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Anomalous transport of particle tracers in multidimensional cellular flows
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Advection of tracers is studied numerically in time-dependent, two-dimensional cellular flows and a time-
independent, three-dimensional cellular flow field. Tracers in these flows follow trajectories that are either
periodic or chaotic and mimic correlated\iyeflights. The probability density function of displacements for
particles in the ordered regions of the flow follows a classical Gaussian dispersion process. The particle
trajectories in the chaotic regions of the flow exhibit anomalous diffusion and the probability density function
of displacements is well modeled by a time-fractional diffusion equation of atdérhe overall process of
particle dispersion is found to be controlled mainly by the chaotic regions within the flow field. From the
perspective of Lagrangian dynamics our results indicate that the advection of particles in flow fields prone to
exhibit chaotic advection is a combination of both classical, i.e., Gaussian, behavior and anomalous, i.e.,
non-Gaussian, diffusion.
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[. INTRODUCTION lack of a test-bed three-dimensional flow field with enough
engineering relevance and amenable to both experimental
Particle transport has been of interest for decades becaused numerical treatmen{14,15. The existing three-
of its prevalence in science and engineering applications. Iimensional studies have used mathematical models which
the last few decades, advection experiments on prototypicancludeABCflow [18], two chains of alternating vortic¢s],
flows have provided an appropriate model for the understeady Stokes flow within a spherical drf}9,20, Taylor-
standing of dynamical systems. One important observatiofouette flow[21], and the partitioned-pipe mix¢22]. In
common to these studies has been that many simple veloci}any of the flows mentioned above, it has been found that
fields can generate complicated fluid particle trajectoriescorrelations in time and/or space cause anomalous transport
thus resulting in what is now known as chaotic advectionWhose probability density functioPDF deviates from the
Lagrangian turbulence, or Lagrangian ch&@<]. Chaotic ~ classical Gaussian behavior and/or whose mean square dis-
advection defines a kinematic phenomenon in which the moPlacement is nonlinear in the long-time limit, i.er?ot?,
tion of the particle tracers is chaotic—in a Lagrangianwith v# 1. Fractional diffusion equations aimed at describ-
sense—even though the velocity field may be regular—in théng this anomalous behavior have recently been employed to
Eulerian sense—and nonturbulgB]. Lagrangian chaos has investigate phenomena ranging from advection of particle
been shown to occur in three-dimensional time-independeritacers in porous medig23], fractional Brownian motion
flows [1,4] and two-dimensional time-dependent floyg.  [24], anomalous diffusion with adsorptiof25], and frac-
This process has also been found to significantly enhancéonal heat conductiofi26] to tracer advectioh27]. Closely
long-range transporft1,3,6-§ via enhanced mixing and/or related models have also been extensively used in the de-
anomalous diffusion. Chaotic advection enhances mixingScription of economic time series and market dynamics
since one of the key signatures of chaos is the exponenti&?8,29.
separation of initially close point®]. Anomalous diffusion As we show below, the Lagrangian dynamics of cellular
appears due to inhomogeneities in the flow field, regular oflows display properties of both classicéBaussian and
coherent regions, and the shear flow, that cause particles ftPh-Gaussiattanomalous systems, which can be described
spend time moving either too slow or too f430]. by applying the tools of fractional calculus in the description
The motion of passive particles in prototype chaotic flowof the particle displacements. The remainder of this paper is
fields has been the subject of several investigations both exrganized as follows. Section Il introduces the velocity fields
perimental(e.g., Solomon and Gollupl1,12, Weeks[13], used in the study. The statistical tools for Lagrangian analy-
Fountainet al.[14,15)) and numericale.qg., Tsegat al.[16], sis are considered in Sec. lll. In Sec. IV we discuss the
del Castillo-Negretd10], Newton and Meiburd?2], Weiss statistical properties of the particle trajectories in the flow
et al.[17]). These studies conducted in both two- and three-fields under study. Finally, in Sec. V we provide conclusions
dimensional flows have shown that the dynamics of thes@nd perspectives.
flows can be very complex. Nested Kolmogorov-Arnold-
Moser KAM tori, cantori, and periodic islands are found em-
bedded within the flow field. Chaotic advection studies in
three-dimensional flows are less common. The reason is the In this article, we report on a simulation study of tracer
advection in three different cellular flow fields and the La-
grangian analysis of the particle displacements using a frac-
*Corresponding author. Electronic address: tional diffusion equation. The numerical experiments are per-
wvargas@007mundo.com formed in well established prototypical flows such as the
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“Kelvin cat eyes” flow, the Rayleigh-Beard flow, and a
three-dimensional flow recently introduced by Fogleman
et al. [6]. This three-dimensional flow is composed of the
superposition of two chains of alternating vortices, one hori-
zontal and the other vertical. These flows are ideal for this
study partly because of their simplicity and the rich transport
properties which have been fouh6,16,30 and partly be-
cause of the possibility of experimental verification of the
estimated behavior. This study is similar in spirit to earlier
studies of tracer advection by prototype flow fields tuned to
model chaotic advection, but differs primarily in the fact that
tools fromfractional calculusare used to describe the prob-
ability density function of the tracer displacements. Passive
tracers are placed in the flow and their behavior under a
chosen set of flow parameters is studied. A fourth-order
Runge-Kutta method with a time step value of fOwas
employed to numerically integrate the differential equations
that make up the velocity field. It is important to note that
using a sufficiently small time increment is essential for re-
solving important features of the Poincasections, such as
KAM tori and cantori.

