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Scaling exponents in anisotropic hydrodynamic turbulence
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In anisotropic turbulence, the correlation functions are decomposed in the irreducible representations of the
SO~3! symmetry group~with different ‘‘angular momenta’’,). For different values of,, the second-order
correlation function is characterized by different scaling exponentsz2(,). In this paper, we compute these
scaling exponents in a closure approximation. By linearizing the closure equations in small anisotropy we set
up a linear operator and find its zero modes in the inertial interval of scales. Thus the scaling exponents in each
, sector follow from solvability condition, and are not determined by dimensional analysis. The main result of
our calculation is that the scaling exponentsz2(,) form a strictly increasing spectrum at least until,56,
guaranteeing that the effects of anisotropy decay as power laws when the scale of observation diminishes. The
results of our calculations are compared to available experiments and simulations.
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I. INTRODUCTION

All realistic turbulent flows are maintained by anisotrop
~and inhomogeneous! forcing. Thus the principal conceptua
model of turbulence, i.e., ‘‘homogeneous isotropic turb
lence,’’ exists only in theory. Testing theoretical predictio
that are derived on the basis of such a model in experime
flows ~or in simulations! that are patently anisotropic ca
sometime lead to premature or erroneous conclusions a
important issues such as the universality of scaling ex
nents and other fundamental issues in the theory of tu
lence. The justification for disregarding the effects of anis
ropy was the old conjecture that in the limit of very hig
Reynolds numbers and very small scales, local isotropy m
be restored by the nonlinear transfer mechanism that
cades energy from large to small scales. In the past dec
there had been a number of observations that claimed
opposite@1–3#. On the whole, these observations were ba
on measuring objects that ‘‘should vanish’’ for isotrop
flows, and observing their behavior as a function of Re
nolds number~Re! or scale. Thus, for example, objects ma
of the normal derivative of the downstream velocity comp
nents were examined:

S2k11[
^~]ux /]y!2k11&

^~]ux /]y!2&k11/2
. ~1!

The pointed brackets denote ensemble average,ux is the
streamwise component of the Eulerian velocity fieldu(r ),
andy is in the spanwise direction. Since such objects van
in isotropic systems, their increase as a function of Re w
interpreted as a lack of restoration of local isotropy. T
problem with such measures is that the objects of this t
are also sensitive to the phenomenon of intermittency,
also perfectly isotropic objects such as

K2k11[
^~]ux /]x!2k11&

^~]ux /]x!2&k11/2
, ~2!
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increase with the Reynolds number. It is thus unclear wha
the most important source of observation that the objects~1!
do not vanish even when the Reynolds number is increa
@4,5#.

Until rather recently it was not obvious how to assess
anisotropic effects in a clear fashion, separating the con
butions of the isotropic sector from the rest. Starting w
Ref. @6#, it was proposed that one can do so usefully
finding systematically the projections of the measured co
lation or structure functions on the irreducible represen
tions of the SO~3! group of all rotations. This approach wa
found useful in analyzing experimental results@7–9# and nu-
merical simulations@10–12#. In the context of passive scala
and passive scalar advection, it gave rise to a numbe
exact results@13–15#. In its simplest form, the projection is
applied to thepth-order structure functions~with R̂[R/R,
R[uRu):

Sp~R![^$@u~x1R!2u~x!#•R̂%p&. ~3!

Such objects admit a relatively simple SO~3! decomposition,
since they are scalar objects. We can thus span them by
usual spherical harmonics:

Sp~R!5 (
,50

`

(
m52,

,

Sp
,m~R!Y,m~R̂!. ~4!

In this equation, we have used the indices,,m to label, re-
spectively, the total angular momentum and its project
along a reference axis, sayẑ. We are interested, in particula
in the scaling properties of the amplitudesSp

,m(R),

Sp
,m~R!;A,mRzp(,). ~5!

In the case of exactly soluble models@13–15# it was found
that the scaling exponentszp(,) form a strictly increasing
spectrum as a function of,. In such cases, it becomes com
pletely clear that forR→0, which in the limit Re→` can
still be in the inertial range, the higher-order, contributions
disappear in favor of the isotropic contribution alone. Th
©2003 The American Physical Society12-1
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if one can demonstrate the existence of a strictly increas
spectrum of exponents also in the context of the Nav
Stokes dynamics, one would establish that local isotrop
restored at the small scales when Re→` ~i.e., when the
viscous cutoff goes to zero!. The numerical values of the
scaling exponents will determine the rate~in scales! at which
isotropy is restored. The aim of this paper is to present s
a calculation.

