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Anomalous transport of particle tracers in multidimensional cellular flows

W. L. Vargas,* L. E. Palacio, and D. M. Dominguez
School of Engineering, Universidad Militar Nueva Granada, Bogota, Colombia
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Advection of tracers is studied numerically in time-dependent, two-dimensional cellular flows and a time-
independent, three-dimensional cellular flow field. Tracers in these flows follow trajectories that are either
periodic or chaotic and mimic correlated Le´vy flights. The probability density function of displacements for
particles in the ordered regions of the flow follows a classical Gaussian dispersion process. The particle
trajectories in the chaotic regions of the flow exhibit anomalous diffusion and the probability density function
of displacements is well modeled by a time-fractional diffusion equation of ordera. The overall process of
particle dispersion is found to be controlled mainly by the chaotic regions within the flow field. From the
perspective of Lagrangian dynamics our results indicate that the advection of particles in flow fields prone to
exhibit chaotic advection is a combination of both classical, i.e., Gaussian, behavior and anomalous, i.e.,
non-Gaussian, diffusion.
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I. INTRODUCTION

Particle transport has been of interest for decades bec
of its prevalence in science and engineering applications
the last few decades, advection experiments on prototyp
flows have provided an appropriate model for the und
standing of dynamical systems. One important observa
common to these studies has been that many simple velo
fields can generate complicated fluid particle trajector
thus resulting in what is now known as chaotic advecti
Lagrangian turbulence, or Lagrangian chaos@1,2#. Chaotic
advection defines a kinematic phenomenon in which the
tion of the particle tracers is chaotic—in a Lagrangi
sense—even though the velocity field may be regular—in
Eulerian sense—and nonturbulent@3#. Lagrangian chaos ha
been shown to occur in three-dimensional time-independ
flows @1,4# and two-dimensional time-dependent flows@5#.
This process has also been found to significantly enha
long-range transport@1,3,6-8# via enhanced mixing and/o
anomalous diffusion. Chaotic advection enhances mix
since one of the key signatures of chaos is the expone
separation of initially close points@9#. Anomalous diffusion
appears due to inhomogeneities in the flow field, regula
coherent regions, and the shear flow, that cause particle
spend time moving either too slow or too fast@10#.

The motion of passive particles in prototype chaotic flo
fields has been the subject of several investigations both
perimental~e.g., Solomon and Gollub@11,12#, Weeks@13#,
Fountainet al. @14,15#! and numerical~e.g., Tsegaet al. @16#,
del Castillo-Negrete@10#, Newton and Meiburg@2#, Weiss
et al. @17#!. These studies conducted in both two- and thre
dimensional flows have shown that the dynamics of th
flows can be very complex. Nested Kolmogorov-Arnol
Moser KAM tori, cantori, and periodic islands are found e
bedded within the flow field. Chaotic advection studies
three-dimensional flows are less common. The reason is

*Corresponding author. Electronic address:
wvargas@007mundo.com
1063-651X/2003/67~2!/026314~8!/$20.00 67 0263
se
In
al
r-
n
ity
s,
,

o-

e

nt

ce

,
ial

r
to

x-

–
e

-

he

lack of a test-bed three-dimensional flow field with enou
engineering relevance and amenable to both experime
and numerical treatment@14,15#. The existing three-
dimensional studies have used mathematical models w
includeABCflow @18#, two chains of alternating vortices@6#,
steady Stokes flow within a spherical drop@19,20#, Taylor-
Couette flow@21#, and the partitioned-pipe mixer@22#. In
many of the flows mentioned above, it has been found t
correlations in time and/or space cause anomalous trans
whose probability density function~PDF! deviates from the
classical Gaussian behavior and/or whose mean square
placement is nonlinear in the long-time limit, i.e.,s2}tg,
with gÞ1. Fractional diffusion equations aimed at descr
ing this anomalous behavior have recently been employe
investigate phenomena ranging from advection of part
tracers in porous media@23#, fractional Brownian motion
@24#, anomalous diffusion with adsorption@25#, and frac-
tional heat conduction@26# to tracer advection@27#. Closely
related models have also been extensively used in the
scription of economic time series and market dynam
@28,29#.

