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Convective heat transport in a rotating fluid layer of infinite Prandtl number: Optimum fields
and upper bounds on Nusselt number
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By means of the Howard-Busse method of the optimum theory of turbulence we investigate numerically
upper bounds on convective heat transport for the case of infinite fluid layer with stress-free vertical boundaries
rotating about a vertical axis. We discuss the case of infinite Prandtl number, sblution of the obtained
variational problem and optimum fields possessing internal, intermediate, and boundary layers. We investigate
regions of Rayleigh and Taylor numbdRsaand Ta, where no analytical bounds can be derived, and compare the
analytical and numerical bounds for these regionsRond Ta where such comparison is possible. The
increasing rotation has a different influence on the rescaled optimum fields of velq¢itgmperatured, and
the vertical component of the vorticiti;. The increasing Ta for fixe® leads to vanishing of the boundary
layers ofw,; andd,. Opposite to this, the increasing Ta leads first to a formation of boundary layers of the field
f1 but further increasing the rotation causes vanishing of these boundary layers. We obtain optimum profiles of
the horizontal averaged total temperature field which could be used as hints for construction of the background
fields when applying Doering-Constantin method to the problems of rotating convection. The wave aymber
corresponding to the optimum fields follows the asymptotic relationship (R/5)Y* for intermediate Ray-
leigh numbers. However, whéhbecomes large with respect to Ta, after a transition region, the power law for
a4, becomes close to the power law for the case without rotation. The Nusselt number Nu is close to the
nonrotational bound 0.32 for the case of larg® and small Ta. Nu decreases with increasing Taylor number.
Thus, the upper bounds reflect the tendency of inhibiting thermal convection by increasing rotation for a fixed
Rayleigh number. For the regions of Rayleigh and Taylor numbers where the numerical and asymptotic bounds
on Nu can be compared, the numerical bounds are about 70% lower than the asymptotic bounds.
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[. INTRODUCTION for convection in a rotating layer of finite Prandtl number
through the use of separate energy balances for toroidal and
The turbulent solutions of the Navier-Stokes equations apoloidal components of velocity fiel®21].
very large Reynolds or Rayleigh numbers are extremely Another interesting method of the optimum theory of tur-
complicated. The optimum theory of turbulence is among eulence was proposed by Doering and Constd&8). This
small number of tools for obtaining rigorous estimates of themethod and its modificatiofR4] are based on the idea for a
turbulent quantities directly from these equations. It leads talecomposition of the velocity field into a steady background
upper bounds on turbulent quantities on the basis of or intefield that satisfies the inhomogeneous boundary conditions,
gral constraints which are members of infinite system of moand a homogeneous fluctuations field. An appropriate back-
ment equations. Using finite number of these integral conground field that satisfies certain spectral constraints easily
straints, we determine the class of fields among which théeads to an upper bound on the corresponding turbulent
upper-bound solution of the corresponding variational probguantity[25—44§. In addition to the application for different
lem is sought. All solutions of the Navier-Stokes equationsflows and thermal convection the optimum theory of turbu-
are contained in this class of fields and in addition the energlence was applied in plasma physics for obtaining upper
balance of the real flow is retained. We can restrict the numbounds on the heat transport due to the ion-temperature gra-
ber of considered fields by taking into account additionaldient, on the energy dissipation in a turbulent pinch, etc.
constraints. Thus, in principle, we can tighter the uppef47-53.
bounds on the investigated quantities. Many phenomena in earth atmosphere, oceans, solar, and
Two methods of the optimum theory of turbulence areplanetary atmospheres are based on the turbulent thermal
known. The Howard-Busse method is based on the ideas @onvection in presence of rotation. Thus, it is a subject of
Malkus [1,2], variational approach of Howard], and the extensive theoretical and experimental investigatiffé—
multi-a-solutions of Bussd4]. This method was success- 68]. In this paper we use the Howard-Busse method of the
fully used by Char{5] and applied to many cases of fluid optimum theory of turbulence and obtain numerical upper
flows and thermal convectidi’—22. We mention the recent bounds on convective heat transport in a horizontal layer of
success in lowering the bounds on convective heat transpofiuid rotating about a vertical axis for the case of moderate
rotation rates and stress-free boundaries. The analytical treat-
ment of this problem has been presented in RE£9]. A
*Electronic address: vitanov@imech.imbm.bas.bg discussion of the problem of rotating convection from the
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point of view of the Doering-Constantin method is presentednum fields. We show that these fields tend to satisfy the
in Refs.[37,44,45. assumptions of the analytical asymptotic theory with increas-
Numerical investigations are extremely useful in the opti-ing Rayleigh and Taylor numbers. We investigate the com-
mum theory of turbulence because of the following reasonsplicated behavior of the optimum field connected to the ver-
(@) In contrast to the analytical theory, by means of nu-tical component of vorticity. In addition, we obtain optimum
merical investigation we obtain profiles of optimum fields Profiles of horizontally averaged temperature field. Sec. IV is
and bounds on the turbulent quantities without any assumgievoted to the behavior of the optimum heat transport and
tions concerning the Euler-Lagrange equations of the variacorresponding wave number. Several concluding remarks are
tional problem. The only limitation on the size of the region Presented in Sec. V.
of the obtained bounds in the-Ta plane is the computer
power. Il. MATHEMATICAL FORMULATION OF THE PROBLEM
anéb%;;;g renirrik?grl:, :/(\)/er?:aa(r:]ht:s]'?trr]?aglaosr;ir%fpiiggg oRf%l:'gs% We investigate a horizontal layer of fluid heated from be-