A calculation of the second-order anisotropic expone
z2(,), based on the Navier-Stokes equations, was attem
before in Ref.@16#. The analysis there concentrated on t
forced solutions for the second-order structure functi
S2(R), and concluded with two sets of dimensional pred
tions. The first, assuming that the anisotropic forcing is a
lytic, reads

z2~, !5,12/3 ~forced solution, analytic!. ~6!

The second forced solution was computed for nonanal
forcing, resulting with

z2~, !54/3 ~forced solution, nonanalytic!. ~7!

Another, more phenomenological approach, was presente
Ref. @12#, generalizing an earlier argument by Lumley@17#.
In this approach, one does not balance the energy tran
against the forcing, but rather invokes the existence o
shearsik[]ui /]r k as the main reason for the anisotrop
Performing dimensional analysis in which the shear is ad
to ē, the mean energy flux per unit time and mass, one e
up with the prediction

z2~, !5
21,

3
~dimensional, shear dominated!. ~8!

We note that for,52, the predictions~7! and ~8! coincide;
all three predictions disagree for,.2.

These predictions do not agree with the result of the o
vector model with pressure that had been solved exactly,
the ‘‘linear pressure model’’@15#. This model captures som
of the aspects of the pressure term in Navier-Stokes tu
lence, while being linear and therefore much simpler pr
lem. The nonlinearity of the Navier-Stokes equation is
placed by an advecting fieldw(x,t) and an advected field
v(x,t). The advecting fieldw(x,t) is taken with known dy-
namics and statistics. Both fields are assumed to be inc
pressible. The equation of motion for the vector fieldva(x,t)
is

] tv
a1wm]mva1]ap2k]2va5 f a ,

]ava50, ]awa50. ~9!

In this equation,f(r ,t) is a divergence-free forcing term an
k is the viscosity. The domain of the system is taken to
infinite. Following Kraichnan’s model for passive scal
@18#, the advecting fieldw(r ,t) is chosen to be a white-nois
Gaussian process with a correlation function which is giv
by
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d~ t82t !Dab~R![^wa~r1R,t8!wb~r ,t !&, ~10!

Kab~R![Dab~R!2Dab~0!5DRjF ~j12!dab2j
RaRb

R2 G .

~11!

The forcingf(x,t) is also taken to be a Gaussian white-no
process. Its correlation function is

Fab~R/L !d~ t2t8![^ f a~r1R,t ! f b~r ,t8!&. ~12!

The forcing is responsible for injecting energy and anis
ropy to the system at an outer scaleL. We choose the tenso
functionFab(x) to be analytic inx, anisotropic, and vanish
ing rapidly for uxu@1.

To compare with the predictions~6!–~8!, we should take
j54/3 in Eq.~11!. For this value ofj the results of Ref.@15#
are the exponentsz2(0)52/3, z2(2)51.252 26, z2(4)
52.019 22, z2(6)54.048 43, z2(8)56.068 60, and
z2(10)58.083 37, in rather sharp disagreement with t
predictions ~6!–~8!. We will see that the calculation pre
sented below for the Navier-Stokes case comes up with
sults in close agreement with those of the linear press
model. We thus will present a strong belief that the dime
sional predictions~6!–~8! fail to capture the correct result
for the Navier-Stokes case.

In our approach, we start from the Navier-Stokes eq
tions, and write down an approximate equation satisfied
the second-order correlation function, in a closure appro
mation ~renormalized perutrbation theory in 1-loop orde!.
This equation is nonlinear. For a weakly anisotropic syste
we can linearize the equation to define a linear operator o
the space of the anisotropic components of the second-o
correlation function. The solution is then a combination
forced solutions and ‘‘zero modes,’’ which are eigenfun
tions of eigenvalue zero of the linear operator. The expone
of the forced solutions are identical to Eq.~6!, but the expo-
nents of the zero modes are smaller, and therefore lea
with respect to the former. The exponents~7! are not physi-
cal, and are not observed in experiments or simulations.
exponents of the zero modes are close to Eq.~8! for ,52
and 4, but begin to deviate strongly for,56, falling very
close to the predictions of the linear pressure model. We
argue that again the exponents of the zero modes are t
that are observed in simulations.

The structure of the paper is as follows: in Sec. II, we
up the closure equations for the second-order structure fu
tion, and linearize them in weak anisotropy. We present
symmetry properties of the resulting operator, to simplify
much as possible the SO~3! decomposition which is pre
sented in Sec. III. The actual calculation of the scaling ex
nents is detailed in Sec. IV. Finally, in Sec. V we present
concluding remarks.
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II. MODEL EQUATIONS FOR WEAK ANISOTROPY IN
THE CLOSURE APPROXIMATION

A. Closure equations

It is customary to discuss the closure equations ink,t
representation. The Fourier transform of the velocity fie
u(r ,t) is defined by

u~k,t ![E drexp@2 i ~r•k!#u~r ,t !. ~13!