As we show below, the Lagrangian dynamics of cellu
flows display properties of both classical~Gaussian! and
non-Gaussian~anomalous! systems, which can be describe
by applying the tools of fractional calculus in the descripti
of the particle displacements. The remainder of this pape
organized as follows. Section II introduces the velocity fie
used in the study. The statistical tools for Lagrangian ana
sis are considered in Sec. III. In Sec. IV we discuss
statistical properties of the particle trajectories in the flo
fields under study. Finally, in Sec. V we provide conclusio
and perspectives.

II. LAGRANGIAN FORMULATION OF TRACER MOTION

In this article, we report on a simulation study of trac
advection in three different cellular flow fields and the L
grangian analysis of the particle displacements using a f
tional diffusion equation. The numerical experiments are p
formed in well established prototypical flows such as t
©2003 The American Physical Society14-1
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‘‘Kelvin cat eyes’’ flow, the Rayleigh-Be´nard flow, and a
three-dimensional flow recently introduced by Foglem
et al. @6#. This three-dimensional flow is composed of t
superposition of two chains of alternating vortices, one ho
zontal and the other vertical. These flows are ideal for t
study partly because of their simplicity and the rich transp
properties which have been found@6,16,30# and partly be-
cause of the possibility of experimental verification of t
estimated behavior. This study is similar in spirit to earl
studies of tracer advection by prototype flow fields tuned
model chaotic advection, but differs primarily in the fact th
tools from fractional calculusare used to describe the pro
ability density function of the tracer displacements. Pass
tracers are placed in the flow and their behavior unde
chosen set of flow parameters is studied. A fourth-or
Runge-Kutta method with a time step value of 1024 was
employed to numerically integrate the differential equatio
that make up the velocity field. It is important to note th
using a sufficiently small time increment is essential for
solving important features of the Poincare´ sections, such as
KAM tori and cantori.

A. Kelvin cat eyes flow

This flow is based on the family of solutions to the stea
Euler equations known as the Stuart vortices. The stre
function for the ‘‘Kelvin cat eyes’’ flow is given as follows

C~x,y,t !5Uy1FDUh

2 G lnFcoshS y

hD1AcosS x2Ut

h D G .
~1!

This stream function represents a train of vortices moving
thex direction. It is a steady solution of the two-dimension
Euler equation and has a 2p periodicity in thex direction
@16#. The nondimensional parameterA represents the
strength of the vorticity. For the purpose of this study, t
value of A was set at a constant value of 0.8@16#. The pa-
rameterh represents the distance between two adjacent
tices. The stream function in Eq.~1! describes a velocity field
given by

]C

]y
5

dx

dt
5

sinh y

coshy1Acosx
1e sin~vt !, ~2!

2
]C

]x
52

dy

dt
52

A sinx

coshy1Acosx
1e sin~vt !. ~3!

Heree represents the perturbation constant andv describes
the driving frequency. Figure 1 illustrates the trajectories
10 000 tracer particles advected in a Stuart vortex.

Transport and mixing in the time-periodic Kelvin cat ey
flow has been investigated by Ottino@31# and Tsegaet al.
@16#, where mixing was analyzed for various values of t
driving frequency and perturbation constant. Numerical a
experimental studies of advection have been reported by
Castillo Negrete@10# and Weeks@13#, among others. La-
grangian dynamics of aerosol and bubble particles has
been examined in this flow@16#.
02631
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B. Rayleigh-Bénard flow

This flow is a particularly simple two-dimensional time
dependent flow. It is compose of an oscillating vortex ch
which has been aptly explored as a simple model of tim
periodic Rayleigh-Be´nard ~RB! convection. The equation
describing this flow are as follows:

]C

]y
5

dx

dt
52a

l

2d
cosF2p@x1B sin~vt !#

l GsinS py

d D , ~4!

2
]C

]x
52

dy

dt
5asinF2p@x1B sin~vt !#

l GcosS py

d D . ~5!