. . w, which rotates about the vertical axis with a constant
Iytical asymptotic theory, to correct them and to amend thean ular velocity(). Let us discuss the idealized situation of
theory if necessary. 9 '

; . . n infinite layer and consider the Boussinesq approximation
(c) The obtained numerical bounds are important also fof : ;
small and intermediate values of the Rayleigh and Taylo}olléhe.neq::g:;.rz)snsog t?ﬁcﬂzgjsglz\;[’;% f\|/V% f:aélr usti;rrje
numbers where the assumptions of the asymptotic theory arrg wing lons.c, ti : e fluid 1ayerk, 1
not valid. Our experienciL5,16,20 shows that the numeri- mome_trlc conductlvny of the fluidy, .klnemat|c viscosity of
cal bounds are lower than the analytical asymptotic bound e fluid; g, acceleration of the gravitAT, the' temperaturt.e
for large Rayleigh numbers. |ﬁer§nce between the upper and lower fluid boundary;
(d) For very large values of Rayleigh and Taylor numbers,ciegsgﬁz/o'(z tr_ll_e Iflu|d, sz V_/Ig'_ P”Zn_l(_jgs /numbe[?, Ta
the numerical bounds approach the asymptotic bounds fro _.( h Vg ' ay orﬁ_nL_lm erf, h_(79| ) (K.V) g ay-
below. If we are able to obtain numerical solutions for such’®'9" number;y, coefficient of thermal expansiop, pres-
large values of the Rayleigh and Taylor numbers, we can tr)§ure, andk, unit vector in the direction opposite to the grav-

to extract directly the asymptotic laws for the Nusselt num-- . . . .
ber or for the wave numbers of the optimum fields. Denoting the horizontal size of the fluid layer Bswe

(e) For many problems, we wish to develop an asymptoticdeﬁne averages of quantities over the plamesconst and

theory based on the multi-solutions of the variational prob- ©Ver the fluid layer

lem. In order to do this successfully, we have to understand 10

the asymptotic behavior of the optimum fields as well as the a= lim _j f dxd t 1
asymptotic behavior of the bound on the convective heat a LLOC4|_2 S xdyatxyz o, @
transport for the case of &-solution of the corresponding

variational problem. This makes the numerical investigation 1 (L (L (1P
of the cor.respondmg 4« solution of the variational prob- (g)=lim —Zﬁ f, fﬁ dxdydZq(x,y,z,t)}. (2)
lem very important. L4l LJ-LJ-12

In this paper, we obtain numerically profiles of optimum
fields and upper bounds on the Nusselt number for the casEkingd as a unit for lengthx/d as unit for velocity,d®/ «
when the optimum fields consist of internal, intermediate @S unit for time, angv«/d? as unit for pressure, we obtain
and boundary layers. We restrict the investigation to the casée dimensionless form of the Boussinesq equations,
of one wave number of the optimum fields with an objective

to test the assumptions of the recently presented asymptotic l a_u _ E‘ 2

theory[69], and to pave the way for constructing analytical P( at U Vu) 2 Vp+VautRTk+ VTaluxk),
multi-wave-number theory, which eventually will lead to 3)
correction of Chan’s bounds]. It has been showfl9,69

that the bounds of Chan are upper bounds on the upper 0 5

bounds on the Nusselt number for several cases of convec- EJFU' vVe=vsoe, )
tion with and without rotation. We could expect a similar

result also for the multi-wave-number bounds for the rotating V-u=0. (5)

convection. The rotation leads to enormous complication in

the analytical treatment of the multi-wave-number bounds. The boundary conditions a= *+1/2 are stress-freai;

To avoid mistakes, the theoretical assumptions must be very g?u;/9z2=T=0. The quantity® in Eq. (4) is the total
carefully checked for the case of the single-wave-numbetemperature field and is the deviation of the temperature
theory. This can be done numerically and it is performed infield from its horizontal mean.