A. Kelvin cat eyes flow
This flow is based on the family of solutions to the steady
Euler equations known as the Stuart vortices. The stream
function for the “Kelvin cat eyes” flow is given as follows:
This flow is a particularly simple two-dimensional time-

y A x—Ut
cosh cos — .
This stream function represents a train of vortices moving independent flow. It is compose of an oscillating vortex chain

thex direction. It is a steady solution of the two-dimensionalWh'.Ch _has bee_n a%tly explored as a sflmple madel Of time-
Euler equation and has am2periodicity in thex direction periodic Rayleigh-Beard (RB) convection. The equations

[16]. The nondimensional parameteh represents the describing this flow are as follows:

FIG. 1. Poincareplots of the advection process of 10 000 col-
ored particles in a Kelvin cat eyes flow=0.1, v=1.2, A=0.8.

v(x,y,t)=Uy+ In

2

B. Rayleigh-Beard flow

strength of the vorticity. For the purpose of this study, the ;¢ (gx A 2a[x+Bsinwt)]] |7y
value of A was set at a constant value of B5]. The pa- FviRr T —a%co x sin ik 4
rameterh represents the distance between two adjacent vor- y
tlicveesﬁ 'Lhe stream function in E€) describes a velocity field o dy _[2m[x+B sin(wt)] 7y :
g y v a—asm N co ik (5)
oV _dx _ sinhy +e sin(wt), (22 Inthese equations is the maximum speedi is the vortex
dy dt coshy+Acosx height, \ is the wavelength of the vortex chain, aBdrep-
resents the amplitude of the lateral oscillations. Figure 2
ov dy A sinx ) shows the advection of 14 000 particles at a frequency
T ox  di m+f sinfwt). (3 =_0._1. Qualitatively, the _behavior_ seen in the simulgtion i_s
similar to that observed in experiments; see, e.g., Fig. 3 in,

Here e represents the perturbation constant andescribes [32].

the driving frequency. Figure 1 illustrates the trajectories of __Numerical and experimental studies of advection in
10 000 tracer particles advected in a Stuart vortex. Rayleigh-Baard flow have been reported by Camassa and

Transport and mixing in the time-periodic Kelvin cat eyeSW|gg|ns [30], S_ol_omon and Gollu11,13, Solomonet al.
flow has been investigated by Ottiid1] and Tsegeetal. 32} and Castiglionest al. [33], among others.
[16], where mixing was analyzed for various values of the
driving frequency and perturbation constant. Numerical and
experimental studies of advection have been reported by del A three-dimensional flow has recently been introduced by
Castillo Negrete[10] and Weeks[13], among others. La- Foglemanet al. [6]. The flow is the superposition of two
grangian dynamics of aerosol and bubble particles has alsthains of alternating vortices. The equations describing the
been examined in this flopd6]. velocity field are

