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Scaling exponents in anisotropic hydrodynamic turbulence
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In anisotropic turbulence, the correlation functions are decomposed in the irreducible representations of the
SQ(3) symmetry group(with different “angular momenta™). For different values of, the second-order
correlation function is characterized by different scaling exponésté). In this paper, we compute these
scaling exponents in a closure approximation. By linearizing the closure equations in small anisotropy we set
up a linear operator and find its zero modes in the inertial interval of scales. Thus the scaling exponents in each
¢ sector follow from solvability condition, and are not determined by dimensional analysis. The main result of
our calculation is that the scaling exponedtg€) form a strictly increasing spectrum at least urti+ 6,
guaranteeing that the effects of anisotropy decay as power laws when the scale of observation diminishes. The
results of our calculations are compared to available experiments and simulations.
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[. INTRODUCTION increase with the Reynolds number. It is thus unclear what is
the most important source of observation that the objggts

All realistic turbulent flows are maintained by anisotropic do not vanish even when the Reynolds number is increased
(and inhomogeneoligorcing. Thus the principal conceptual [4,5].
model of turbulence, i.e., “homogeneous isotropic turbu-  Until rather recently it was not obvious how to assess the
lence,” exists only in theory. Testing theoretical predictionsanisotropic effects in a clear fashion, separating the contri-
that are derived on the basis of such a model in experimentdiutions of the isotropic sector from the rest. Starting with
flows (or in simulationg that are patently anisotropic can Ref. [6], it was proposed that one can do so usefully by
sometime lead to premature or erroneous conclusions abofinding systematically the projections of the measured corre-
important issues such as the universality of scaling expokation or structure functions on the irreducible representa-
nents and other fundamental issues in the theory of turbuions of the S@3) group of all rotations. This approach was
lence. The justification for disregarding the effects of anisotfound useful in analyzing experimental resulfs-9] and nu-
ropy was the old conjecture that in the limit of very high merical simulation$10—12. In the context of passive scalar
Reynolds numbers and very small scales, local isotropy magnd passive scalar advection, it gave rise to a number of
be restored by the nonlinear transfer mechanism that casxact result§13—15. In its simplest form, the projection is
cades energy from large to small scales. In the past decadgpplied to thepth-order structure functionéwith R=R/R,
there had been a number of observations that claimed the=|R|):
oppositeg1-3]. On the whole, these observations were based
on measuring objects that “should vanish” for isotropic sp(R)E<{[u(x+ R)_u(x)].ﬁ}p>_ (3)
flows, and observing their behavior as a function of Rey-
nolds numberRe) or scale. Thus, for example, objects madeSuch objects admit a relatively simple @Pdecomposition,
of the normal derivative of the downstream velocity compo-since they are scalar objects. We can thus span them by the

nents were examined: usual spherical harmonics:
] €
2k+1 A
Sy I Y)T) @ SRI=X 3 SRYin(R). @
<((9UX/F7y)2>k+ 1/2 = =

In this equation, we have used the indidgs to label, re-
The pointed brackets denote ensemble averageis the ~ Spectively, the total angular momentum and its projection
streamwise component of the Eulerian velocity field), along a reference axis, sayWe are interested, in particular,
andy is in the spanwise direction. Since such objects vanislin the scaling properties of the amplitudSS“(R),
in isotropic systems, their increase as a function of Re was
interpreted as a lack of restoration of local isotropy. The SE™(R)~AgmRéO). (5)
problem with such measures is that the objects of this type
are also sensitive to the phenomenon of intermittency, anth the case of exactly soluble mod¢ts3—-15 it was found

also perfectly isotropic objects such as that the scaling exponentg,(¢) form a strictly increasing
spectrum as a function df. In such cases, it becomes com-

au, /%) 21 pletely clear that foR—0, which in the limit Re—c can
= M ) still be in the inertial range, the higher-ordércontributions
2k+1 2 k+1/2? . . . . . .
((duy/ax)*) disappear in favor of the isotropic contribution alone. Thus,
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if one can demonstrate the existence of a strictly increasing S(t"—t)D*B(R)=(w*(r + R,t" )WA(r 1)), (10
spectrum of exponents also in the context of the Navier-
Stokes dynamics, one would establish that local isotropy is
restored at the small scales when Re=x (i.e., when the RORA
viscous cutoff goes to zeroThe numerical values of the K*5(R)=Df(R)—D*#(0)=DR¥ (¢+2)6°F— ¢ 1
scaling exponents will determine the rdie scale$ at which R?
isotropy is restored. The aim of this paper is to present such (11
a calculation.