the following sections of the paper. In Sec. I, we formulate

the variational problem and discuss the region of validity of O=0+T. (6)

the 1— « solution of the variational problem as a maximizing

solution. In Sec. lll, we discuss the investigated regions for We formulate a variational problem using two moment
Rayleigh and Taylor numbers and the behavior of the optiequations obtained on the basis of the Boussinesq equations.
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We assume thati) all necessary horizontal averages of thewherez component of the rescaled velocity fields denoted
functions, describing the flow existij) the horizontal aver- asw. Taking thezcomponent of the horizontal curl and the
ages of the fluctuation quantities vanigiii,) the flow is sta- component of the double curl of the result, we obtain the
tistically steady in time and homogeneous in the horizontatelationships

averages.

Our objective is to obtain an upper bound on the convec- 2 oW
tive heat transport through the fluid layer, i.e., upper bound Ve ‘/T—aE_O’ (3
on the Nusselt number
of
(UsT) VAw+ V26— \/ﬁa— =0, (14)
Nu=1+-2~". 7) z

where f=—V, ¢ is the vertical component of the vorticity.

We introduce Eq(6) in the Boussinesq equations, multi- Substitution of Eq(12) in Eq. (10) leads to
ply Eqg. (3) by the velocityu, and average over the fluid

2 o 2
layer. The result is a relationship known also as a power _ (vl M<(W9_<W‘9>) ) (15)
integral (wo) (woyz
(IV-ul?)=R(ugT). (8) Using Eqgs.(13), (14), and(15), we formulate the following

variational problem * and g* are Lagrange multipliejs
Another relationship can be obtained by a multiplicationind the minimum Ku) of the variational functional

of Eq. (4) by T and by averaging the result over the fluid (Vo) <(vﬁ—(w0))2) i w
= —( p*| V2 + JﬁaE

layer. In this way, we obtain a relationship containing the R

term (usT(9@/Jz)). It can be transformed by a horizontal (wé) a (wh)?
averagir)g of the heat equation and jntegrating the obtained of
result with respect ta. Thus, we obtain —<q* ( V4W+V"{0— \/T—aﬁ > (16)
% =u3_T—(u3T>— 1, (99 among all fields wo, f that satisfy the boundary conditions
Pw  of
and the second power integral w= 6= 92 Tz =0, (17)

(IVT[?)=(usT)2—(usT2)+(usT). (100 atz==*1/2.
The corresponding Euler-Lagrange equations are Egs.
By means of Eq(9), we shall calculate the mean tempera- (13), (14), and

ture ® in the following section. The assumption of infinite
Prandtl number allows us to include additional restrictions
on the the manifold of candidates for optimum fields. Our ap*
investigationg 21] show that the upper bound on convective —(Wﬁ)z(V4q* —\Ta 0 )=0, (18)
heat transport in the case of a horizontal fluid layer heated
from below and rotating about a vertical axis depends ) 2 —
weakly on the Prandtl number when the Prandtl number is (|61 )w—2(w8)V=0+2w[ u(Wo—(W6)) — R(w6)]
closeto 7 and larger. This.defi_nes thg r_egion of Prandtl num- —(wﬁ)zqu* -0, (19)
bers, for which the approximation of infinite Prandtl number,
used here, is valid. aq*
When Prandtl number is infinite, the Navier-Stokes equa- V2p* +\Ta =0. (20)
tion becomes linear and we include it as a constraint in the 9z
variational problem. We take into account the equation o%v

(IV 612) 6+ 26 (wo—(w6)) — R(W6)]

continuity by the general representation of a solenoidal fiel e note that the_ fielda and 9’_ determ|r_1ed from the E_uler-
u in terms of a poloidal and a toroidal component agrange equgno_ns, automatically satisfy .th? power |_ntegral
(8). After elimination of the Lagrange multipliers and intro-

duction the - « solutions of the variational problem,

u=VX(VXkep)+VxXky. (11
, , _ , W=w1(2) (X,Y), (22)
We introduce Eq.11) into the Navier-Stokes equation
(P==) and perform the rescalings 0= 6,(2) p(X,y), (22
u=uwe) 1, T=uMAwe) VR e, (12 f=f(2)(x.y), (23
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where =1 and VZp=—a’$,we obtain the following As it can be seen from Eq$21)—(23), we restrict our
form of the Euler-Lagrange equations: investigation to the + « solution of the variational problem.
In addition to the objective for testing the assumption of the

d? 5 4 2 5 3 analytical theory from[69] we have one more reason. As
2(w161) a2 “ 01+]2 42« Wy shown by Chan, Ref8], when Ta<O(R*3), the maximiz-
ing solution has finitely many modes. This is an important
d? df d2 difference with respect to the case of a fluid of finite Prandtl
—Tal/z(—— a%)_l 2R<W191>+< 6, __ai) 91>] number and without rotation for which the number of wave
dz dz dz numbers of the maximizing solution can be infinite. More-
P ) over, in the region of larg® and Ta and when
- Zﬂai[ FE ai) [01(W16,— <W191>)]} - 2#[ 42 R(4-2K-3)/(3-2¢~ 2 <Ta< R(8-25-3)/(6:2~2) (30)
8 d?w, d2 the maximizing solution hak+1 modes. The region of va-
= af [Wl(W101—<W101>)]] +Ta—< 01< — lidity of the single-wave-number solution from RE69] is a
dz’ dz’ subregion of the regiofB80) whenk=0. Thus, according to