C. Three-dimensional vortex flow
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FIG. 2. Poincareplots of the advection process of 14 000 col-
ored particles in a Rayleigh-Bard flow. Snapshots taken every
period of oscillationB=0.1,a=d=1.0,A\=2d, 0=0.1.

dx A 27m(x+0.5] Tl'y)
a——alz—dlCO —)\ Sin d_l
N 27X| |7z

—azz—dzco ~ sin d_2 , (6)
dy [2@(x+0.9 Ty 7
a—als| Tco d_1 , (7)
dz_ | 2mX 7wz g
a—aZSI T co d_2 . ( )

In these equations; anda, indicate the magnitudes of the
two overlapping vortex chains, arti andd, are the width
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ratios considereda;/a,=5.0 anda,/a,=1.0, exhibit two
behaviors: a transient and a long-term regime. According to
the results the transient regime can exhibit diffusive or bal-
listic behavior depending on the value of the ragip/a,.

The long-term behavior is in both cases superdiffugive,
o”“t”). The PDFs of flight lengths for both amplitude ratios
exhibit tail decay consistent with the definition of \ye
flight.

Ill. LAGRANGIAN ANALYSIS

The results of a Lagrangian dynamical analysis are usu-
ally presented in terms of the particle displacememnts
=((x[t]—x[0])?) and the probability density function of
particle ensembles. If classical behavior holds one has
{(x[t]—x[0])?)=2Dt. The tracer behaves like a Brownian
particle. However, there exist cases where anomalous diffu-
sion is observetby anomalous we mean non-Gausgiae.,
((x[t]—x[0])2)=t” with y#1. The casey<1 determines a
subdiffusive system whiley>1 corresponds to superdiffu-
sion[10,33. If the system exhibits anomalous behavior, the
probability density function of particle displacements
X, P(6x,t), is asymmetric and broader than the classical
Gaussian distribution. For weak anomalous diffusj8a],
the long-term distribution is of the form ”F(X/t?), where
X=6x—(6x), F is a scaling function which in general is
different from Gaussian, ang is the anomalous diffusion
exponent, which is a measure of the long-range memory of
the displacements. As a result of this behavior the variance
scales asoxt?. According to the central limit theorem,
transport in the long-time limit— o will be diffusive with

1.0. On the other hand, if superdiffusivity is present,

and height of the fluid layer, respectively. For the purpose Ofll.o; subdiffusivity will occur otherwise. Trapping is the
this study, all the vortices are assumed to have aspect ratigechanism that leads to subdiffusion whereas supperdiffu-
d,/d,=1.0 and\ =2.0. The relative magnitude of the over- gjo js possible if the trajectories are characterized by long
Iappmg is charactgrlzed t_)y the ratig/a,. Unless indicated “jumps.” It is important to note that asymmetry, diffusion
otherwise, the rati@, /a, is kept at a constant value of 5.0. eyponentsy>1.0, and therefore anomalous behavior, has
A snapshot of the flow is illustrated in Fig. 3. The points in peen previously observed in all the flows considered in this
this figure show the-y-z coordinates of 20 000 tracer par- study.
ticles. PeriO(_jic boundary conditions have been im_posed. One of the most basic problems in transport is that of the
A numerical study of long-range transport in three-gydy of the long-term behavior of?, and of the probability
dimensional(3D) vortex flow was conducted by Fogleman density function of particle displacement(sx,t). A com-
et al.[6]. Their findings can be summarized as follows. The,q approach is to assume that at long tirfésx,t) is a
variance growth of particle ensembles for both amplitudeg,yssian distribution that evolves in time according to the
well known diffusion equation given by

P 9°P
ot gx2’

©)

where D is the diffusivity, which satisfies the conditio®
=lim,_,.o?/2t. The solution to Eq(9) with initial condition

P(6x,0)= 6(x) is well known:
1 r{ &2}
expg — ——=
VADmt ADt

FIG. 3. Snapshot of the advection process of 20 000 colored@nd constitutes the departing point for any study of particle
particles in a 3D vortex flowa, /a,=1.0,d;/d,=1.0, A=2.0. diffusion and dispersion.