A calculation of the second-order anisotropic exponents
{»(£), based on the Navier-Stokes equations, was attemptethe forcingf(x,t) is also taken to be a Gaussian white-noise
before in Ref[16]. The analysis there concentrated on theprocess. Its correlation function is
forced solutions for the second-order structure function
S,(R), and concluded with two sets of dimensional predic-
tions. The first, assuming that the anisotropic forcing is ana- FAB(RIL)S(t—t")=(f*r+R,1)fA(r,t")). (12)
lytic, reads

¢2(€)=€+2/3 (forced solution, analytic ®)  The forcing is responsible for injecting energy and anisot-

ropy to the system at an outer scaléWe choose the tensor
Sunction F*A(x) to be analytic inx, anisotropic, and vanish-
ing rapidly for|x|>1.

{,(£)=4/3 (forced solution, nonanalytic (7) To compare with the_predictior(ﬁ)—(S), we should take

£=4/3 in Eq.(11). For this value of the results of Ref.15]

Another, more phenomenological approach, was presented @€ the exponents,(0)=2/3, {,(2)=1.252 26, {,(4)
Ref.[12], generalizing an earlier argument by Lumlgy7].  =2.019 22, {,(6)=4.048 43, (,(8)=6.068 60, and
In this approach, one does not balance the energy transfép(10)=8.083 37, in rather sharp disagreement with the
against the forcing, but rather invokes the existence of gredictions(6)—(8). We will see that the calculation pre-
shears;,=du;/dr, as the main reason for the anisotropy. sented below for the Navier-Stokes case comes up with re-
Performing dimensional analysis in which the shear is addegults in close agreement with those of the linear pressure
to €, the mean energy flux per unit time and mass, one endgodel. We thus will present a strong belief that the dimen-
up with the prediction sional predictiong6)—(8) fail to capture the correct results
for the Navier-Stokes case.

In our approach, we start from the Navier-Stokes equa-
tions, and write down an approximate equation satisfied by
the second-order correlation function, in a closure approxi-
We note that fo =2, the predictiong7) and(8) coincide;  mation (renormalized perutrbation theory in 1-loop order
all three predictions disagree fér>2. This equation is nonlinear. For a weakly anisotropic system,

These predictions do not agree with the result of the onlywe can linearize the equation to define a linear operator over
vector model with pressure that had been solved exactly, i.ethe space of the anisotropic components of the second-order
the “linear pressure modelf15]. This model captures some correlation function. The solution is then a combination of
of the aspects of the pressure term in Navier-Stokes turbuforced solutions and “zero modes,” which are eigenfunc-
lence, while being linear and therefore much simpler probtions of eigenvalue zero of the linear operator. The exponents
lem. The nonlinearity of the Navier-Stokes equation is re-of the forced solutions are identical to E), but the expo-
placed by an advecting field/(x,t) and an advected field nents of the zero modes are smaller, and therefore leading
v(x,t). The advecting fieldv(x,t) is taken with known dy-  with respect to the former. The exponeif$ are not physi-
namics and statistics. Both fields are assumed to be incongal, and are not observed in experiments or simulations. The
pressible. The equation of motion for the vector fiefi{x,t) exponents of the zero modes are close to @j.for £ =2

The second forced solution was computed for nonanalyti
forcing, resulting with

+4
§2(€)=T (dimensional, shear dominated (8)

is and 4, but begin to deviate strongly fée=6, falling very
close to the predictions of the linear pressure model. We will
I+ WHI v+ Ip— kv e=f argue that again the exponents of the zero modes are those
that are observed in simulations.
=0, I w*=0. 9 The structure of the paper is as follows: in Sec. I, we set

up the closure equations for the second-order structure func-
In this equationf(r,t) is a divergence-free forcing term and tion, and linearize them in weak anisotropy. We present the
« is the viscosity. The domain of the system is taken to besymmetry properties of the resulting operator, to simplify as
infinite. Following Kraichnan's model for passive scalar much as possible the $8 decomposition which is pre-
[18], the advecting fieldv(r,t) is chosen to be a white-noise sented in Sec. Ill. The actual calculation of the scaling expo-
Gaussian process with a correlation function which is givements is detailed in Sec. IV. Finally, in Sec. V we present the
by concluding remarks.
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Il. MODEL EQUATIONS FOR WEAK ANISOTROPY IN
THE CLOSURE APPROXIMATION