Eq. (30), the 1- « solution has to be maximizing when Ta

—a?| 6, ) +2Taw, 6;) <O(R)%*, i.e., for almost the entire regions of largeand
Ta investigated in this paper.
d? 2 d”6, d* lll. BEHAVIOR OF THE OPTIMUM FIELDS
X 42 “ F_ZT?{Wl[M(W191_<W191>) : U
From the point of view of the analytical theof$9] if
—R(w46,)]}=0, (24 Ta<aj, we do not expect significant changes in the
asymptotic behavior of the optimum fields in comparison to
d? dw, the case without rotation. After a transition region around
— —a?|f+Ta?——=0 (29 Taxat heck th ti d lts of th
92 ‘1 dz ; axaj, we can check the assumptions and results of the

asymptotic theory for the case of intermediate rotation rates,
i.e., foraj<Ta<a$. After a second transition region around
ﬂ (26) Tax a8, we can study the influence of strong rotation and
dz check the analytical results when Ta is larger thﬁg‘l or

. ) when «;>Nu. In order to compare the numerical investiga-
The homogeneity of the Euler-Lagrange equations allows Ugons to the assumptions and results of the analytical
to impose the requirement=(w, 6,). Forwy, 61, andf;,  asymptotic theory, we have to consider the investigated re-
we use the following relationships that satisfy the boundar;gionS in the planes Faa, and Ta-R. These regions are

dz

o2 ?
—ai Wl—aiﬁl=Ta1/2

conditions: shown in Fig. 1. The figure is obtained as follows. For panel
M (a), we fix the Taylor number and calculate the function
_ : _ Nu(ea4) for several values of the Rayleigh number. We de-
Wl(Z)_mZzl Ansin (2m=1)m(z+1/2)], @ note with filled circles the values of the wave numher
corresponding to the maximum of the Nusselt number for
M given values oR and Ta. As the Taylor number is fixed, we
0,(2)= 2 bysin(2m—1)w(z+1/2)], (28 obtain straight lines of filled circles with increasing Rayleigh
m=1 number. The optimum value of the wave number increases
M with increasing Rayleigh number and the last circle on the

right-hand side of each straight line corresponds to the maxi-
mum value of Rayleigh number for, which we have been
able to perform the calculation for the corresponding fixed
We have to truncat®l in such a way that the solutions do value of the Taylor number. Pan@l) of Fig. 1 is produced in
not depend in any significant way on this parameter. Outhe same manner as paral with the difference that we fix
criterion has been that the truncation valueMfis suffi-  the Taylor number and plot with filled circles the Rayleigh
ciently large such that Nu changes by less than 0.1% whenumbers corresponding to optimum valuesaqf plotted in

M is replaced byM —5. The largest value fav used in the panel(a). Thus, for an example, the last circle of the bottom
calculations wadvl =160. The relationships fowv,; and #;  straight line in pane(a) corresponds to the last circle at the
are symmetric with respect to=0 and the relationship for bottom straight line in pangb).

f, is antisymmetric. The reason for this choice are the nu- Panel(a) of Fig. 1 shows that on the basis of the per-
merical investigations for the case of finite Prandtl numbeiformed numerical calculations we can make conclusions
[21]. They show that with increasing Prandtl number, theabout regions where Faaj; Taxa) and aj<Ta<a$, i.e.,
fieldsw, and 6, become symmetric with respectze-0 and  for the regions of weak rotation, first transition region, and
the profile forf, becomes antisymmetric. the region of intermediate Taylor numbers. We see that in the

