth-order disper-
account P+#0). Dispersive or polarization effects become sion effect may be of importance also in discrete molecular
very essential for whistlers with frequency closedg/2, 2D systems: due to the nonlocal linear dispersion eff2a}
where the coefficienb in Eq. (3) vanishessee the Appen- and due to the next order approximation of linear 2D differ-
dix). We think that our model gives an appropriate qualita-€nce operators by differential operators in the quasicon-
tive explanation of these experimen{See the Appendix for tinuum limit. Also it may describe competing short- and
the derivation of the model equation for whistler wave self-long-range dispersive interactiof2]. The quasicontinuum
focusing propagation and a comparison of our theoreticamodel for such a system was obtained in R22]. And then
results with experiments. it was discussed on the basis of a simplified equation, which

We have introduced simple variational analysis, whichcoincides with GNSE3) in the particular cas® =K=0.
was found to be in very good agreement with our numericarraking into account the presence of some kind of saturable
simulations of solitons. In the normal dispersive regime,nonlinearity K#0), in the cas® =0 it is possible to obtain
change of soliton parameters with the number of quanta haot only stable soliton solutions but also stable vortices. As
been correctly predicted by our variational approach, regardvas shown above, it is also possible to extend a quasicon-
ing the soliton profile oscillations in this regime. In the tinuous analysis to the case where the second-order disper-
anomalous dispersive regime higher accuracy of variationg#ion term does not vanish. In R€f22], soliton solutions
results was achieved by means of the trial function, whicthave been found numerically on the basis of the discrete
takes into account the modification of the soliton shape witimodel in two qualitatively different regimes, which corre-
N. This provides an insight into the existence of some criticasPond to the anomalous and normal dispersive regimes, in
number of quant&l, at which a soliton abruptly changes its OUr ‘language.” There is an interesting similarity between
radial profile. We have shown that the valdg coincides the results of our continuum model and the discrete model
with the point of gas-liquid phase transition, obtained in Ref.considered in Ref[22], namely, betweeN(\) diagrams,

[42] for laser light in optical cubic-quintic media. We have dependence of the critical powhl on the linear dispersion
found that this transition comes within the self-defocusingParametefcorresponding t® in Eg. (3)], and in the form of
regime and have investigated an influence of the higher-ord&olitons radial profiles, which may be monotonic or non-
dispersive effect and quintic nonlinearity on soliton proper-monotonic(“staggered’), depending on the regime consid-
ties in both phase states. ered.

Vortexlike envelope electromagnetic wave structures have We believe that our investigation provides a broad spec-
not been discovered in plasmas yet. However, localized oprum of further applications in different physical systems,
tical vortex structures have been observed in nonlinear optisuch as upper-hybrid 2D structures in magnetized plasmas,
cal materials and became a Subject of many theoretical armlght solitons and vortices in nonlinear Optical media, Bose-
experimental investigations. We have studied the influence dinstein condensates, and in 2D discrete molecular systems.
quintic nonlinearity and fourth-order dispersive effect on the
properties and stability of vortices. Both in the anomalous
and normal dispersive regimes, vortices can be stable only if
their effective widths increase witN. But even in such a
strongly nonlinear self-defocusing regime, vortices occur Our model provides the theoretical background for an ex-
stable exceptionally above some critical valg for the  planation of whistler wave propagation in self-induced
number of quanta. At the same time, in the normal dispersivevaveguides, observed in the laboratory experiments carried
regime bright robust vortices may exist only in the presenceput by Stenzel3]. Above some threshold value of input
of higher-order dispersior# 0). Therefore, vortices in this high-frequency power, the strong density depression was
regime may be stable only under the influence of both thdormed first in the near-antenna region in these experiments.
effects considered in this paper: fourth-order dispersien ( After some time it saturated into a long external magnetic-
#0) and quintic nonlinearity #0). field-aligned density trough, in which the whistler wave was

It was demonstrated numerically that vortex rapidly capturedducted. This process was accompanied by a strong
changes its shape if the number of quanta exceeds the criticplasma electron heating. It is remarkable that the self-
number of quantdl,, for vortex stability. Its profile becomes trapping into channels with depressed plasma density was
flat topped, similar to the radial profile of a soliton in a liquid observed at different values of pump frequenbgth in
phase state, when the number of quanta is above the criticahomalous and in normal dispersive regimef whistler
point N, . Therefore, it is reasonable to conclude thgt  waves.
corresponds to the point of phase transition for a vortex. Here we obtain the model GNSE for nonlinear whistler
Using an analogy with fluid mechanics, one can say that onlyvave beam stationary propagation in the direction of the
the liquid vortex becomes robust, because it has the effectivexternal magnetic field=Bgye,, supposing that the main
surface tension strengthening such a vortex. If a vortex isionlinear effect is connected with Joule heating and with an
unstable, it decays into solitons that fly away, conserving thextraction of plasma from regions of stronger plasma pres-

APPENDIX: STATIONARY WHISTLER WAVE
BEAM PROPAGATION
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sure, caused by an increase of electron temperature in the e w2 w? g
strong wave field. The plane linear whistler wave, which —k2— L2y —(ete)—— —|A +A?
obeys the dispersion relation &L c c” &L
| ( w? 2 4
2 2 2 _
ckk,w +—3 | ki——¢e, | ——0g°¢ |E,=0. (A3)
w(k)=——— (A1) e || 2t 4 g
wpetC k

