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Stabilization of hydrodynamic flows by small viscosity variations
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Motivated by the large effect of turbulent drag reduction by minute concentrations of polymers, we study the
effects of a weakly space-dependent viscosity on the stability of hydrodynamic flows. In a recent paper@Phys.
Rev. Lett.87, 174501,~2001!#, we exposed the crucial role played by a localized region where the energy of
fluctuations is produced by interactions with the mean flow~the ‘‘critical layer’’!. We showed that a layer of a
weakly space-dependent viscosity placed near the critical layer can have a very large stabilizing effect on
hydrodynamic fluctuations, retarding significantly the onset of turbulence. In this paper we extend these
observations in two directions: first we show that the strong stabilization of the primary instability is also
obtained when the viscosity profile is realistic~inferred from simulations of turbulent flows with a small
concentration of polymers!. Second, we analyze the secondary instability~around the time-dependent primary
instability! and find similar strong stabilization. Since the secondary instability develops around a time-
dependent solution and is three dimensional, this brings us closer to the turbulent case. We reiterate that the
large effect isnot due to a modified dissipation~as is assumed in some theories of drag reduction!, but due to
reduced energy intake from the mean flow to the fluctuations. We propose that similar physics act in turbulent
drag reduction.

DOI: 10.1103/PhysRevE.67.026310 PACS number~s!: 47.27.Rc, 47.27.2i
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I. INTRODUCTION

This paper is motivated by the dramatic effects that
observed with the addition of small amounts of polymers
hydrodynamic flows. While interesting effects were d
cussed in the context of the transition to turbulence, vor
formation, and turbulent transport@1#, the phenomenon tha
attracted the most attention was, for obvious reasons,
reduction of friction drag by up to 80% when very sma
concentrations of long-chain polymers were added to tur
lent flows @2,3#. In spite of the fact that the phenomenon
robust and the effect huge, there exists no accepted th
that can claim a quantitative agreement with the experim
tal facts. Moreover, it appears that there is no mechan
explanation. In the current theory that is due to de Gen
@4,5#, one expects the Kolmogorov cascade to be termina
at scales larger than Kolmogorov scale, leading someho
an increased buffer layer thickness and reduced drag,
how this happens and what is the fate of the turbulent ene
is not being made clear.

In a recent paper@6#, we proposed that the crucial issue
in theproductionof energy of hydrodynamic fluctuations b
their interaction with the mean flow. For the sake of co
creteness we examined a Poiseuille laminar flow and its
of linear stability, and showed how small viscosity contra
lead to an order of magnitude retardation in the onset
instability of ‘‘dangerous’’ disturbances. Specifically, w
considered a flow in a channel of dimensionless width 2
which there are two fluids: one fluid of viscositym1 flows
near the walls and the other fluid of viscositym2 flows at the
center, see Fig. 1. The viscosities differ slightly, for examp
we considered~in dimensionless units! m251 and m
5m1 /m250.9. The main ingredient of the calculation w
that all the viscosity difference of 0.1 concentrated in
1063-651X/2003/67~2!/026310~11!/$20.00 67 0263
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‘‘mixed’’ layer of width 0.10. The motivation behind thes
numbers was the observation that the inferred effective
cosity in polymer drag reduction increases towards the ce
by about 30% over about a 1/3 of the half channel@7#. With
our choice we have comparable viscosity gradients in
mixed layer.

In this model everything was explicitly calculatable. Th
main point of our analysis~see Sec. II for further details! was
that there exists a position in the channel where the velo
of the mean flow is the same as the velocity of the m
dangerous primary instability. Below we refer to the lay
around this position as the ‘‘critical layer’’@8#. If we placed
the mixed layer in the vicinity of the critical layer, we got
giant effect of stabilization. Analyzing this phenomenon, w
demonstrated that nothing special happened to the diss
tion. Rather, it was the energy intake from the mean flow
the unstable mode that was dramatically reduced, giving
to a large effect for a small cause. In this paper we exte
these observations in two directions. In Sec. II, after revie

FIG. 1. Schematic of the flow, the fluid near the walls has
viscositym1, and that flowing at the center is of viscositym2. In the
mixed layer~of width q), the viscosity varies gradually betweenm1

andm2. The parameterp controls the position of the mixed laye
For simplicity we neglect the down-stream growth inq.
©2003 The American Physical Society10-1



s
le
u-

n
tio
u-
h
be
e

ry
.

ar
uc
s

a-
n
il

th
n-
le
b

r-
r
c
th

ar

-
oc

pt

f
d

ly
lo
e
c

ile
a
r.
he
ia
se

in
-

ig.
of
f
he
hes

the

her

o

d

di-
e
-

e-
Re

aps

GOVINDARAJAN et al. PHYSICAL REVIEW E 67, 026310 ~2003!
ing the results of the simple model, we extend the analysi
the primary instability to a case in which the viscosity profi
is that inferred from direct numerical simulations of turb
lent channel flow of a dilute polymeric solution@7#. We will
see that very similar effects are found. In other words, o
does not need to put by hand the region of viscosity varia
in the vicinity of the critical layer. When we have a contin
ous variation of the viscosity in the region near the wall, t
effect is the same, since it is only crucial that there will
somespace dependence of the viscosity in the critical lay
which is usually not too far from the wall.