fl(z):mE:l cncod (2m—1)m(z+1/2)]. (29)
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(a) have to take into account the region of validity of these
bounds in theR-Ta plane. It is presented in pan®) of Fig.
. 1. For the case of three-layer optimum fields, the asymptotic
bound for the case of intermediate Taylor numbers is valid
for large enough values of the Rayleigh and Taylor numbers
and whenO(R)<Ta<O(RY!9. As it can be seen from
panel(b) of Fig. 1, the region of validity of asymptotic rela-
tionships is relatively small for the numerically reached val-
ues ofR and Ta. Thus, we have to be careful in the state-
ments about asymptotic relationships on the basis of the
obtained numerical results. In the same panel, we present
also the regionR**<Ta<R'¥® where according to the
theory of Chan, the two-wave-number solution has to be a
maximizing one. We note that only few of our calculations
are in this region of th&®-Ta plane. These calculations, how-
ever, are relatively close to the onset of convection and thus
are quite far from the region where the asymptotic properties
of this solution can be investigated. We estimate that in order
to do this investigation, one has to perform numerical calcu-
lations for values of Rayleigh and Taylor numbers, at least
o, 1010 This task requires much computing time even for
the largest computers. Moreover, the results for the two-
(b) wave-number solution are not so important for the analytical
multi-wave-number theory because all assumptions, made in
B B B SR R BN ¢ order to construct such a theory, can be tested for much
4 lower Rayleigh and Taylor numbers in the case of the single-
wave-number theory.

One of the widely used assumptions of the asymptotic
theory is that the ratidl=w,6,/{w,6,) tends to 1 in the
entire vertical region of the fluid layer except for the two
boundary layers. Figure 2 shows the influence of Rayleigh
and Taylor number ofl. In panel(a), the Taylor number has
the fixed value Ta 10° but the picture is characteristic also
for the case of much larger Taylor numbers. We observe the
formation of boundary layers and in large areas of the fluid
o layer [I—1 as it is assumed in the analytical asymptotic
theory. The effect of increasing rotation bhcan be seen in
panel(b) of Fig. 2. Here the Rayleigh number is fixed. In the
region of small Taylor numbers, we observe relatively slow
deviation from a profile close to the asymptotic profile. This

I E tendency becomes much visible when Taylor number be-
3 4 5 6 7 5 5 comes large enough and the profile becomes close to the
10 100 10 100 100 100 10 . X .

profile around the onset of the convection. Thus, in order to
R havell —1 it is not sufficient that the values of Rayleigh and

FIG. 1. Panela) investigated area for the optimum wave num- Taylor numbers are large enough. In addition, the Rayleigh
ber. Solid line, Ta a?; dashed line, TaaS. Panel(b) R-Ta dia- Number must be large enough for the given value of the

gram. Solid line denoted by 1, FR; dashed line denoted by 2, Taylor number.
Ta=R™1% dashed-double dotted line denoted by 3=R?™* dot- Let us fix the Taylor number and increase the Rayleigh
ted line denoted by 4, FaR™”, number. This leads to formation of boundary layers of the
optimum fields. Larger values of the Taylor number lead to
case of small Taylor numbers and increasing Rayleigh nummore slow formation of boundary layers with increasing
ber, the wave number leaves the region of validity of theRayleigh number. Figure 3 shows the formation of boundary
analytical asymptotic results and gets into the region of valayers forw,(z) when Ta=10°. We note that in the case of
lidity of the asymptotic results for the case without rotation.finite Prandtl numbers and without rotation, we observe a
Only when the Taylor number becomes large enough, théormation of a peak of the function dependentwy(z) and
numerical results can be compared to the analyticamotion of this peak to the border of the fluid layer with
asymptotic results. In order to make statements about thiacreasing Rayleigh numbgt5]. Here the Prandtl number is
analytical asymptotic relationships for the upper bound orinfinite and there is no peak formation. Thus, the situation is
the convective heat transport and optimal wave number wanalogous to the case without rotatid6] with one differ-

—
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0.5

FIG. 2. Panela) influence of Rayleigh number on the rafib
=w, 6,/(w, 6,) when Taylor number is fixed, Fal0®. From top to
the bottom az=0: R=2.7x10%, 3x10%, 5x10%, 10, 2.5x 10%,
5x10%, 1P, 2.5x1C°, 1(f, 10°. Panel(b) influence of Taylor
number when Rayleigh number is fixeR=10°. Solid line, Ta
=10%; dotted line, Ta= 10*; dashed line, Ta 10°; dot-dashed line,
Ta=10% dot-two dashes line, Fal(’,
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(a)

3000 — T

Wi 1500 +
T T T TS~ -~
1000 7 \\—
!
’ ‘
f . e = ——, - . \
5008 , \
) e — \
y . — Tl
0 | 1 | 1 | 1 | 1 |\
0.4 0.2 0 0.2 0.4
Z

FIG. 3. Panela) influence of Rayleigh number om;, when the
Taylor number is fixed, Ta10°. Solid line, R=10°; dot-long
dashed lineR=10%, dashed lineR=2.5x 10°; dot-short dashed
line, R=10"; two dots-dashed lindR=2.5x 10'; long-dashed line,
R=1C®. Panel(b) influence of Taylor number ow,(z) when Ray-
leigh number is fixedR=10%. Solid line, Ta=1CP; dotted line,
Ta=10"; dashed line; Ta10%; dot-dashed line, Ta10’; long-
dashed line, Ta 10X