In these equations,a is the maximum speed,d is the vortex
height,l is the wavelength of the vortex chain, andB rep-
resents the amplitude of the lateral oscillations. Figure
shows the advection of 14 000 particles at a frequencyv
50.1. Qualitatively, the behavior seen in the simulation
similar to that observed in experiments; see, e.g., Fig. 3
@32#.

Numerical and experimental studies of advection
Rayleigh-Bénard flow have been reported by Camassa a
Wiggins @30#, Solomon and Gollub@11,12#, Solomonet al.
@32#, and Castiglioneet al. @33#, among others.

C. Three-dimensional vortex flow

A three-dimensional flow has recently been introduced
Foglemanet al. @6#. The flow is the superposition of two
chains of alternating vortices. The equations describing
velocity field are

FIG. 1. Poincare´ plots of the advection process of 10 000 co
ored particles in a Kelvin cat eyes flow.e50.1, v51.2, A50.8.
4-2
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dx

dt
52a1

l

2d1
cosF2p~x10.5!

l GsinS py

d1
D

2a2

l

2d2
cosF2px

l GsinS pz

d2
D , ~6!

dy

dt
5a1sinF2p~x10.5!

l GcosS py

d1
D , ~7!

dz

dt
5a2sinF2px

l GcosS pz

d2
D . ~8!

In these equations,a1 anda2 indicate the magnitudes of th
two overlapping vortex chains, andd1 andd2 are the width
and height of the fluid layer, respectively. For the purpose
this study, all the vortices are assumed to have aspect
d1 /d251.0 andl52.0. The relative magnitude of the ove
lapping is characterized by the ratioa1 /a2. Unless indicated
otherwise, the ratioa1 /a2 is kept at a constant value of 5.0
A snapshot of the flow is illustrated in Fig. 3. The points
this figure show thex-y-z coordinates of 20 000 tracer pa
ticles. Periodic boundary conditions have been imposed.

A numerical study of long-range transport in thre
dimensional~3D! vortex flow was conducted by Foglema
et al. @6#. Their findings can be summarized as follows. T
variance growth of particle ensembles for both amplitu

FIG. 2. Poincare´ plots of the advection process of 14 000 co
ored particles in a Rayleigh-Be´nard flow. Snapshots taken eve
period of oscillation.B50.1, a5d51.0, l52d, v50.1.

FIG. 3. Snapshot of the advection process of 20 000 colo
particles in a 3D vortex flow.a1 /a251.0, d1 /d251.0, l52.0.
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f
tio

e

ratios considered,a1 /a255.0 anda1 /a251.0, exhibit two
behaviors: a transient and a long-term regime. According
the results the transient regime can exhibit diffusive or b
listic behavior depending on the value of the ratioa1 /a2.
The long-term behavior is in both cases superdiffusive~i.e.,
s}tg). The PDFs of flight lengths for both amplitude ratio
exhibit tail decay consistent with the definition of Le´vy
flight.

III. LAGRANGIAN ANALYSIS

The results of a Lagrangian dynamical analysis are u
ally presented in terms of the particle displacementss2

5^(x@ t#2x@0#)2& and the probability density function o
particle ensembles. If classical behavior holds one
^(x@ t#2x@0#)2&.2Dt. The tracer behaves like a Brownia
particle. However, there exist cases where anomalous d
sion is observed~by anomalous we mean non-Gaussian!, i.e.,
^(x@ t#2x@0#)2&}tg with gÞ1. The caseg,1 determines a
subdiffusive system whileg.1 corresponds to superdiffu
sion @10,33#. If the system exhibits anomalous behavior, t
probability density function of particle displacemen
dx, P(dx,t), is asymmetric and broader than the classi
Gaussian distribution. For weak anomalous diffusion@33#,
the long-term distribution is of the formt2gF(X/tg), where
X5dx2^dx&, F is a scaling function which in general i
different from Gaussian, andg is the anomalous diffusion
exponent, which is a measure of the long-range memory
the displacements. As a result of this behavior the varia
scales ass2}tg. According to the central limit theorem
transport in the long-time limitt→` will be diffusive with
g51.0. On the other hand, if superdiffusivity is present,g
.1.0; subdiffusivity will occur otherwise. Trapping is th
mechanism that leads to subdiffusion whereas supperd
sion is possible if the trajectories are characterized by lo
‘‘jumps.’’ It is important to note that asymmetry, diffusio
exponentsg.1.0, and therefore anomalous behavior, h
been previously observed in all the flows considered in t
study.