P(ox,t)= (10
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There are many proposals to model anomalous diffusion 2 ooy D - L A Vg
by means of generalized diffusion equati¢@d,27,34—38 sl @ d’;:ﬁ '.'.’:."*.'S.s'%"g‘f:?’c:é‘-" gty

Despite the various models examined a general solution tc .-.»‘; Rz A, = R Ll

the problem has not been found. Starting with a generalizec VRPN R F | iy .,--;':'s:[.,;:é‘?.;;:-s

fractional diffusion equation of the form ..},:" * ?‘ - T 335
;PP 9P t#

o Do =g 2 1)

with 0<B=<1 and O<a=<2, different scenarios have been Tyt et - .
discussed in the literature. One such case is related to th  .q5 W% 2 Stas ™. 272 ST T i o

so-called Ley process, which can be obtained from Etj) B *:ﬁit:iﬁt.}.}:%;-'ij;_ﬁ';_"“_'.,;:‘.25_3:.- PR
by settingB=1, with 0<a<2. The solution to this initial '20 1 2 3 4 5 6
value problem corresponds to thévyeprocesssee, for ex- - X g

ample, Ref[36]). Other cases deal with the problem of time-

fractional and/or space-fractional diffusion equatidsse, 0

for example, Refs[24,37). In Eq. (11) the operatow?/dtP

is the fractional Riemann-Liouville time derivative of order < 3% ek

B and 9°/9|x|* is the Riesz space-fractional derivative of  _jp00

order . These fractional derivatives are integro-differential (b) ©
operators whose definition is given [i86,37. A brief sum- D 0000 20000 Bo000 0 500, 1000 1500 2000
mary of these formulas is provided in the Appendix. The last Time Time

term in Eqg.(11) is the source term and depends on the initial _ ) _

conditions. Most of the studies use free boundary conditions FIG- 4. Results of simulation for ten particle tracers advected by
and initial conditions centered on the origin, i.©(x,0) the Kglvm f!ow.(a) Pomcaresecthn,(b) sample trajectory from '.[he
=8(x), such that the Fourier-Laplace transforms of thechaotlc region, andc) sample trajectory from the ordered region.

Green functiongi.e., the solution for theS(x) initial condi-

tion P(x,0)= 8(x)] can easily be obtained. Of particular in- Were »=a/2.0 andM(¢, @) is a function of Wright type,

terest to this study is the case ok@B<1 anda=2, which defined by
corresponds to so-called fractal Brownian motion or the 1.4 (-t _
time-fractional diffusion equation. Following the results by M(v)=— Z (n_—l)ll"(nu)sm(nwv), (14)
Minardi et al. [34,35, Eq. (11) becomes equivalent to the n=o '
following initial value problem: with

*P P (12 I

ot X2’ (= o (15

where D denotes a positive constant with dimensions The classical Gaussian solution is recovered when
27—« H i

L“T~“. Note that in Eq(12) the time exponenB has been _g 5. The properties of th#l(¢,a) function are given in

replaced by an ordew (in the Caputo sensenith O<a  Refs [34,36]. It can easily be shown that the variance asso-

<2 (see the Appendix for the definition of the Caputo frac-gjated with this PDF exhibits the time dependentiet”.

tional derivative [29,34. A thorough explanation for the in-  The analytical solution in Eq13) is applied in Sec. IV to fit
troduction of the Caputo fractional derivative in place of theine PDE of particle displacements.