Characteristic feature of the fielg} is the fast formation

ence: because of the presence of rotation, the formation aff boundary layer with increasing Rayleigh number. The

boundary layers proceeds more slow. Pafigl of Fig. 3

boundary layer is very thin and the corresponding peaks of

shows that the increasing Taylor number when the Rayleigthe functiond,(z) are very sharp—see pan@) of Fig. 4.
number is fixed leads to vanishing of the boundary layers foiVe note that the boundary layer f@y is thinner than the

w; and to decreasing of the function;(z) in the entire
vertical direction of the fluid layer.

boundary layer fordl, which is thinner than the boundary
layer for w,. The presence of rotation leads to a
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FIG. 4. Panel(a) influence of Rayleigh number of; when
Taylor number is fixed. Ta10f. From top to the bottomR=2.5
X 10°,10F,5% 107, 2.5x 107,107,5x 10, 3x 10°,2% 10°. Panel(b)
influence of Taylor number on the optimum fiedd. R=10". The
values of the Taylor numbers are solid line,=T&0%; dotted line,
Ta=10% dashed line, T&10°; dot-dashed line, Fa10®; long
dashed line, Ta 10; two dots-dashed line, Fa10®.
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fluid layer. We note that the decreasenn and §, whenR is
fixed and Ta increases leads to decreas@nipf;) and thus
to decrease in the Nusselt number.

A new moment in comparison to the case without rotation
is the presence and behavior of the fiéldz). Panel(a) of
Fig. 5 shows the influence of increasing Rayleigh number on
f, when the Taylor number is fixed. We observe formation of
a boundary layer and at the remaining part of the lafers
very close to 0 as assumed by the analytical asymptotic
theory. The Taylor number has quite an interesting influence
on f4(z). This can be seen in pan@) of Fig. 5. When the
Taylor number is small in comparison to the Rayleigh num-
ber, the increase in rotation leads to formation of boundary
layer and to enlarging the area in the interior of the fluid
layer wheref, has a small value. However, further increas-
ing in the Taylor number leads to the opposite process. The
sharp boundary layer begins to smooth and the absolute
value off, in the interior of the fluid layer increases.

Figure 6 presents the influence of the Taylor and Rayleigh
numbers on the mean temperature profile as calculated by
Eq. (9). The upper panel presents the case of fixed Rayleigh

number. The profile 0® has characteristic peaks that vanish
when the Taylor number increases. The process of formation
of such peaks can be seen when the Taylor number is fixed
and Rayleigh number increases. The profiles shown in Fig. 6
could be used as hints for construction of background fields
when applying the method of Doering and Constantin to the
problems of rotating convection. These profiles show that the
optimum background field could have complicated structure,
consisting of curved lines.

IV. UPPER BOUNDS ON THE HEAT TRANSPORT
AND BEHAVIOR OF THE OPTIMUM WAVE NUMBER

The influence of rotation on the optimum wave number is
in agreement to the assumptions of the analytical asymptotic
theory. Panel@) of Fig. 7 shows that for fixed and small
Taylor numbers,«,(R) follows the the power law for the
case without rotation but the coefficient before the power is
larger than 0.2. For example, when=Ta0®, the coefficient
is close to 0.9. With increasing Taylor number;(R) is
close to the asymptotic relationshig = (R/5)Y* for the case
with rotation but when the Rayleigh number becomes large
enough after a transition regioa; begins to follow the
asymptotic relationship for the case without rotatjisae, for
example, the triangles marking the case=T4’ in panel(a)
of Fig. 7]. With increasing Taylor number the region, in
which the asymptotic relationship for the case with rotation
is followed becomes larger at the expense of the transition
region and the region where; is close to the asymptotic

delay of formation of the boundary layer. In large region of power law for the case without rotation. We note that this
fluid layer, the deviations of; from its value at the interior transition region is the transition region around>c'55§1 pre-
of the layer are very small. The effect of vanishing of thedicted from the analytical theory.