One of the most basic problems in transport is that of
study of the long-term behavior ofs2, and of the probability
density function of particle displacements,P(dx,t). A com-
mon approach is to assume that at long timesP(dx,t) is a
Gaussian distribution that evolves in time according to
well known diffusion equation given by

]P

]t
5D]2P

]x2
, ~9!

where D is the diffusivity, which satisfies the conditionD
5 limt→`s2/2t. The solution to Eq.~9! with initial condition
P(dx,0)5d(x) is well known:

P~dx,t !5
1

A4Dpt
expF2

dx2

4Dt G ~10!

and constitutes the departing point for any study of parti
diffusion and dispersion.
d
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There are many proposals to model anomalous diffus
by means of generalized diffusion equations@24,27,34–38#.
Despite the various models examined a general solutio
the problem has not been found. Starting with a generali
fractional diffusion equation of the form

]bP

]tb
5D ]aP

]uxua
1

t2b

G~12b!
d~x!, ~11!

with 0,b<1 and 0,a<2, different scenarios have bee
discussed in the literature. One such case is related to
so-called Le´vy process, which can be obtained from Eq.~11!
by settingb51, with 0,a<2. The solution to this initial
value problem corresponds to the Le´vy process~see, for ex-
ample, Ref.@36#!. Other cases deal with the problem of tim
fractional and/or space-fractional diffusion equations~see,
for example, Refs.@24,37#!. In Eq. ~11! the operator]b/]tb

is the fractional Riemann-Liouville time derivative of ord
b and ]a/]uxua is the Riesz space-fractional derivative
ordera. These fractional derivatives are integro-different
operators whose definition is given in@36,37#. A brief sum-
mary of these formulas is provided in the Appendix. The l
term in Eq.~11! is the source term and depends on the ini
conditions. Most of the studies use free boundary conditi
and initial conditions centered on the origin, i.e.,P(x,0)
5d(x), such that the Fourier-Laplace transforms of t
Green functions@i.e., the solution for thed(x) initial condi-
tion P(x,0)5d(x)] can easily be obtained. Of particular in
terest to this study is the case of 0,b<1 anda52, which
corresponds to so-called fractal Brownian motion or
time-fractional diffusion equation. Following the results b
Minardi et al. @34,35#, Eq. ~11! becomes equivalent to th
following initial value problem:

]aP

]ta
5D]2P

]x2
, ~12!

where D denotes a positive constant with dimensio
L2T2a. Note that in Eq.~12! the time exponentb has been
replaced by an ordera ~in the Caputo sense! with 0,a
<2 ~see the Appendix for the definition of the Caputo fra
tional derivative! @29,34#. A thorough explanation for the in
troduction of the Caputo fractional derivative in place of t
more common Rieman-Liouville fractional derivative h
been provided by Mainardiet al. @34#. A discussion of the
convenience of replacing the integer order time derivative
a fractional derivative of the Riemann-Liouville, Weyl, Rie
Grünwald, Caputo, or Marchaud type is beyond the scope
this paper; therefore this topic will not be presented he
The interested reader is referred to, e.g., Refs.@37,39# and
references therein.

The solution of Eq. ~12! with the initial condition
P(x,0)5d(x) is obtained by Fourier-transforming both sid
of the equation with respect tox. After integration and in-
verse Fourier-transforming of the Green function, the so
tion is given by

P~dx,t !5
1

2ADtn
M ~z,n!, ~13!
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wheren5a/2.0 andM (z,a) is a function of Wright type,
defined by

M ~z,n!5
1

p (
n50

`
~2z!n21

~n21!!
G~nn!sin~npn!, ~14!

with

z5
uxu

ADtn
. ~15!

The classical Gaussian solution is recovered whenn
50.5. The properties of theM (z,a) function are given in
Refs.@34,36#. It can easily be shown that the variance as
ciated with this PDF exhibits the time dependences2}tg.
The analytical solution in Eq.~13! is applied in Sec. IV to fit
the PDF of particle displacements.