more common Rieman-Liouville fractional derivative has
been provided by Mainardet al. [34]. A discussion of the
convenience of replacing the integer order time derivative by
a fractional derivative of the Riemann-Liouville, Weyl, Riez,  We begin by examining the kinemati¢se., evolution of
Grunwald, Caputo, or Marchaud type is beyond the scope oparticle paths as a function of tiné he tracer particle paths,
this paper; therefore this topic will not be presented herewhich in this case coincide with the streamlines of the flows,
The interested reader is referred to, e.g., RE3%,39 and  follow from the solution of the system of equations describ-
references therein. ing the velocity fields indicated in Sec. Il. The Poincaeg-
The solution of Eq.(12) with the initial condition tions in Figs. 4a), 5(a), and Ga), which provide a qualitative
P(x,0)= 8(x) is obtained by Fourier-transforming both sides picture of the flows, agree closely with previous studies
of the equation with respect ta After integration and in- [6,7,16. KAM tori (loci of quasiperiodic orbits about elliptic
verse Fourier-transforming of the Green function, the solupointg and cantori as well as quasiperiodic islan@soss

IV. RESULTS AND DISCUSSION

tion is given by sections of toroidal flow regionsre observed. Particle trac-
1 ers that begin within the domain of an invariant torus remain
P(SX,1)= ———M(¢, ), (13  confined on it, that is, KAM tori act as impermeable barriers
2\/2_)t” to transport, therefore particles in this region never escape
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FIG. 5. Results of simulation for ten particle tracers advected by
the Rayleigh-Beard flow. (a) Poincaresection,(b) sample trajec-
tory from the chaotic region, antt) sample trajectory from the
ordered region.

FIG. 6. Results of simulation for the advection of a single tracer
in a 3D vortex flow.(a) Poincaresection,(b) sample trajectory from
the chaotic region, andc) sample trajectory from the ordered
region.

through their corresponding KAM torus. This has important We now examine the statistical behavior of the particle
consequences for transportsee, for example, Refs. trajectories. Figures (@), 8(a), and 9a shows the corre-
[14,15,40). The pattern of the trajectories is relatively sponding evolution of the varianag®(t) =(X?) of particle
simple within KAM tori, but becomes more complex as the displacements in the direction for an ensemble of 100 par-
chaotic region is approached. Cantori, unlike KAM tori, areticles that started uniformly distributed in the basic cell.
only partial barriers to transport and therefore particles ini<-) denotes the ensemble average=x(t)—x(0), andX
tially trapped in this regions eventually escape to explore= 5x—(&x). The profiles in Figs. (&), 8(a), and 9a) show
other regions of the flow fielf41]. The gaps between cantori that the variance growth rate is superdiffusive for the Kelvin
are chaotic regions and islands of regular motionmixed flow [Fig. 7(a)] and the three-dimensional vortex flqWig.
regions. Islands of period 2, 3, and 4 can be found in these9(a)] with a characteristic exponent>1.0, meaning that
flows. Higher order islands may exist but are not resolved?(5x,t) spreads faster than in a normal diffusive process.
with the number of iterations and initial conditions used inThe superdiffusive behavior is essentially due to the trapping
this study. of the particle trajectories close to cantori or islands of regu-
Of particular interest to this study are the unbounded trafarity which are organized in self-similar structures. The vari-
jectories in the chaotic region, such as those plotted in Figsance growth for the Rayleigh-Bard flow [Fig. 8(@)] indi-
4(b), 5(b), and &b). Passive tracers undergoing these trajeccates a normal diffusive process, with~1. It is well
tories travel long distances in short period of times, withestablished that the transport in the Rayleigmhd@e flow
periods of trapping in the regular regions of the flow beforefollows a classical Gaussian behavior for most frequencies,
moving to the next cell in the flow field—a well established but it is superdiffusive for well defined resonant frequencies
characteristic of Ley flights. The sticking process results in [7]. In this particular simulation we used a frequenty
flights with a wide range of lengths and durations. A wide =0.106, which is known to generate superdiffusive behavior
range of flights is possible depending on the location of thefor particles in the chaotic region of the flow. However, the
particle in the flow field. The chaotic character of these tra-global behavior of the system is classical. For this specific
jectories may be verified by demonstrating the sensitivity tocase and with the number of particle tracers considered, the
initial conditions, characterized by the exponential diver-number of tracers undergoing long flights is not enough to
gence of nearby trajectories as measured by the estimation dbminate the statistics of the system and hence the growth of
the Lyapunov exponent. the variance scales with~ 1. In panelqa) of Figs. 7-9, the
Figures 4c), 5(c), and &c) show particle trajectories in filled symbols denote the numerical results, and the solid
ordered regions of the flows. The oscillatory behavior stemsines linear fits. These results are in agreement with previous
from the quasiperiodic orbits which keep the particle trajec-investigationd6,10,33.
tories confined within the KAM tori. The probability density function for the spreading of 100
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FIG. 7. Variances? and probability density function of particle FIG. 9. Variances? and probability density function of particle