A. Closure equations

It is customary to discuss the closure equationk,n
representation. The Fourier transform of the velocity field

u(r,t) is defined by

u(k,t)Ef drexd —i(r-k)Ju(r,t). (13

PHYSICAREVIEW E 67, 026312 (2003

¥ A(k,q,p)=0(k,q,p)T*7°(k)
X[ (q)F 7 (p)FF"A(K)
+T 789 ()R (q)FF'A(k)
+TEY (KR (F Y ()], (2D)

In stationary conditions and fdk in the inertial range we
need to solve the integral equatioff(k)=0.
The process leading to these equations is long; one starts

The Navier-Stokes equations for an incompressible fluid themith the Dyson-Wyld perturbation theory, and truncates

read

J
+ vk?

u“(k,t)= —F“ﬁy(k)f 2 )3 ><5(k+q
+p)u*P(g,Hu* (p,t). (14
The interaction amplitud& *#?(k) is defined by
rP7(k)=—[P*"(k)kP+P*A(k)k], (15
with the transverse projection opera@f? defined as

kKB
K2

peb=52h— (16)

The statistical object that is the concern of this paper is the

second ordeftensoj correlation functionF(k,t),

(2m)*F (k1) 8(k—aq)=(u(k,Hu*f(q,1)).  (17)

(without justification at the first loop order. In addition, one
asserts that the time dependence of the response function and
the correlation functions is the same. Finally, one assumes
that the time correlation functions decay in time in a pre-
scribed manner. This is the origin of the “triad interaction
time” O (k,q,p). If one assumes that all the correlation func-
tions involved decay exponentiallg.e., like expEy]t]),

then

1
O(k,q.p)=————"1—. 22
(k,a,p) et 7 (22

For Gaussian decay, i.e., like éxp(yt)?/2],

(23)

1
0(k,q,p)=F——7—.

All these approximations are uncontrolled. Nevertheless, this
type of closure is known to give roughly correct estimates of
scaling exponents and even of coefficients in the isotropic

In stationary conditions, this object is time independent. Ousector. For the case at hand, where we are interested in the
aim is to find itsk dependence, especially in the anisotropicanisotropic scaling exponents that were never computed

sectors.

from first principles, it certainly pays to examine what this

It is well known that there is no close-form theory for the approach has to predict.
second-order simultaneous correlation function. We therefore Equation(19) poses a nonlinear integral equation which is
need to resort to standard approximations that lead to modélosed once we modej,,. One may use the estimatg
equations. An approach that is by now time honored is~kUy, whereU, is the typical velocity amplitude on the

Kraichnan'’s direct interaction approximatidDIA), which is

inverse scale ok, which is evaluated aBlk~k3F““(k)

based on a 1-loop closure. Such a closure leads to approxi-

mate equations of motion of the form

IFB(K 1)

ot =19B(k,t)— vk2F*B(k,t), (18

where

1P(k) = f 5(k+p+q)<1>“ﬁ(k a.p). (19
In this equation,

1
©A(k,q.p)= 5 [¥*P(k,q.p) +¥F(kq.p)], (20

and

Y= C K¥AF(k). (24)

In isotropic turbulence, Eqg19) and (24) have an exact
solution with K41 scaling exponents,

FaP(k)=PA(k)F(k),

F(k) — C€2/3k7 11/3, Y= Ey61/3k2/3. (25)
Note that the scaling exponents lnrepresentation have a
d-dependent difference from their numerical valuer irep-
resentation. In three dimensiordfs— &,= {,+ 3, and the ex-
ponent 2/3 turns to 11/3 in E@25).

For weak anisotropic turbulence, E4.9) will pose alin-
ear problem for the anisotropic components, which depends
on this isotropic solution.
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B. Closure with weak anisotropy The first term of Eq(30) vanishes with the solutio(25). For
In weakly anisotropic turbulence, we consider a small an@!l higher values of¢, we need to solve the corresponding

isotropic correctionf®(k) to the fundamental isotropic €duation

background A
grou L|f,)=o0. (32
FeP(k) =F§P(k)+ f*A(k). (26) . . L L
We can block diagonalize further by exploiting additional