IV. RESULTS AND DISCUSSION

We begin by examining the kinematics~i.e., evolution of
particle paths as a function of time!. The tracer particle paths
which in this case coincide with the streamlines of the flow
follow from the solution of the system of equations descr
ing the velocity fields indicated in Sec. II. The Poincare´ sec-
tions in Figs. 4~a!, 5~a!, and 6~a!, which provide a qualitative
picture of the flows, agree closely with previous stud
@6,7,16#. KAM tori ~loci of quasiperiodic orbits about elliptic
points! and cantori as well as quasiperiodic islands~cross
sections of toroidal flow regions! are observed. Particle trac
ers that begin within the domain of an invariant torus rem
confined on it, that is, KAM tori act as impermeable barrie
to transport, therefore particles in this region never esc

FIG. 4. Results of simulation for ten particle tracers advected
the Kelvin flow.~a! Poincare´ section,~b! sample trajectory from the
chaotic region, and~c! sample trajectory from the ordered region
4-4
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ANOMALOUS TRANSPORT OF PARTICLE TRACERS IN . . . PHYSICAL REVIEW E67, 026314 ~2003!
through their corresponding KAM torus. This has importa
consequences for transport~see, for example, Refs
@14,15,40#!. The pattern of the trajectories is relative
simple within KAM tori, but becomes more complex as t
chaotic region is approached. Cantori, unlike KAM tori, a
only partial barriers to transport and therefore particles
tially trapped in this regions eventually escape to expl
other regions of the flow field@41#. The gaps between canto
are chaotic regions and islands of regular motion~unmixed
regions!. Islands of period 2, 3, and 4 can be found in the
flows. Higher order islands may exist but are not resolv
with the number of iterations and initial conditions used
this study.

Of particular interest to this study are the unbounded
jectories in the chaotic region, such as those plotted in F
4~b!, 5~b!, and 6~b!. Passive tracers undergoing these traj
tories travel long distances in short period of times, w
periods of trapping in the regular regions of the flow befo
moving to the next cell in the flow field—a well establishe
characteristic of Le´vy flights. The sticking process results
flights with a wide range of lengths and durations. A wi
range of flights is possible depending on the location of
particle in the flow field. The chaotic character of these t
jectories may be verified by demonstrating the sensitivity
initial conditions, characterized by the exponential div
gence of nearby trajectories as measured by the estimatio
the Lyapunov exponent.

Figures 4~c!, 5~c!, and 6~c! show particle trajectories in
ordered regions of the flows. The oscillatory behavior ste
from the quasiperiodic orbits which keep the particle traj
tories confined within the KAM tori.

FIG. 5. Results of simulation for ten particle tracers advected
the Rayleigh-Be´nard flow. ~a! Poincare´ section,~b! sample trajec-
tory from the chaotic region, and~c! sample trajectory from the
ordered region.
02631
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We now examine the statistical behavior of the parti
trajectories. Figures 7~a!, 8~a!, and 9~a! shows the corre-
sponding evolution of the variances2(t)5^X2& of particle
displacements in thex direction for an ensemble of 100 pa
ticles that started uniformly distributed in the basic cel
^•& denotes the ensemble average,dx5x(t)2x(0), andX
5dx2^dx&. The profiles in Figs. 7~a!, 8~a!, and 9~a! show
that the variance growth rate is superdiffusive for the Kelv
flow @Fig. 7~a!# and the three-dimensional vortex flow@Fig.
9~a!# with a characteristic exponentg.1.0, meaning that
P(dx,t) spreads faster than in a normal diffusive proce
The superdiffusive behavior is essentially due to the trapp
of the particle trajectories close to cantori or islands of re
larity which are organized in self-similar structures. The va
ance growth for the Rayleigh-Be´nard flow @Fig. 8~a!# indi-
cates a normal diffusive process, withg'1. It is well
established that the transport in the Rayleigh-Be´nard flow
follows a classical Gaussian behavior for most frequenc
but it is superdiffusive for well defined resonant frequenc
@7#. In this particular simulation we used a frequencyf
50.106, which is known to generate superdiffusive behav
for particles in the chaotic region of the flow. However, t
global behavior of the system is classical. For this spec
case and with the number of particle tracers considered,
number of tracers undergoing long flights is not enough
dominate the statistics of the system and hence the growt
the variance scales withg'1. In panels~a! of Figs. 7–9, the
filled symbols denote the numerical results, and the so
lines linear fits. These results are in agreement with previ
investigations@6,10,33#.