The Navier-Stokes equations for an incompressible fluid t
read

F ]

]t
1nk2Gua~k,t !5

i

2
Gabg~k!E d3qd3p

~2p!3 3d~k1q

1p!u* b~q,t !u* g~p,t !. ~14!

The interaction amplitudeGabg(k) is defined by

Gabg~k!52@Pag~k!kb1Pab~k!kg#, ~15!

with the transverse projection operatorPab defined as

Pab[dab2
kakb

k2
. ~16!

The statistical object that is the concern of this paper is
second order~tensor! correlation functionF(k,t),

~2p!3Fab~k,t !d~k2q![^ua~k,t !u* b~q,t !&. ~17!

In stationary conditions, this object is time independent. O
aim is to find itsk dependence, especially in the anisotrop
sectors.

It is well known that there is no close-form theory for th
second-order simultaneous correlation function. We there
need to resort to standard approximations that lead to m
equations. An approach that is by now time honored
Kraichnan’s direct interaction approximation~DIA !, which is
based on a 1-loop closure. Such a closure leads to app
mate equations of motion of the form

]Fab~k,t !

2]t
5I ab~k,t !2nk2Fab~k,t !, ~18!

where

I ab~k!5E d3qd3p

~2p!3
d~k1p1q!Fab~k,q,p!. ~19!

In this equation,

Fab~k,q,p!5
1

2
@Cab~k,q,p!1Cba~k,q,p!#, ~20!

and
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Cab~k,q,p!5Q~k,q,p!Gagd~k!

3@Gdb8g8~q!Fgg8~p!Fb8b~k!

1Ggb8d8~p!Fdd8~q!Fb8b~k!

1Gbd8g8~k!Fdd8~q!Fgg8~p!#. ~21!

In stationary conditions and fork in the inertial range we
need to solve the integral equationI ab(k)50.

The process leading to these equations is long; one s
with the Dyson-Wyld perturbation theory, and truncat
~without justification! at the first loop order. In addition, on
asserts that the time dependence of the response function
the correlation functions is the same. Finally, one assum
that the time correlation functions decay in time in a p
scribed manner. This is the origin of the ‘‘triad interactio
time’’ Q(k,q,p). If one assumes that all the correlation fun
tions involved decay exponentially~i.e., like exp(2gkutu),
then

Q~k,q,p!5
1

gk1gq1gp
. ~22!

For Gaussian decay, i.e., like exp@2(gkt)
2/2#,

Q~k,q,p!5
1

Agk
21gq

21gp
2

. ~23!

All these approximations are uncontrolled. Nevertheless,
type of closure is known to give roughly correct estimates
scaling exponents and even of coefficients in the isotro
sector. For the case at hand, where we are interested in
anisotropic scaling exponents that were never compu
from first principles, it certainly pays to examine what th
approach has to predict.

Equation~19! poses a nonlinear integral equation which
closed once we modelgk . One may use the estimategk
;kUk , whereUk is the typical velocity amplitude on the
inverse scale ofk, which is evaluated asUk

2;k3Faa(k),

gk5Cgk5/2AFaa~k!. ~24!

In isotropic turbulence, Eqs.~19! and ~24! have an exact
solution with K41 scaling exponents,

F0
ab~k!5Pab~k!F~k!,

F~k!5Cē2/3k211/3, gk5C̃gē1/3k2/3. ~25!

Note that the scaling exponents ink representation have
d-dependent difference from their numerical value inr rep-
resentation. In three dimensions,z2→j25z213, and the ex-
ponent 2/3 turns to 11/3 in Eq.~25!.

For weak anisotropic turbulence, Eq.~19! will pose alin-
ear problem for the anisotropic components, which depen
on this isotropic solution.
2-3
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B. Closure with weak anisotropy

In weakly anisotropic turbulence, we consider a small
isotropic correction f ab(k) to the fundamental isotropic
background

Fab~k!5F0
ab~k!1 f ab~k!. ~26!

The first term vanishes with the solution~25!. Linearizing
our integral equation with respect to the anisotropic corr
tion, we read

I ab~k!5E d3qd3p

~2p!3
d~k1p1q!@Sabgd~k,q,p! f gd~k!

12Tabgd~k,q,p! f gd~q!#50,

Sabgd~k,q,p![
dFab~k,q,p!

dFgd~k!
,

Tabgd~k,q,p![
dFab~k,q,p!

dFgd~q!
. ~27!