The first term vanishes with the solutid@5). Linearizing ~Symmetries of the linear operator. In all our discussion, we
our integral equation with respect to the anisotropic correc@SSume that our turbulent flow has zero helicity. Correspond-
tion. we read ingly, all the correlation functions are invariant under the

inversion ofk:

d3 d3 (23 a a o
|aﬁ(k)=f (zq )f5(k+p+q)[S“BV5(k,q,p)f75(k) FeP(k)=F§P(—k), fP)=F{P(=k). (33
a
wBys 5 Consequently, there are no oddcomponents, and we can
+2T7*P7(k,q,p) f7°(q)]=0, write
5 “F(k,q,p) .
S*Pr(k,q,p)= ———, feh(k)= f2A(K). 34
(kap)=— (=2 K (34
SDB(K ) We also note that in general —k)=u* (k). Accordingly,
TBYo(k,q,p)= —qp (270  the correlation functions are real. From this fact and the defi-
SF7°(q) nition it follows that the correlation functions are symmetric

to index permutation,
We reiterate that the functional derivatives in Eg7) are
calculated in the isotropic ensemble. In computing these de- FeP(k)=F5(k), f&P(k)=f2*k). (35)
rivatives we should account also for the implicit dependence
of ®(k,q,p) on the correlation function through E¢R4). As a result, our linear operator is invariant to permuting the
We can rewrite Eq(27) in a way that brings out explicitly ~ first («,8) and separately the secongl,§) pairs of indices.
the linear integral operatd}, In addition, the operator is symmetric to— —k together
with g— —q. This follows from the symmetr{33) and from
the appearance of products of two interaction amplitudes
LBk, q)f"%(q)=0, (29 (which are antisymmetric under the inversion of all wave
vectors by themselves
Finally, our kernel is a homogeneous function of the wave

d3q
)3

£|f>EJ (2

where the kernel of the operator is vectors, meaning that in every block we can expand in terms
of basis functions that have a definite scaling behavior, being
dd roportional tok ¢,
Lopk @ =alk—a) | 5 IC;gsc'ﬁ’f%k,p,—k—p) Prop
o
Ill. SO (3) DECOMPOSITION
+2T*FY°(k,q,—k—q). (29)

As a result of the symmetry properties, the operatas
block diagonalized by tensors that have the following prop-
erties.

The first observation to make is that the linear operator is (1) They belong to a definite sectof (n) of the SG3)
invariant under all rotations. Accordingly, we can block di- group.
agonalize it by expanding the anisotropic perturbation in the (2) They have a definite scaling behavior, i.e., are propor-
irreducible representation of the &) symmetry group. tional tok ‘2 with some scaling exponeib.

C. Symmetry properties of the linear operator

These have principal indicégswith an integer going from (3) They are either symmetric or antisymmetric under per-
0 to . The zeroth component is the isotropic sector. Corremutations of indices.
spondingly, our integral equation takes the form (4) They are either even or odd ln

In Ref. [13], we discuss these types of tensors in detail.
Here, we only quote the final results. In every sectomy)
of the rotation group wit>1, one can find nine indepen-
dent tensorX“A(k) that scale likek ¢2(“), They are given

The block diagonalization implies that ea€tblock provides by k™ £(OB*? (k), where the indey runs from 1 to 9,

|aﬁ(|<)=|g;ﬁ(k)+€2l 198(k)=0. (30)

an independent set of equatiofier every value ofk): enumerating the different spherical tensors. The unit vector
o8 k=k/k. These nine tensors can be further subdivided into
177(k)=0. (3D four subsets.
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(1) Subset | of four symmetric tensors with-)¢ parity. detl; ;(€,£,(¢))=0. (41)
(2) Subset Il of two symmetric tensors with-(¢** par- ’
ity. It is important to stress that in spite of the explicitdepen-

(3) Subset Il of two antisymmetric tensors with-)¢ "t dence of the basis functions, the matrix obtained in this way
parity. has nom dependence. In the calculation below we can there-
(4) Subset IV of one antisymmetric tensor with {¢ par-  fore put, without loss of generalityn=0. This is like having

ity. cylindrical symmetry with a symmetry axis in the direction

Due to the diagonalization of by these subsets, the of the unit vectorn. In this case, we can write the matrix
equation for the zero modes foliates, and we can compute thgi'{(k) (in the vector spacer, B=X, Y, z) as
zero modes in each subset separately. In this paper, we
choose to focus on subset I, which has the richest structure. Bﬁg(k):k—%ﬁg,k[wpe(ﬁ. 7, (42)
The four tensors in this subset are given by

‘o whereB, ¥,k are matrix operators, acting on wave vedtor
Bif (k) =k 7 2kKP (k)