To restore the equation for a spatial-temporal evolution of

(here w,, is the electron plasma frequenay, s> wge, K tht_a wave beam er_1velope, it is s_ufficient to put—Kk,g
k;+k7), is an electromagnetic left-hand polarized wave,+'(‘9/‘?z).’ ©—wo—1(d/91), supposing that the frequency

if it propagates along the magnetic field, (=0). However, ©0 satisfies the dispersion relati¢Al), and that corrections

a whistler wave beam, localized in theiplane transverse tgue to wave beam localization in the transverse direction are

the direction of propagation, becomes elliptically polarizedSMall (paraxial approximationThe termA$ E, formally cor-

and yields a significant longitudinal compon@htof electric responds to the fourth-order dispersion eﬁect The main non-

field. Linear whistler wave beam propagation along the maglmear effect, connected with plasma electron heating, may be

netic field (with frequencyw and parallel wave numbds,) ~ implemented in our model by replacing— wo+ wp

is described by Maxwell equations —i(dlat), where(see Ref[51])
2 2 2 2
1B 14D ﬂ:_“’O”LZVE( j”ez L A
VXE__EE’ VXB_EW’ (A2) wg 2Ve 0§+ v Ep
~ For a steady-state wave propagation we put the operator
whereD(w,k,) =¢E(w,k,), i(dldt) equal to zero. Expanding expressioAd) up to
terms of order  ~|E,/Ep|* [where  E,
e, ig O \/3mT(w02+ Vez) ale?, a~2mIM, v, is the effective fre-
s=| —ig & O quency of electron coII|S|onsT is the electron temperatue

we obtain the corresponding nonlinear terms, which are to be
0 0 g added to Eq.(A3). Thus, wave beam propagation is de-

scribed by GNSE?3), whereV =E,/F,, Fo= V127 Tnya,

and sl——wpe/(w —wBe) 8||——wpe/w and g ng is the electron plasma density. For a stationary wave

:(wBe/w)w J(w?— 03, are components of the dielectric propagation, time should be replaced byin dimensionless

tensor in the cold plasma approximations k,vre, where ~ GNSE(3). Here, dimensionless spatial coordinates y, are

vTe S the electron thermal velociyWe seek solutions of the measured in units of/wo. Coefficients of the GNSE are

system(A2) of the form f(r, )exp(—iwt+ik,z). One can

2 3
reduce the systerfA2) to the set of equations for compo- D= “o [( wBe) _ ] p= 1(&)
nentsE,(r,) andB,(r,) of the whistler wave field: 20pe |\ 2w ' 8l wpe/
3 2 5
2 2 Wpe Ve [ Wpe
wg ® B=— —p) , K=—(—p) : A5
(AL-FC k2)8+ ck, (AL—F 8|)E 0 (‘Uo w(z) wo (A5)

Note that dispersion of the perpendicular group velocity
for whistlers Q?%/&Zkf) changes its sign from plus to minus
at wo~ w2 when frequencyw increases. However, to
avoid a contradiction with our previous notations, we will
still call the caseDB<0 (w<wg/2) the normal dispersive
Other components of the electromagnetic field can be foungegime and the cas8B>0 (w>wg/2) the anomalous dis-
straightforwardly using Eqs(A2). For a plane wave with persive regime.

k, =0, this set yields two independent dispersion relations [et us compare our theoretical and experimental results of

2

w
Ai-i-?s” E,

|:—k§8|+sl

for the left- and right-hand polarized waves: Ref.[3]. The stationary whistler wave self-focusing has been
observed in both dispersive regim@er w<wg 2 and for
w? w2 w>wpd2). Referring to the plasma parameters of the ex-
kﬁ— & =*—0. perimental setup3], we obtain an estimate for the parameter
c c k=KD? PB?~(1-2)x10 3. In normalized units, used for

numerical calculations, the parallel whistler wavelength
However, they are coupled in the wave beam, where compo=10 cm corresponds to the dimensionless parametgk
nentsB, andE, depend on transverse coordinates. Excluding=0.5. Since the absolute value of the nonlinear shift of wave
B, from the above set, we obtain one equation for the paralnumber should be much smaller theg,,, the experimental
lel component of the electric field: conditions correspond to the lower values of energy on
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energy-dispersion diagrambl(\) [Figs. 2b) and &b)], posed it to be of the order of,~10 2wg,, as for electron-
where they slowly change with. We find that the perpen- neutral collision frequengy It gives a too small value for
dicular scale of whistler waveguides is of the order of a fewcoefficientK of GNSE (3) and for normalization factog,,
centimeters, which is in good agreement with the experimenand therefore it gives understated values for the whistler in-
tally observed scale. However, the theoretical value of fieldensity. Using larger values of the effective collision fre-
amplitude is approximately ten times smaller than experi-quency, due to the anomalous scattering of electrons by wave
mental values. This discrepancy may be connected with afiuctuations in turbulent plasma, one gets, accordingly, a
underestimate of collision frequen¢guthors of Ref[3] sup-  larger estimate for a ducted whistler intensity.
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