We reiterate that the functional derivatives in Eq.~27! are
calculated in the isotropic ensemble. In computing these
rivatives we should account also for the implicit depende
of Q(k,q,p) on the correlation function through Eq.~24!.
We can rewrite Eq.~27! in a way that brings out explicitly
the linear integral operatorL̂,

L̂uf&[E d3q

~2p!3
L abgd~k,q! f gd~q!50, ~28!

where the kernel of the operator is

L abgd~k,q![d~k2q!E d3p

~2p!3
Sabgd~k,p,2k2p!

12Tabgd~k,q,2k2q!. ~29!

C. Symmetry properties of the linear operator

The first observation to make is that the linear operato
invariant under all rotations. Accordingly, we can block d
agonalize it by expanding the anisotropic perturbation in
irreducible representation of the SO~3! symmetry group.
These have principal indices, with an integer, going from
0 to `. The zeroth component is the isotropic sector. Cor
spondingly, our integral equation takes the form

I ab~k!5I 0
ab~k!1 (

,51

`

I ,
ab~k!50. ~30!

The block diagonalization implies that each, block provides
an independent set of equations~for every value ofk):

I ,
ab~k!50. ~31!
02631
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The first term of Eq.~30! vanishes with the solution~25!. For
all higher values of,, we need to solve the correspondin
equation

L̂uf,&50. ~32!

We can block diagonalize further by exploiting addition
symmetries of the linear operator. In all our discussion,
assume that our turbulent flow has zero helicity. Correspo
ingly, all the correlation functions are invariant under t
inversion ofk:

F0
ab~k!5F0

ab~2k!, f ,
ab~k!5 f ,

ab~2k!. ~33!

Consequently, there are no odd, components, and we ca
write

f ab~k!5 (
j 52,4, . . .

`

f ,
ab~k!. ~34!

We also note that in generalu(2k)5u* (k). Accordingly,
the correlation functions are real. From this fact and the d
nition it follows that the correlation functions are symmetr
to index permutation,

F0
ab~k!5F0

ba~k!, f ,
ab~k!5 f ,

ba~k!. ~35!

As a result, our linear operator is invariant to permuting t
first (a,b) and separately the second (g,d) pairs of indices.
In addition, the operator is symmetric tok→2k together
with q→2q. This follows from the symmetry~33! and from
the appearance of products of two interaction amplitu
~which are antisymmetric under the inversion of all wa
vectors by themselves!.

Finally, our kernel is a homogeneous function of the wa
vectors, meaning that in every block we can expand in te
of basis functions that have a definite scaling behavior, be
proportional tok2j.

III. SO „3… DECOMPOSITION

As a result of the symmetry properties, the operatorL̂ is
block diagonalized by tensors that have the following pro
erties.

~1! They belong to a definite sector (,,m) of the SO~3!
group.

~2! They have a definite scaling behavior, i.e., are prop
tional to k2z2 with some scaling exponentz2.

~3! They are either symmetric or antisymmetric under p
mutations of indices.

~4! They are either even or odd ink.
In Ref. @13#, we discuss these types of tensors in det

Here, we only quote the final results. In every sector (,,m)
of the rotation group with,.1, one can find nine indepen
dent tensorsXab(k) that scale likek2j2(,). They are given
by k2j2(,)B̃j ,,m

ab ( k̂), where the indexj runs from 1 to 9,
enumerating the different spherical tensors. The unit vec
k̂[k/k. These nine tensors can be further subdivided i
four subsets.
2-4
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~1! Subset I of four symmetric tensors with (2), parity.
~2! Subset II of two symmetric tensors with (2),11 par-

ity.
~3! Subset III of two antisymmetric tensors with (2),11

parity.
~4! Subset IV of one antisymmetric tensor with (2), par-

ity.
Due to the diagonalization ofL̂ by these subsets, th

equation for the zero modes foliates, and we can compute
zero modes in each subset separately. In this paper,
choose to focus on subset I, which has the richest struc
The four tensors in this subset are given by

B̃1,,m
ab ~ k̂!5k2,22kakbf,m~k!,

B̃2,,m
ab ~ k̂!5k2,@ka]b1kb]a#f,m~k!,

B̃3,,m
ab ~ k̂!5k2,dabf,m~k!,

B̃4,,m
ab ~ k̂!5k2,12]a]bf,m~k!, ~36!

wheref,m(k) are the standard spherical harmonics. We
pect the calculation of the other subsets to be easier.