S oB kek?
B (k) =k [k K0 ] (k). Blow=o ==
3€m(k) k™ 6 B ym(K), i K252 k%9 KBa
) Byfa=— e (=1 o+ ——— 5|, (43
fn(K) =k 29%0P (K, (36 ok =k

where ¢,(k) are the standard spherical harmonics. We ex2ndP(x) denote(th order Legendre polynomials.
pect the calculation of the other subsets to be easier.
The last property to employ is the incompressibility of our A. Angular averaging

target functio_nf”‘ﬁ(k).. Examiningl thg basi$36), we note To proceed, we perform the angular averaging in @&6)
that we can find two linear combinations that are transvers . . L - .
‘a.e., integration over all directions &) analytically. In or-

to k and two linear combinations that are longitudinalkin . i
We need only the former, which have the form der tc.) QO th|_s we note that Eg40), after §ubst|tut|ng Eag.
(42), is invariant to the simultaneous rotation of the vectors

1{m(k) k™ PB(K) dyr(K), k, g, andn. This means that after integrating ovgr Eq.
(40) must have the form

Bg,(m(lz) = k_f[kzﬁ"‘&ﬁ— (f — 1)(kﬁaa+ kaﬂﬁ)
H(C=1) 8P hem(K). (37)

Using this basis we can now expand our target function as

Li,,-<€,§2>=f d&Mi,j,f,gz(k,R-ﬁFf dnM; ¢ ¢, (k.k-n),
(44)

whereM is an appropriately defined matrix. Accordingly, we
feh(k) =k~ é0c;BEE (K)+c,B3f(k)]. (38  can change the integration ovein favor of integrating over
n. Thus instead of having the directionfixed and all the

IV. CALCULATION OF THE SCALING EXPONENTS other vectors rOtating, we will now choose the directiork of
fixed, and rotate the other vectors. Note also that opetator

does not depend on, and only the matriceB; , are aver-
aged upon. Thus Ed40) can be written as

Substituting Eq(38) into Eq. (32), we find

I:qigz(e)|81'€m>cl+Lq7§2(€)|82,€m>02:0' (39)

Projecting this equation on the two functions of the basis L. (0.¢ ):f dq (R.Q)
(37), we obtain a matrix Ljlthe2 (2m)3 ¢ (54),
S e (45)
Lij(€,&(€)=(B;i ¢(m|lLa™2'"|B; ¢m)
where
d’q .
= f Sdk B (k)L “#7(k,q)q 20 .
(2m)? Ak )= [ ofBEERIBTIE@)~am(2(

B (q). 40
Jvfm(q) ( ) +l)k q €B| £ k l€ q[k€q€P€(k q)]

Here we have full integration with respect tp but only (46)
angular integration with respect ta Thus the matrix de-

pends onk as a power, but we are not interested in thisHere we used the definitio@2) and the following property
dependence since we demand the solvability condition of the Legendre polynomials:
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f dnP(n-K)P,(n-q)=4m(2¢+1)P,(k-q). (47

Now, using Eq.(43) we can write theA matrices explic-
itly:

ﬁ75(k q) poe pBB pw p55 A“ B'y ‘S/(k q)
(48)

where

ALYk, q)= 6P 570P (k- ), (49)

ASBr(k,a)=R37¢7(q.k)= 6671 €?P (k- Q)
—(k-q)P;(k-q)]+ 8*Pk"k’Py(k-q),
(50

=8P ¢*P,(k-q)—(2€%—1)

x (k-q)Py(k-q)+(k-a)?Py(k-q)]
+(8v7 8P+ 5405P 7P (k-q)
+9°9PkkP{V) (k- g) + (6°Pk7k?
+9°9#8")[ (2~ 1)P}(k-q)
—(k-q)PY(k-a)]+(q*67k>+q 67k

+0P8°7k%+gf 8°%k )Py (k- Q). (51)

B. Transform to two-dimensional integral

Examining Eq.(40) we recall that the matrix *#7%(k,q)
contains an integration over, cf. Eq.(29). This integration
is relatively trivial because of the existence of th&nction.
We can integrate ovep simply expressingp as p=—k

—g. Next we integrate ovey in spherical coordinates. Since
we fixed the direction ok, we can choose it, without loss of

generality, in the direction of the axis. Then,

+ o0 m 2w ~
Li,j(f,éz)Zfo qqufo sin@de | - dél;(k.q).
(52

It can be shown that; ;(k,q)=L; ;(k,q,cos®), i.e., does
not depend on angle. So, we obtain a two-dimensional

integral
+o0 +1
Li,j<€,§2)=JO qquffldau,,-(k,q,a), (53

wherea=cos0.
One more remark: the kernel in E40) is symmetric

PHYSICAL REVIEW E 67, 026312 (2003

not only decreases the calculation time, but also allows us
not to integrate near the poipt=0, where the kernel is in
general singular.