boundary layer off; because of increasing rotation can be

Panel(b) of Fig. 7 presents the influence of Rayleigh and

seen in pane(b) of Fig. 4. The peak in the boundary layer Taylor numbers on convective heat transport. We observe
persists up to very large values of Taylor numbers. The dethat increasing Taylor number leads to decreasing Nusselt
creasing value o8, in the boundary layer is connected with number, i.e., to an inhibition of the heat transport. Thus, the
increasing value of the optimum field in the interior of the optimum theory correctly reflects this property of the rota-
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FIG. 5. Panel(a) influence of Rayleigh number on the field FIG. 6. Panela) influence of rotation on the mean temperature
f1(z) when Taylor number is fixed, Fal(®. From top to the bot-  field, R=2.5x1C°. Solid line, Ta=10%; dotted line, Ta 10%;
tom at z=—1/2: R=10°,10F,2.5x10°, 10°,2.5x10",1¢°. Panel dashed line, Ta& 10°; dot-dashed line, Fa1C’; long-dashed line,
(b) influence of Taylor number on the optimum fieldz). R Ta=10". Panel(b) influence of the Rayleigh number when Taylor
=10". The values of the Taylor number are solid line,=TE0®; number is fixed, Ta1CP. Solid line, R=10°; dotted line,R=2.5
dotted line, Ta=10% long-dashed line, Fal10®; dot-dashed line, X 10°; dot-dashed lineR=5x 10°; dashed lineR= 10°; two dots-
Ta=10%; dashed line, T&10’; two dots-dashed line, Fa1(f. dashed lineR=2.5x 1(f; dot-two dashes lineR=5x 1.

tion. For large Taylor numbers, the optimum fields convergeout rotation[16]. Indeed in pane(b) of Fig. 7, we see that
very fast to the corresponding asymptotic profiles. Thiswith increasing Rayleigh number and fixed Taylor number,
makes difficult their numerical investigation for large valuesthe upper bound on the convective heat transport approaches
of the R because of the very small sizes of the correspondindrom below the above-mentioned bound.

boundary layers. One of the assumptions of the analytical We can compare the numerical bounds to the analytical
theory is that for small Taylor numbers, the upper bound orbounds, obtained in Reff69,37,45. A comparison between

Nu should be close to the bound OFBZ for the case with- the analytical bounds from Reff69,37 has been made in
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(a) Nu=0.32R*? as obtained in Ref.16]. After a transition re-
gion around Ta R for the regionO(R) <Ta<O(R9, the
100 F [T rromm T3 bound |S
L ‘/:
i ‘,{ ] 2 RZ3[(5Te\ Y3
A —
I o~R/5)" v{:/A : 1 Nu—1= 3135583043 T415| | R ” L, (31)
i . N i
%
I 22" 1 whereD =1.06 andL is
’.4 + T a® *
10 L : L 3 5T\ /6 ~1/3
r K4 n * ]
opt - 7 al % ¥ ] In{ In R
L p L=| 1+ 75 (32
LT * _-7 5Te
L /// i 31In _R
- //O;{;Z RI/6 -
//// There are three kinds of bounds in Re45]. The bound
E -~ i without rotation
r -7 ]
:/// I | ] Nu< R1/3(|n R)ZIS (33)
0° 10° holds up to the T&4RY(InR)®3. The bound
R
(b) Nus (3)*°Ta?*R"> (34)
B S has a region of validity R*¥(In R®*<Ta<4RY? and fi-
s | nally the bound
107 Nu=0.32R

1 |J||||]|;

Nu< R%5 (35)

is valid in the region RY?<Ta<4R".

Figure 8 shows a comparison among the numerical
* bounds and the above-mentioned analytical bounds. There
are three groups of plots shown in this figure. The symbols
* (circles, squares, diamonds, triangles, and plysstesw the
numerically obtained bounds. The dotted, dashed, and dot-
dashed lines present the bou(®%) for the same values of
Rayleigh numbers, for which the numerical bounds are ob-
tained. The solid line marked witB presents the boun@®1)
correspondent to the numerical bound, marked with plusses.
The last numerical bound is about 70% lower than the bound
(31). Figure 8 is a nice illustration of the fact that because of
the large number of assumptions in the process of of the
analytical bounds in Ref[69], their region of validity is
R much smaller in comparison to the region of validity of the
numerical bounds. As in the all cases we investigated nu-
ggwerically up to now[16,20, the here obtained numerical

@

A
Lt [ SWRTTI

10
10" 10° 10°

FIG. 7. Panel(a) influence of Taylor number on the optimum
wave number. Dashed line: asymptotic optimum wave number fi

the case without rotation. Dot-dashed line: asymptotic optimu . .
wave number for the case with rotation. Stars=T#°; squares, The difference among the numerical bounds and the ana-

Ta=10% plusses, Ta10%: triangles, Ta=1CF; circles, Ta=10; lytical bound(35) is larger than 70% but an useful feature of
diamonds, Ta 10°. Panel(b) Nusselt number as function of Ray- the bound(35) is that this bound has much larger region of
leigh number for different Taylor numbers. Solid line: the Validity than the bound31). Thus it is the best analytical
asymptotic power law N 0.32RY2 for the case without rotation. bound for the regions d® and Ta where the analytical bound
Circles, Ta= 10°; squares, Ta&10*; diamonds, Ta10°; triangles,  (31) is not valid.