The last property to employ is the incompressibility of o
target functionf ab(k). Examining the basis~36!, we note
that we can find two linear combinations that are transve
to k and two linear combinations that are longitudinal ink.
We need only the former, which have the form

B1,,m
ab ~ k̂!5k2,Pab~k!f,m~k!,

B2,,m
ab ~ k̂!5k2,@k2]a]b2~,21!~kb]a1ka]b!

1,~,21!dab#f,m~k!. ~37!

Using this basis we can now expand our target function

f ,
ab~k!5k2j2(,)@c1B1,,m

ab ~ k̂!1c2B2,,m
ab ~ k̂!#. ~38!

IV. CALCULATION OF THE SCALING EXPONENTS

Substituting Eq.~38! into Eq. ~32!, we find

L̂q2z2(,)uB1,,m&c11L̂q2j2(,)uB2,,m&c250. ~39!

Projecting this equation on the two functions of the ba
~37!, we obtain a matrix

Li , j„,,j2~, !…[^Bi ,,muL̂q2j2(,)uBj ,,m&

5E d3q

~2p!3
dk̂ Bi ,,m

ab ~ k̂!L abgd~k,q!q2j2(,)

3Bj ,,m
gd ~ q̂!. ~40!

Here we have full integration with respect toq, but only
angular integration with respect tok. Thus the matrix de-
pends onk as a power, but we are not interested in th
dependence since we demand the solvability condition
02631
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It is important to stress that in spite of the explicitm depen-
dence of the basis functions, the matrix obtained in this w
has nom dependence. In the calculation below we can the
fore put, without loss of generality,m50. This is like having
cylindrical symmetry with a symmetry axis in the directio
of the unit vectorn̂. In this case, we can write the matri
Bi ,,( k̂) ~in the vector spacea, b5x, y, z) as

Bi ,,
ab~ k̂!5k2,B̂i ,,

ab,k@k,P,~ k̂•n̂!#, ~42!

whereB̂i ,,
ab,k are matrix operators, acting on wave vectork:

B̂1,,
ab,k[dab2

kakb

k2
,

B̂2,,
ab,k[

k2]2

]ka]kb
2~,21!S ka]

]kb
1

kb]

]ka
2,dabD , ~43!

andP,(x) denote,th order Legendre polynomials.

A. Angular averaging

To proceed, we perform the angular averaging in Eq.~40!

~i.e., integration over all directions ofk̂) analytically. In or-
der to do this we note that Eq.~40!, after substituting Eq.
~42!, is invariant to the simultaneous rotation of the vecto
k, q, and n̂. This means that after integrating overq, Eq.
~40! must have the form

Li , j~,,j2!5E dk̂Mi , j ,,,j2
~k,k̂•n̂!5E dn̂Mi , j ,,,j2

~k,k̂•n̂!,

~44!

whereM is an appropriately defined matrix. Accordingly, w
can change the integration overk̂ in favor of integrating over
n̂. Thus instead of having the directionn̂ fixed and all the
other vectors rotating, we will now choose the direction ok
fixed, and rotate the other vectors. Note also that operatoL̂
does not depend onn̂, and only the matricesBi ,, are aver-
aged upon. Thus Eq.~40! can be written as

Li , j~,,j2!5E dq

~2p!3
Labgd~k,q!q2j2L i j ,,

abgd~ k̂,q̂!,

~45!

where

L i j ,,
abgd~ k̂,q̂![E dn̂Bi ,,

ab~ k̂!Bj ,,
gd ~ q̂!54p~2,

11!k2,q2,B̂i ,,
ab,kB̂j ,,

gd ,q@k,q,P,~ k̂•q̂!#.

~46!

Here we used the definition~42! and the following property
of the Legendre polynomials:
2-5
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E dn̂P,~ n̂• k̂!P,~ n̂•q̂!54p~2,11!P,~ k̂•q̂!. ~47!

Now, using Eq.~43! we can write theL matrices explic-
itly:

L i j ,,
abgd~ k̂,q̂!5Pk

aa8Pk
bb8Pq

gg8Pq
dd8L̃ i j ,,

a8b8g8d8~ k̂,q̂!,
~48!

where

L̃11,,
abgd~ k̂,q̂!5dabdgdP,~ k̂•q̂!, ~49!

L̃12,,
abgd~ k̂,q̂!5L̃21,,

gdab~ q̂,k̂!5dabdgd@,2P,~ k̂•q̂!

2~ k̂•q̂!P,8~ k̂•q̂!#1dabk̂gk̂dP,9~ k̂•q̂!,

~50!

L̃22,,
abgd~ k̂,q̂!5dabdgd@,4P,~ k̂•q̂!2~2,221!