C. Window of locality

In performing the integration numerically we need to
worry about the convergence of the integrand. Convergence
is guaranteed only within a given interval of the scaling ex-
ponent{,(€), which is referred to as the “window of local-
ity.” To find the window of locality one should expand the
kernel in Eq.(53) for both small and largg and investigate
its behavior at these regions. It is a straightforwémat cum-
bersomg procedure, and we show explicit results of such an
expansion only neag~0 for {=4 and the “exponential”
decay mode(22). Also we choose herk=1, exploiting the
homogeneity of all our operators ka The equations satisfied

by L; j(k=1g,a) are

5 5
——a(1—a?)(3—30a%+35a%) g3 2+

216 28521

qztl,lz

—a?)(3—30a’+35a%) g3 é2— (1 a?)(3

648

5
—52a%)(3—30a%+35a%)q* f2— 4—32a(1—a2)(3

_30a2+ 35a4)q13/3— §2+ O(q14/3— 52)’ (54)

. 5 5

., . =—a(l-6a2 43— b 2 pcad

q°Lyo l861(1 6a’+5a*)q T228(1+92°— 45
1

+35a%) 3 f2+ 1—08( 1—a?)(51—494a?

5
MNad—é24 — _a(— 2_ 4
+83m:")q" 2+ 144a( 1+21a“—55a

+ 35a6)q13/37 §2+ O(ql4/37 §2),
oL =ia( —3+30a%2—55a*+28a%) g% f2— ia(—3
21718 24
1
+30a2—55a*+28a%) g3 2+ ﬁg(1—.—;\2)(—9

5
+426a%—3105%*+308M°) q* 2+ 362(—3

+30a2—55a%+ 28a%) 133 €24 O(ql43 £2),
2L > 2 43~ ° 22
q Lz,zz—éa(l3—30a +17a%)q 17 §a(1_a )2(—4

1
+7a%)gH - o (1-2a%)(~ 96+ 8%°

with respect to permuting the vectogsand p. This means
that we can actually integrate not over glspace, but only

5
A4
over half space, namely, whep< p= \k?+ 2akq+qg?. This +15%0 g™ 24

a(l1—a?)(19-71a2
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+56a%) i3 24+ O (g3 &2). (55) 11820 az 911~ @19821— @21812

After integration overa=cos®, we obtain

1 - 832
o 4-¢, 1413 &,
j_ldaq Ly 25515 +0(q ),

1 ~ 832
_ 4—¢5 14/3- &,
j_ldaqul,Z 2835q +O(q )1

R 4544
— 4-¢, 14/3- &,
f_ldaquZ,l 8505q +O(q )1

1 _ 4544
f da quz,zzmq4_§2+ 0(q*** %), (56)
-1

It is clear that integrals have IR divergencetif>&* =5.
This result may seem surprising, since the original

in Eq. (40) has terms that depend grasq ™ ¢2. Each of these h

terms begins to diverge §,>3. There is, however, a

de(Li’j): g* £ +(Bl,132,2
62

—B1,2B21)- (59

Thus the determinant diverges in generakat £*. For &,
~ ¢*, the determinant is determined predominantly by the
divergent termec 1/(£F — &,).

We can use this fact to estimate the scaling exponents: in
zeroth approximation, one can use E§9) with g; (&)
calculated exactly at the poing,=&*. The approximate
value of scaling exponent is then

ay 1Bt @z B 1~ a1 o821~ @z 1812
B11B22— B1,282.1

This estimate is valid only as long as>%* — £,>0. Actu-
ally, the values oft, estimated this way for botli=4 and

£=6 and the two decay models yield — £,~0.01-0.02,
kerne alidating the zeroth-order approximation. It is possible,
owever, to calculate the determinant in this region exactly,
as is done in the following sections.

=&+ (60)

can-

cellation of the leading terms, resulting in an increase in the

IR limit of the window of locality, up to thef,=4. The
subleading terms turn out to be antisymmetricainalways

E. Calculating the integrals near the IR edge

vanishing after the angular integration. Thus the actual limit Let us denote the integrands in Eg0) after the integra-

of the window of locality is as computed above.

tion over co® asJ; ;(q). Then we have

The situation is even more complicated for the next an-
isotropic sectof =6. The next subleading ter(subsublead- L= JMJ_ (q)dq (61)
ing), which gives the main IR contribution in the cage b h '
=4, also vanishes after integration. This is due to the fact

that the matrix eIementEi,j contain Legendre polynomials
P.(a) as multipliers; these are orthogonal to all, n<¢, o
and the highest order af in the termq™ %2a", Eq. (54), Iiyj(qo)zf

cannot be greater than+2. So, one can conclude that the

Let us also introduce

Ji,j(a)dq, (62)

integrals converge in IR regime up fo<&*(€)=¢+1, for

{=4. For{<4, we havet* =5.