Ta=1CP; plusses, Ta10"; X, Ta=10%; stars, Ta=10°.

ounds lie below the analytical asymptotic bounds.

. . V. CONCLUDING REMARKS
Ref.[69]. Due to this, we shall compare the bounds obtained

above to the bounds from Refg69,45. In Ref. [69], the The processes in rotating convecting systems are gov-
bounds are as follows. For large valuesRdind Ta and when erned by the interplay between heating and rotation, i.e., be-
Ta<R, the situation is similar to the case without rotation tween the Rayleigh and Taylor numbers. One assumption of
and the upper bound is the same as in the nonrotational cagée asymptotic theory is that for very large values of the
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HE U AL S I per bounds on the convective heat transport also in regions
1000 oo TTTTmmm e of Rayleigh and Taylor numbers where the assumptions of
e the asymptotic theory are not valid.
----------------------- With respect to the assumptions of the analytical theory,
we can make the following conclusions.

(i) The numerical investigations confirm the assumption
that in the case of small Taylor numbers, i.e., when Ta
<af, the behavior of the optimum fields and the behavior of
the upper bounds is similar to the behavior in the case with-
out rotation. In particular, the power law far; is the same
. as in the case without rotation with the difference that the
coefficient before the power is larger. For fixed values of
Taylor number, and with increasing Rayleigh number the up-
per bound on Nu is close to the corresponding bound for the
case without rotation.

(2) We detected the predicted transition regiorwc]iei in
i L s v ! the functiona(R, Ta).

? ¥ ¥ (3) WhenR and Ta are large enough théh—1 in the

1004

L4
O E o »+

® B 6 b»+

/w

10

10 10 10
Ta entire fluid layer except for the two boundary layers.
(4) w; and 6, tend to be constants in the interior of the
Nu(Ta) for fixedR and corresponding analytical asymptotic rela- (5) We observe different speeds of approachlng of
tionships from Refs[45,69. Nonmarked lines: analytical results 5oy mniotic relationships. There exist fast approaching of the
Iirr?em Effigés]agfelfjblﬁn:asﬁ_gcgiefoilh?a:srsl;lﬁ’elglgsiafg?d asymptotic law fora;(R). Much slower is the approaching
dot-dashed lineR=10°. Solid line marked withB: analytical Lgijii:ﬁ%%ﬂE;r;jfrtlggrsnhégrfor the Nusselt number for the

bound from Ref[69] for R=1C%. Symbols: numerical results ob- . .
tained in this pz[ape]r CirclesR:5>)</105' squaresR=10: dia- (6) The obtained numerical bounds are always lower than
monds.R=2.5x 10: iriangles,R:5>< 10%. plusses’R: 103’ the analytical bounds, projected back to the intermediate val-

ues ofR and Ta.
Rayleigh and Taylor numbers, some terms in the Euler- In addition, we observed interesting behavior of the ver-
Lagrange equations are much smaller than the other termtical component of the vorticity where rotation can lead to
On the basis of this assumption, we neglect the influence dbrmation of boundary layers. The optimum profiles for
such terms and the equations are simplified. This allows ona@re quite complicated. We note that these optimum profiles
to obtain analytical asymptotic results for the upper boundsare obtained automatically on the basis of the calculated op-
wave numbers of the optimum fields, etc. For the case ofimum fields and carry much interest for theoreticians and
nonasymptotic values of the Rayleigh and Taylor numbersexperimentalists information about the temperature distribu-
all terms in the Euler-Lagrange equations are significant, th&on.
equations become too complicated for an analytical treat- Finally, we note that our investigation was based on three-
ment, and we have to solve them numerically. Because of thiyer optimum fields, i.e., the optimum fields have the same
numerous assumptions for the behavior of the terms of th&tructure as in the case without rotation. The numerical in-
Euler-Lagrange equations of the variational problem, the revestigation in this paper confirms all assumptions of the cor-
gion of applications of the analytical asymptotic results isresponding analytical asymptotic theory. Thus, the way for
confined inR-Ta plane, and it is relatively small for interme- amending the multi-wave-number theory of the upper
diate values of Rayleigh and Taylor numbers accessible withounds for the rotating confection is paved. In addition to
computers. For an example, a more careful calculation of théhis problem, the optimum theory of turbulence of rotating
coefficients in Eq(30) leads to the following relationship for convection leads to many other interesting problems. For an
the validity of the single-wave-number solution for the caseexample, in the case of infinite Prandtl numbers and rigid

of large Rayleigh and Taylor numbers boundaries, the optimum fields have to be a four-layer one.
Four-layers optimum fields could exist also for the case of
210 1 .4 stress-free boundaries. The investigations of these cases will
FR$ Ta<zR™, (36)  be subject of future research.
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