3~ k̂•q̂!P,8~ k̂•q̂!1~ k̂•q̂!2P,9~ k̂•q̂!#

1~dagdbd1daddbg!P,9~ k̂•q̂!

1q̂aq̂bk̂gk̂dP,
(IV)~ k̂•q̂!1~dabk̂gk̂d

1q̂aq̂bdgd!@~,221!P,9~ k̂•q̂!

2~ k̂•q̂!P,-~ k̂•q̂!#1~ q̂adbgk̂d1q̂adbdk̂g

1q̂bdagk̂d1q̂bdadk̂g!P,-~ k̂•q̂!. ~51!

B. Transform to two-dimensional integral

Examining Eq.~40! we recall that the matrixL abgd(k,q)
contains an integration overp, cf. Eq. ~29!. This integration
is relatively trivial because of the existence of thed function.
We can integrate overp simply expressingp as p52k
2q. Next we integrate overq in spherical coordinates. Sinc
we fixed the direction ofk, we can choose it, without loss o
generality, in the direction of theẑ axis. Then,

Li , j~,,j2!5E
0

1`

q2dqE
0

p

sinQdQE
0

2p

dfL̃ i , j~k,q!.

~52!

It can be shown thatL̃ i , j (k,q)5L̃ i , j (k,q,cosQ), i.e., does
not depend on anglef. So, we obtain a two-dimensiona
integral

Li , j~,,j2!5E
0

1`

q2dqE
21

11

daL̃i , j~k,q,a!, ~53!

wherea5cosQ.
One more remark: the kernel in Eq.~40! is symmetric

with respect to permuting the vectorsq and p. This means
that we can actually integrate not over allq space, but only
over half space, namely, whenq,p5Ak212akq1q2. This
02631
not only decreases the calculation time, but also allows
not to integrate near the pointp'0, where the kernel is in
general singular.

C. Window of locality

In performing the integration numerically we need
worry about the convergence of the integrand. Converge
is guaranteed only within a given interval of the scaling e
ponentz2(,), which is referred to as the ‘‘window of local
ity.’’ To find the window of locality one should expand th
kernel in Eq.~53! for both small and largeq and investigate
its behavior at these regions. It is a straightforward~but cum-
bersome! procedure, and we show explicit results of such
expansion only nearq'0 for ,54 and the ‘‘exponential’’
decay model~22!. Also we choose herek51, exploiting the
homogeneity of all our operators ink. The equations satisfied
by L̃ i , j (k51,q,a) are

q2L̃1,152
5

216
a~12a2!~3230a2135a4!q32j21

5

288
a~1

2a2!~3230a2135a4!q11/32j22
1

648
~12a2!~3

252a2!~3230a2135a4!q42j22
5

432
a~12a2!~3

230a2135a4!q13/32j21O~q14/32j2!, ~54!

q2L̃1,25
5

18
a~126a215a4!q32j22

5

144
a~119a2245a4

135a6!q11/32j21
1

108
~12a2!~512494a2

1835a4!q42j21
5

144
a~21121a2255a4

135a6!q13/32j21O~q14/32j2!,

q2L̃2,15
5

18
a~23130a2255a4128a6!q32j22

5

24
a~23

130a2255a4128a6!q11/32j21
1

108
~12a2!~29

1426a223105a413080a6!q42j21
5

36
a~23

130a2255a4128a6!q13/32j21O~q14/32j2!,

q2L̃2,252
5

6
a~13230a2117a4!q32j22

5

3
a~12a2!2~24

17a2!q11/32j22
1

18
~12a2!~296189a2

1155a4!q42j22
5

24
a~12a2!~19271a2
2-6
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156a4!q13/32j21O~q14/32j2!. ~55!

After integration overa5cosQ, we obtain

E
21

1

da q2L̃1,152
832

25 515
q42j21O~q14/32j2!,

E
21

1

da q2L̃1,25
832

2835
q42j21O~q14/32j2!,

E
21

1

da q2L̃2,152
4544

8505
q42j21O~q14/32j2!,

E
21

1

da q2L̃2,25
4544

945
q42j21O~q14/32j2!. ~56!

It is clear that integrals have IR divergence ifj2.j* 55.
This result may seem surprising, since the original ker

in Eq. ~40! has terms that depend onq asq2j2. Each of these
terms begins to diverge ifj2.3. There is, however, a can
cellation of the leading terms, resulting in an increase in
IR limit of the window of locality, up to thej254. The
subleading terms turn out to be antisymmetric ina, always
vanishing after the angular integration. Thus the actual li
of the window of locality is as computed above.