The UV boundary of the window of locality also moves if

€ is increased, for the same reasons.

D. Integrals near the IR edge of the window of locality:
Approximate calculation of the exponents

do
do
5|i,j(%):f0 Jij(q)dg. (63
Then we have
Lij=1i,;(do)+ 3l j(do) (64)

It is clear from Eq(56) that each integral near the critical for an arbitraryqo.

point £,~ &% =5 (but £,<£*) has the form

Forqoy+#0, I; j(go) can be calculated numerically directly,
because there are no singularities ép# 0. (Note that, and
cf. Sec. IV B, we integrate over half space, which does not

ai'-
Lij(£2)=———+B; (&), (57)  include the second singular poipt= \k?+ 2akqg+qZ=0.)

& —&

whereaq; j are given by the main coefficients in E&6), and

Bi,j(&2) are regular functions near the poifit~&*.
The main observation is that

On the other hand, using E¢p6), dl; ;(qo) for sufficiently
small g and é,~&* can be represented as

q'f*—sfz
31; ;(do) = @ j ——— +O(g3) (65
& =&

def(a; j) = @y 105 ,— @1 005 1=0, (59

and one obtains the following formula for the integtal; :

i.e., the determinant of the leadindivergenj parts of the
integrals vanishes. This occurs equally well for4 and¢ &6
=6, independently of decay model. Thus the full determi- Li,j”'—i,j(Qo)Eli,j(QO)Jrai,j0—- (66)

nant can be written as

& =&

026312-7
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The test of validity of this formula is the independence of 4
L j(do) of do.

We have computed; ; using Eq.(66) with g, varying
over a wide range. It turns out that ;(q) is practically
independent ofj, provided thatg,.>>00>0min, Where

=4, Ompac=2X 103, Omin=~5X 10°8:

€=6, Omax=2X1072, qmn~2x10"%

“Practically independent of” means that the integrals change
in this region ofgy by an amount that is smaller than the
minimum error of integratior{see the following section for 2
the estimate of this errar

For go>0Qmax, the simple approximation foél; ;(qo) is
not valid. For qo<Qmin, the error of integration starts to FIG. 1. Determinant and zero crossing for the seétei0. The
grow rapidly. This is connected with high-order cancellationsscaling exponent computed from the zero crossing & =0)
and finite machine precision. So, f6~=6 we have a fourth- ~0.667.
order cancellation, which means that any small error in the
calculation (or representationof the leading term will in- =11/3, in accordance witti,(0)=2/3. Indeed, for both de-
crease by the factary *. The relative precision in presenting cay models, i.e., the exponential ded@p), shown in dark
numbers on the machine is about_]]_-& so for o= qmin(€ Iine, and the Gaussian decé%) shown in I|ght Iine, the
=6)=2x10"* we have a principaimaching relative error ~ Z€ro crossing occurs at the same point, which in the inset can
of about 0.1, and, of course, the error of integration is in-0€ read as 3.6667. For the highersectors the agreement
creased here. between the exponential and gaussian models is not as per-
fect, indicating that our procedure is not exact. In Fig. 2, we
present the determinant and zero crossings¢fer2. From
the inset we can read the expone&62)=4.351 and 4.366

To perform the integration oveg, we used a standard for the exponential and Gaussian models, respectively. This
Simpson integration_ rule WhiCh gives _errors_of the _orderis in correspondence witti,(2)=1.351 and 1.366, respec-
f*(x)h* [here f(x) is the integrandh is the integration tively. These numbers are in excellent correspondence with
steg. _ . . _ the experimental measurements reported in R&(§]. The

Performing the integration over=cos® we used a nine-  resylts for¢ =4 are presented in Fig. 3. Here the zero cross-
ror of the orderf(*>h'%. We have to use such a high-order petween the exponential and Gaussian decay models, i.e.,
integration formula because of high-order cancellation forg,(4)~4.99. Note that this result is very close to the bound-
¢=4 and{=6. Simpler integration schemes amplify small ary of locality as discussed in Sec. IV C. Nevertheless, the
relative errors in the integration of the leading terfwhich  zerg crossing is still easily resolved by the numerics, with the
should cancel after angular integratiorausing great abso- prediction that/,(4)~1.99. The simulation estimate of this
lute errors for smalty. number in Ref[11] was 1.70.1. We note that while our