The probability density function for the spreading of 10

y FIG. 6. Results of simulation for the advection of a single tra
in a 3D vortex flow.~a! Poincare´ section,~b! sample trajectory from
the chaotic region, and~c! sample trajectory from the ordere
region.
4-5
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VARGAS, PALACIO, AND DOMINGUEZ PHYSICAL REVIEW E67, 026314 ~2003!
tracers is shown as a function of the variablex5X/tg in
Figs. 7~b!, 8~b!, and 9~b! for the three flows considered i
this study. The values ofg used in the determination ofx are
the same as those found for the scaling of the varianc
panels~a! of the corresponding figures. Some general co
ments are in order. The distributions are characterized b
peak which is shifted to nonzerox values and by non-

FIG. 7. Variances2 and probability density function of particle
displacements in the Kelvin cat eyes flow.~a! Variance growth;~b!
global probability distribution function;~c! probability distribution
from chaotic region;~d! probability distribution from ordered re
gion. In panels~b!, ~c!, and ~d!, the dashed and continuous line
represent the solution of Eqs.~13!–~15! of ordera. The dashed line
corresponds toa51, which represents a Gaussian distribution. P
rameter values for the simulation aree50.1, v51.2, A50.8.

FIG. 8. Variances2 and probability density function of particle
displacements in the Rayleigh-Be´nard flow.~a! Variance growth;~b!
global probability distribution function;~c! probability distribution
from chaotic region;~d! probability distribution from ordered re
gion. Simulation parameters areB50.1, a5d51.0, l52d, v
50.66.
02631
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Gaussian tails. The curves as a whole display Gaus
and/or non-Gaussian behavior which is relatively well d
scribed by a time-fractional diffusion equation of ordera.
The non-Gaussian behavior of the tracer particle displa
ments is caused by the correlations in the Lagrangian ve
ity field created by the regular regions and the shear fl
@10#. The global order of the time-fractional diffusion equ
tion seems to be determined by two contributions. Here
investigate this observation by analyzing the particles in
chaotic regions of the flow independently from those in t
ordered regions. In Figs. 7~c!, 7~d!, 8~c!, 8~d!, 9~c!, and 9~d!
the normalized PDFs for the chaotic and ordered regions
shown. The plots in panels~c! indicate that the PDF of par
ticle displacements in the chaotic regions of the flow a
non-Gaussian with ordersa.1.0 in all cases. On the othe
hand, the plots in panels~d! which represent particle trajec
tories in the ordered regions of the flow show almost
Gaussian behavior with the ordera closer to 1.

The dashed lines in panels~b!, ~c!, and~d! of Figs. 7, 8,
and 9 show the solution of the time-fractional diffusion equ
tion @Eqs. ~13!–~15!# with a51.0 ~Gaussian distribution!
and the solid lines denote the predictions of the fractio
equation of orderaÞ1 ~non-Gaussian distribution!. The re-
sults show that particles in the chaotic regions are m
likely to exhibit anomalous diffusion (a.1) while those in
regular~ordered! regions of the flow field show a more clas
sical Gaussian behavior (a'1). Plots of variance growth
~not shown! for particles in the ordered region reveal a sc
ing exponentg;1. In general, each of the flows consider
exhibits a significant anomalous diffusion behavior, indic
ing that the cantori barriers to the flow cause a signific
trapping within the vortices. In all cases the figures show t
the time-fractional equation provides a reasonable desc
tion of the probability distribution functions; however, som
deviations exist at the extremes of the distribution.