The situation is even more complicated for the next
isotropic sector,56. The next subleading term~subsublead-
ing!, which gives the main IR contribution in the case,
54, also vanishes after integration. This is due to the f
that the matrix elementsL̃ i , j contain Legendre polynomial
P,(a) as multipliers; these are orthogonal to allan, n,,,
and the highest order ofa in the termqm2j2an, Eq. ~54!,
cannot be greater thanm12. So, one can conclude that th
integrals converge in IR regime up toj2,j* (,)5,11, for
,>4. For ,<4, we havej* 55.

The UV boundary of the window of locality also moves
, is increased, for the same reasons.

D. Integrals near the IR edge of the window of locality:
Approximate calculation of the exponents

It is clear from Eq.~56! that each integral near the critica
point j2'j* 55 ~but j2,j* ) has the form

Li , j~j2!5
a i , j

j* 2j2

1b i , j~j2!, ~57!

wherea i , j are given by the main coefficients in Eq.~56!, and
b i , j (j2) are regular functions near the pointj2'j* .

The main observation is that

det~a i , j !5a1,1a2,22a1,2a2,150, ~58!

i.e., the determinant of the leading~divergent! parts of the
integrals vanishes. This occurs equally well for,54 and,
56, independently of decay model. Thus the full determ
nant can be written as
02631
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det~Li , j !5
a1,1b2,21a2,2b1,12a1,2b2,12a2,1b1,2

j* 2j2

1~b1,1b2,2

2b1,2b2,1!. ~59!

Thus the determinant diverges in general atj25j* . For j2
'j* , the determinant is determined predominantly by t
divergent term}1/(j* 2j2).

We can use this fact to estimate the scaling exponents
zeroth approximation, one can use Eq.~59! with b i , j (j2)
calculated exactly at the pointj25j* . The approximate
value of scaling exponent is then

j25j* 1
a1,1b2,21a2,2b1,12a1,2b2,12a2,1b1,2

b1,1b2,22b1,2b2,1
. ~60!

This estimate is valid only as long as 1@j* 2j2.0. Actu-
ally, the values ofj2 estimated this way for both,54 and
,56 and the two decay models yieldj* 2j2'0.0120.02,
validating the zeroth-order approximation. It is possib
however, to calculate the determinant in this region exac
as is done in the following sections.

E. Calculating the integrals near the IR edge

Let us denote the integrands in Eq.~40! after the integra-
tion over cosQ asJi , j (q). Then we have

Li , j5E
0

1`

Ji , j~q!dq. ~61!

Let us also introduce

I i , j~q0!5E
q0

1`

Ji , j~q!dq, ~62!

dI i , j~q0!5E
0

q0
Ji , j~q!dq. ~63!

Then we have

Li , j5I i , j~q0!1dI i , j~q0! ~64!

for an arbitraryq0.
For q0Þ0, I i , j (q0) can be calculated numerically directly

because there are no singularities forqÞ0. ~Note that, and
cf. Sec. IV B, we integrate over halfq space, which does no
include the second singular pointp5Ak212akq1q250.!
On the other hand, using Eq.~56!, dI i , j (q0) for sufficiently
small q0 andj2'j* can be represented as

dI i , j~q0!5a i , j

q0
j* 2j2

j* 2j2

1O~q0
2/3! ~65!

and one obtains the following formula for the integralLi , j :

Li , j'Li , j~q0![I i , j~q0!1a i , j

q0
j* 2j2

j* 2j2

. ~66!
2-7
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The test of validity of this formula is the independence
Li , j (q0) of q0.

We have computedLi , j using Eq.~66! with q0 varying
over a wide range. It turns out thatLi , j (q0) is practically
independent ofq0 provided thatqmax.q0.qmin , where

,54, qmax'231023, qmin'531028;

,56, qmax'231022, qmin'231024.

‘‘Practically independent of’’ means that the integrals chan
in this region ofq0 by an amount that is smaller than th
minimum error of integration~see the following section fo
the estimate of this error!.

For q0.qmax, the simple approximation fordI i , j (q0) is
not valid. For q0,qmin , the error of integration starts t
grow rapidly. This is connected with high-order cancellatio
and finite machine precision. So, for,56 we have a fourth-
order cancellation, which means that any small error in
calculation ~or representation! of the leading term will in-
crease by the factorq0

24. The relative precision in presentin
numbers on the machine is about 10216, so for q05qmin(,
56)5231024 we have a principal~machine! relative error
of about 0.1, and, of course, the error of integration is
creased here.

F. Integration method

To perform the integration overq, we used a standar
Simpson integration rule which gives errors of the ord
f (4)(x)h4 @here f (x) is the integrand,h is the integration
step#.