The precision of integration was estimated by integral reyegyitz,(4)~1.99 is not within the error bars of the simula-
calculation with smaller step, and the error was determined

as the maximal difference between the integrals, calculated 0.5

Characteristic determinant det L.U(O, &)

25 3.0 3.5 40 45 50
Scaling exponent &,

F. Integration method

with stepsh, h/2, andh/4. o —
: o : oW =2
The error in determining the scaling exponent was esti- )
mated as ey
E 0.0
Afo— Ade’(Li,j) g 002 £
’ ng(LiJ)/é’fz, E 0.014 \ p
g S
where A det(L; ;) is the accuracy of determining def(j). 'u';, 0.5+ ek‘\ : .
We estimated\ ¢£,<<0.002 in all cases. ;‘E oo \‘\"‘N‘\\k&
V. RESULTS AND CONCLUDING REMARKS & ol im am w aw aw
’ 2‘.5 310 315 4:0 4?5 5.0

The determinants dét; ;(¢,¢,)] were computed as a
function of the scaling exponents in every{ sector sepa-
rately, and the scaling exponent was determined from the FiG. 2. Determinant and zero crossing for the seéter2. The

zero crossing. The procedure is exemplified in Fig. 1 for thescaling exponent computed from the zero crossing i =2)
isotropic sector{=0. We expect for this sectok,(0) ~1.36—1.37.

Scaling exponent &,
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Characteristic determinant det Li 1(6, 52)

Characteristic determiinant det Li.j(4’ 52)

1 1 1
25 3.0 35 40 45 5.0

-

W -
~
(4]

Scaling exponent & Scaling exponent &,
FIG. 3. Determinant and zero crossing for the seéted. The FIG. 4. Determinant and zero crossing for the seéte6. The

scaling exponent computed from the zero crossing#=4)  scaling exponent computed from the zero crossing & =6)
~1.99. ~3.98.

tional estimate, it is very much possible that the closeness O\Q/her.easi. the :‘\(l)rme;hsclat IS Ot?]ta'n?d within the clgsure ag)—
the exponent to the boundary of the window of locality givesfrox'm?h'o?\}v levzr € etss, ec Ot?let ;?rres?onl ence et_
rise to very slow convergence to asymptotic scaling. We ther- V€N N€ WO [eads us 1o propose that the actual exponents
fore have to reserve judgment about the agreement with. the Navier-Stokes case may be rather cl_ose to these_ pre-
simulations until larger scaling ranges would be available. |c_t|ons. we .thus propose that Ca.rerI e>.<per|ments and simu-
Similar results are obtained fér=6, see Fig. 4. Also this lations are likely to f.'nd the anisotropic exponers({)
case exhibits zero crossing close to the boundary of Iocalitym“e_2 _for all £>2, with about_ 213 aF‘d 4/3 fof=0 and 2,
with £,(6)~6.98. Again we find close correspondence be_l‘espectwely. If so, the restoration of isotropy at large Re and
tween the exponential and Gaussian models. In terms of small scales should be quite clear, with higltontributions
this means{,(6)~3.98. This number appears higher thandgcaying very rapidly, and thé=2 contribution decaying
the simulational result of Ref11], which estimated,,(6) with a gap exponent_of about 2/.3' We do not expect a much
~3.3+0.3. We note, however, that fof=6 the log-log more precise theoretical eva}luatlon'of these exponents before
plots of Ref.[11] scaled over less than half a decade, anOthe intermittency problem in the isotropic sector is fully
improved simulations may well result in a substantial in_settled.
crease in the estimate.
Interestingly enough, the set of exponerdtg () =2/3,
1.36, 1.99, and 3.98 fd=0, 2, 4, and 6, respectively, arein ~ This work has been supported in part by the European
close agreement with the numbers obtained for the lineaCommission under a TMR grant, The Minerva Foundation,
pressure model{,(¢)=2/3, 1.25226, 2.01922, 4.048 43, Munich, Germany, the German Israeli Foundation, the Israeli
for £=0,2,4, and 6, respectively. We reiterate at this pointScience Foundation, and the Naftali and Anna Backenroth-
that the latter set is exact for the linear pressure modelBronicki Fund for Research in Chaos and Complexity.
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