displacements in the Kelvin cat eyes flo\&) Variance growthjb) displacements in thé€3D) vortex flow. (a) Variance growth;(b)
global probability distribution functionfc) probability distribution  global probability distribution function(c) probability distribution
from chaotic regionyd) probability distribution from ordered re- from chaotic region;(d) probability distribution from ordered re-
gion. In panels(b), (c), and (d), the dashed and continuous lines gion. Simulation parameters adg /d,=1.0,a,/a,=5.0,A=2.0.
represent the solution of Eq4.3)—(15) of ordera. The dashed line
corresponds ter=1, which represents a Gaussian distribution. Pa-Gayssian tails. The curves as a whole display Gaussian
rameter values for the simulation a¢e=0.1, v=1.2,A=0.8. and/or non-Gaussian behavior which is relatively well de-
scribed by a time-fractional diffusion equation of order
tracers is shown as a function of the varialfleX/t” in  The non-Gaussian behavior of the tracer particle displace-
Figs. 1b), 8(b), and 9b) for the three flows considered in ments is caused by the correlations in the Lagrangian veloc-
this study. The values of used in the determination gfare ity field created by the regular regions and the shear flow
the same as those found for the scaling of the variance ifi.0]. The global order of the time-fractional diffusion equa-
panels(a) of the corresponding figures. Some general comtion seems to be determined by two contributions. Here we
ments are in order. The distributions are characterized by mvestigate this observation by analyzing the particles in the
peak which is shifted to nonzerg values and by non- chaotic regions of the flow independently from those in the
ordered regions. In Figs(@), 7(d), 8(c), 8(d), 9(c), and 9d)
the normalized PDFs for the chaotic and ordered regions are
shown. The plots in panelg) indicate that the PDF of par-
ticle displacements in the chaotic regions of the flow are
non-Gaussian with orderg>1.0 in all cases. On the other
hand, the plots in panelsl) which represent particle trajec-
tories in the ordered regions of the flow show almost a
Gaussian behavior with the ordarcloser to 1.

The dashed lines in panelb), (c), and(d) of Figs. 7, 8,
and 9 show the solution of the time-fractional diffusion equa-
tion [Egs. (13)—(15)] with a=1.0 (Gaussian distribution
and the solid lines denote the predictions of the fractional

. 10" equation of ordew# 1 (non-Gaussian distributionThe re-
a sults show that particles in the chaotic regions are more
102 likely to exhibit anomalous diffusiong>1) while those in
regular(ordered regions of the flow field show a more clas-
10% L v — sical Gaussian behaviotat1). Plots of variance growth
10 1 10 10 1 10 (not shown for particles in the ordered region reveal a scal-

x X ing exponenty~1. In general, each of the flows considered

FIG. 8. Varianceo? and probability density function of particle €Xhibits a significant anomalous diffusion behavior, indicat-
displacements in the Rayleigh-Bard flow.(a) Variance growth(b) ing that the cantori barriers to the flow cause a significant
global probability distribution function(c) probability distribution  trapping within the vortices. In all cases the figures show that
from chaotic regionyd) probability distribution from ordered re- the time-fractional equation provides a reasonable descrip-