-

FIG. 9. Variances2 and probability density function of particle
displacements in the~3D! vortex flow. ~a! Variance growth;~b!
global probability distribution function;~c! probability distribution
from chaotic region;~d! probability distribution from ordered re
gion. Simulation parameters ared1 /d251.0, a1 /a255.0, l52.0.
4-6
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ANOMALOUS TRANSPORT OF PARTICLE TRACERS IN . . . PHYSICAL REVIEW E67, 026314 ~2003!
pointed out by Barkai@38# in his study of the foundations o
the fractional diffusion equations, the fractional approa
also has its limitations when compared with the class
diffusion approximation.

Based on his study Barkai found that the fractional a
proximation for decoupled fractional diffusion equations
the case considered in Eq.~11!—can break down at the ori
gin x50, and in general the convergence of the solution
x→0 can be extremely slow. There are also difficulties
predicting correctly the behavior of the high order mome
and therefore the solution might not describe properly
tails of the Green function, i.e.,x→`. Similar observations
have been made by Mainardiet al. @42#. These assertion
seem to be confirmed by the results in Figs. 7, 8, and
where the core of the distribution is well described using
time-fractional diffusion equation but there is a systema
deviation at the extremes. The previous results show tha
many flows a Lagrangian analysis based on the fractio
diffusion equation may be applied to further extend t
analysis based on classical approaches. It has been sugg
by Castiglioneet al. @33# that in the case of strong anom
lous diffusion the equations describing the transport proc
at large scales and long times obey neither the classic Fic
behavior nor any other linear equation that involves tempo
and/or spatial fractional order of the derivatives. Howev
the time-fractional diffusion equation, although still unab
to exactly reproduce all the features of the PDF, provides
means to characterize qualitatively and quantitatively th
kinds of flows.

V. CONCLUSIONS AND OUTLOOK

In this article the Lagrangian dynamics of particle trac
in two- and three-dimensional cellular flows,N5O(100),
has been analyzed. We find that the global behavior of
dispersion process can be understood by partitioning the
tem into two distinct regions:~1! classical~Gaussian! behav-
ior resulting from the ordered regions of the flow field, a
~2! non-Gaussian~anomalous! behavior resulting from the
advection process in the chaotic regions of the flow. We c
culated probability density functions for the displacements
particle trajectories in the chaotic and regular regions of c
lular flows and show that the resulting distributions are w
described by a time-fractional diffusion equation of ordera,
with a.1.0 in all cases. The analytical solution reproduc
the basic features of the numerically determined PDFs.
results support the notion that a fractional description
probably better than a classical one. However, neither
proach seems to be accurate enough to be able to des
the entire range; further work on this topic is needed.

These results provide a glimpse as to how the disper
of nonbouyant particles may occur and how this process
02631
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be quantified; work in this direction is currently in progres
Preliminary experimental results by Abatanet al. @43# on the
migration of particles and droplets in a cellular, multidire
tional, viscous flow with finite fluid inertia indicate that, con
trary to common perception, these vastly different ‘‘pa
ticles’’ can migrate across streamlines to position themse
in regular regions of the flow—regardless of their density
provided that the right inertial properties are selected. T
migration processes of single particles and clusters re
Lévy-like trajectories, with discrete trapping and flyin
events. These observations reinforce the existence of m
tiple equilibrium positions within simple laminar flows, a
observed qualitatively in the Poincare´ sections of the flow. It
has been experimentally observed that the final and/or in
mediate equilibrium positions of the particles coincide w
the regular—ordered—regions of the flow.
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APPENDIX

This section describes some basic formulas used in
text. More information on these and related subjects can
found in the references.

The Riemann-Liouville fractional derivative of orderb,
with 0,b,1:

db

dtb
f ~ t !5

1

G~12b!

d

dt F E0

t f ~t!

~ t2t!b
dtG . ~A1!

The Riesz fractional derivative of ordera, with 0,a
,2:

da

dta
f ~x!5G~11a!

sin~ap/2!

p

3E
0

` f ~x1j!22 f ~x!1 f ~x2j!

j11a
dj. ~A2!

The Caputo fractional derivative of orderb, with 0,b
,2:

db

dtb
f ~ t !5

1

G~12b!

d

dt F E0

t f ~t!

~ t2t!b
dtG2

t2b

G~12b!
f ~0!.

~A3!
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