Performing the integration overa5cosQ we used a nine-
point closed-type Newton-Cotes integration formula with
ror of the orderf (10)h10. We have to use such a high-ord
integration formula because of high-order cancellation
,54 and,56. Simpler integration schemes amplify sma
relative errors in the integration of the leading terms~which
should cancel after angular integration! causing great abso
lute errors for smallq.

The precision of integration was estimated by integral
calculation with smaller steph, and the error was determine
as the maximal difference between the integrals, calcula
with stepsh, h/2, andh/4.

The error in determining the scaling exponent was e
mated as

Dj25
Ddet~Li , j !

] det~Li , j !/]j2
,

whereD det(Li , j ) is the accuracy of determining det(Li , j ).
We estimatedDj2,0.002 in all cases.

V. RESULTS AND CONCLUDING REMARKS

The determinants det@Li , j (,,j2)# were computed as a
function of the scaling exponentsj2 in every, sector sepa-
rately, and the scaling exponent was determined from
zero crossing. The procedure is exemplified in Fig. 1 for
isotropic sector,50. We expect for this sectorj2(0)
02631
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511/3, in accordance withz2(0)52/3. Indeed, for both de-
cay models, i.e., the exponential decay~22!, shown in dark
line, and the Gaussian decay~23! shown in light line, the
zero crossing occurs at the same point, which in the inset
be read as 3.6667. For the higher, sectors the agreemen
between the exponential and gaussian models is not as
fect, indicating that our procedure is not exact. In Fig. 2,
present the determinant and zero crossings for,52. From
the inset we can read the exponentsj2(2)54.351 and 4.366
for the exponential and Gaussian models, respectively. T
is in correspondence withz2(2)51.351 and 1.366, respec
tively. These numbers are in excellent correspondence w
the experimental measurements reported in Refs.@7,8#. The
results for,54 are presented in Fig. 3. Here the zero cro
ing, as seen in the inset, yields very close results forj2(4)
between the exponential and Gaussian decay models,
j2(4)'4.99. Note that this result is very close to the boun
ary of locality as discussed in Sec. IV C. Nevertheless,
zero crossing is still easily resolved by the numerics, with
prediction thatz2(4)'1.99. The simulation estimate of thi
number in Ref.@11# was 1.760.1. We note that while our
resultz2(4)'1.99 is not within the error bars of the simula

FIG. 1. Determinant and zero crossing for the sector,50. The
scaling exponent computed from the zero crossing isz2(,50)
'0.667.

FIG. 2. Determinant and zero crossing for the sector,52. The
scaling exponent computed from the zero crossing isz2(,52)
'1.3621.37.
2-8
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tional estimate, it is very much possible that the closenes
the exponent to the boundary of the window of locality giv
rise to very slow convergence to asymptotic scaling. We th
fore have to reserve judgment about the agreement
simulations until larger scaling ranges would be available

Similar results are obtained for,56, see Fig. 4. Also this
case exhibits zero crossing close to the boundary of loca
with j2(6)'6.98. Again we find close correspondence b
tween the exponential and Gaussian models. In terms oz2
this meansz2(6)'3.98. This number appears higher th
the simulational result of Ref.@11#, which estimatedz2(6)
'3.360.3. We note, however, that for,56 the log-log
plots of Ref. @11# scaled over less than half a decade, a
improved simulations may well result in a substantial
crease in the estimate.

Interestingly enough, the set of exponentsz2(,)52/3,
1.36, 1.99, and 3.98 for,50, 2, 4, and 6, respectively, are i
close agreement with the numbers obtained for the lin
pressure model,z2(,)52/3, 1.252 26, 2.019 22, 4.048 43
for ,50,2,4, and 6, respectively. We reiterate at this po
that the latter set is exact for the linear pressure mo

FIG. 3. Determinant and zero crossing for the sector,54. The
scaling exponent computed from the zero crossing isz2(,54)
'1.99.
d
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whereas the former set is obtained within the closure
proximation. Nevertheless, the close correspondence
tween the two leads us to propose that the actual expon
in the Navier-Stokes case may be rather close to these
dictions. We thus propose that careful experiments and si
lations are likely to find the anisotropic exponentsz2(,)
',22 for all ,.2, with about 2/3 and 4/3 for,50 and 2,
respectively. If so, the restoration of isotropy at large Re a
small scales should be quite clear, with high, contributions
decaying very rapidly, and the,52 contribution decaying
with a gap exponent of about 2/3. We do not expect a m
more precise theoretical evaluation of these exponents be
the intermittency problem in the isotropic sector is ful
settled.
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FIG. 4. Determinant and zero crossing for the sector,56. The
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