gion. Simulation parameters arB=0.1,a=d=1.0,A=2d, 0 tion of the probability distribution functions; however, some
=0.66. deviations exist at the extremes of the distribution. As
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pointed out by Barka|i38] in his study of the foundations of be quantified; work in this direction is currently in progress.
the fractional diffusion equations, the fractional approachPreliminary experimental results by Abatanal.[43] on the
also has its limitations when compared with the classicamigration of particles and droplets in a cellular, multidirec-
diffusion approximation. tional, viscous flow with finite fluid inertia indicate that, con-
Based on his study Barkai found that the fractional ap4rary to common perception, these vastly different “par-
proximation for decoupled fractional diffusion equations—ticles” can migrate across streamlines to position themselves
the case considered in Ed.1)—can break down at the ori- in regular regions of the flow—regardless of their density—
gin x=0, and in general the convergence of the solution aprovided that the right inertial properties are selected. The
x—0 can be extremely slow. There are also difficulties inmigration processes of single particles and clusters reveal
predicting correctly the behavior of the high order moments_évy-like trajectories, with discrete trapping and flying
and therefore the solution might not describe properly theevents. These observations reinforce the existence of mul-
tails of the Green function, i.ex—ce. Similar observations tiple equilibrium positions within simple laminar flows, as
have been made by Mainardt al. [42]. These assertions observed qualitatively in the Poincasections of the flow. It
seem to be confirmed by the results in Figs. 7, 8, and 9has been experimentally observed that the final and/or inter-
where the core of the distribution is well described using themediate equilibrium positions of the particles coincide with
time-fractional diffusion equation but there is a systematicthe regular—ordered—regions of the flow.
deviation at the extremes. The previous results show that for
many flows a Lagrangian analysis based on the fractional ACKNOWLEDGMENTS
diffusion equation may be applied to further extend the
analysis based on classical approaches. It has been suggestedVe Wish to acknowledge the collaboration of Dr. J. J.
by Castiglioneet al. [33] that in the case of strong anoma- McCarthy (University of Pittsburghfor a careful reading of
lous diffusion the equations describing the transport procesdi® manuscript and for his insight in clarifying some of the
at large scales and long times obey neither the classic FickiggPncepts. The support of the Research Cef@ahool of
behavior nor any other linear equation that involves temporaFngineering, Universidad Militar Nueva Granadsi greatly
and/or spatial fractional order of the derivatives. Howeverappreciated.
the time-fractional diffusion equation, although still unable
to exactly reproduce all the features of the PDF, provides the APPENDIX
means to characterize qualitatively and quantitatively these

kinds of flows. This section describes some basic formulas used in the

text. More information on these and related subjects can be
found in the references.
The Riemann-Liouville fractional derivative of ordg,
In this article the Lagrangian dynamics of particle tracerswith 0<B<1.:
in two- and three-dimensional cellular flowll=0(100), df 1 dl v f(n)
J ——dr
o(t—7)k

V. CONCLUSIONS AND OUTLOOK

has been analyzed. We find that the global behavior of the
dispersion process can be understood by partitioning the sys-
tem into two distinct regiong1) classicallGaussiapbehav- ) . o )
ior resulting from the ordered regions of the flow field, and The Riesz fractional derivative of order, with 0<a
(2) non-Gaussiarianomalous behavior resulting from the <2:

ﬁf(t)=—r(l_ﬁ) gt . (A1

advection process in the chaotic regions of the flow. We cal- de sin(am/2)

culated probability density functions for the displacements of —f(x)=T(1+a)

particle trajectories in the chaotic and regular regions of cel- dt®

lular flows and show that the resulting distributions are well

described by a time-fractional diffusion equation of order % fw fx+ 8 —2f(x)+f(x— &) d¢. (A2)
with «>1.0 in all cases. The analytical solution reproduces 0 gte

the basic features of the numerically determined PDFs. Our
results support the notion that a fractional description is The Caputo fractional derivative of ord@, with 0<pg
probably better than a classical one. However, neither ap<2:

proach seems to be accurate enough to be able to describ

e
B -B
the entire range; further work on this topic is needed. d_f( )= ; E ft f(7) drl— t £0).
These results provide a glimpse as to how the dispersiondt? I(1-p)dt| Jo (t—7)8 I'(1-p)
of nonbouyant particles may occur and how this process can (A3)
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