A possible criticism of our results can be that the prima
instability is still too far from typical turbulent fluctuations
This is, in particular, true since the most unstable prim
modes are two-dimensional, whereas typical turbulent fl
tuations are three-dimensional. For these reasons we pre
in Sec. III the analysis of the effect of small viscosity vari
tions on the secondary instability, for which the most ‘‘da
gerous’’ modes are three-dimensional. The tactics are sim
to those taken for the primary instability. First we discuss
effects of a mixed layer put at the ‘‘right’’ place in the cha
nel, and second we show that continuous viscosity profi
do exactly the same. We find again the giant effect of sta
lization for relatively small viscosity variations, lending fu
ther support to our proposition that similar effects may ve
well play a crucial role in turbulent drag reduction. In Se
IV we present concluding remarks and suggestions for
road ahead.

II. PRIMARY INSTABILITY OF POISEUILLE FLOW

It is well known that parallel Poiseuille flow loses line
stability at some threshold Reynolds number Re5Rth ~close
to 5772!. It is also well known that the instability is ‘‘con
vective,’’ with the most unstable mode having a phase vel
ity cp . Analytically it has the form

f̂p~x,y,t !5
1

2
$fp~y!exp@ ikp~x2cpt !#1c.c.%exp~gpt !,

~1!

where c.c. stands for the complex conjugate, the subscrip

stands for the primary instability,f̂(x,y,t) is the disturbance
stream function, andf(y) is the complex envelope o
f̂(x,y,t). We have chosenx and y as the streamwise an
wall-normal coordinates, respectively,k as the streamwise
wavenumber of the disturbance andt as time. gp is the
growth rate of the primary instability. What is not usual
emphasized is that the main interactions leading to the
of stability occur in a sharply defined region in the chann
i.e., at the critical layer whose distance from the wall is su
that the phase velocityc is identical to the velocity of the
mean flow somewhere within this layer. It is thus worthwh
to examine the effect on the stability of Poiseuille flow of
viscosity gradient placed in the vicinity of the critical laye
This will provide us with a very sharp understanding of t
mechanism of the stabilization of the flow by viscosity var
tions. In the following subsection we will examine the ca
of continuous viscosity profiles.
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A. Mixed layer

A report of the results of this subsection was provided
Ref. @6#. We examine a channel flow of two fluids with dif
ferent viscositiesm1 andm2, see Fig. 1.

The observation that we want to focus on is shown in F
2: the threshold Reynolds number for the loss of stability
the mode as in Eq.~1! depends crucially on the position o
the mixed layer. When the latter hits the critical layer, t
threshold Reynolds number for the loss of stability reac
as much as 88 000. In other words, one can increase
threshold of instabilityfor a given mode15 times, and by
making the mixed layer thinner one can reach even hig
threshold Reynolds values. In Ref.@6# we analyzed the
physical origin of this huge sensitivity of the flow stability t
the profile of the viscosity.

The stability of this flow is governed by the modifie
Orr-Sommerfeld equation@9#

ikp@~D2fp2kp
2fp!~Ū2cp2 igp!2D2Ūfp#

5
1

Re
@mD4fp12DmD3fp1~D2m22kp

2m!D2fp

22kp
2DmDfp1~kp

2D2m1kp
4m!fp#, ~2!

in which Ū(y) is the basic laminar velocity, the operatorD
stands for differentiation with respect to the normal coor
natey, andm is a function ofy. The boundary conditions ar
fp(61)5Dfp(61)50. All quantities have been nondi
mensionalized using the half-widthH of the channel and the
centerline velocityU0 as the length and velocity scales, r
spectively. The Reynolds number is defined as
[rU0H/m2, wherer is the density~equal for the two flu-
ids!. The primes stand for derivative with respect toy. At y

FIG. 2. The dependence of the threshold Reynolds numberRth

on the position of the viscosity stratified layer form50.9. The
dashed line pertains to the neat fluid. Note the huge increase inRth

within a small range. This occurs when the stratified layer overl
the critical layer.
0-2
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STABILIZATION OF HYDRODYNAMIC FLOWS BY . . . PHYSICAL REVIEW E67, 026310 ~2003!
50, we use the even symmetry conditionsf(0)51 and
Df(0)50, as the even mode is always more unstable t
the odd.

Since the flow is symmetric with respect to the chan
centerline, we restrict our attention to the upper half chan
Fluid 2 occupies the region 0<y<p. Fluid 1 lies between
p1q<y<1. The regionp<y<p1q contains mixed fluid.
The viscosity is described by a steady function ofy, scaled
by the inner fluid viscositym2,

m~y!51 for 0<y<p, ~3!

m~y!511~m21!j3@10215j16j2#, 0<j<1, ~4!

m~y!5m for p1q<y<1. ~5!

Here j[(y2p)/q is the mixed layer coordinate. We hav
assumed a fifth-order polynomial profile for the viscosity
the mixed layer, whose coefficients maintain the viscos
and its first two derivatives continuous across the mix
layer. The exact form of the profile is unimportant. For a p
of the profilem50.9, see Fig. 3.

The basic flowŪ(y) is obtained by requiring the velocit
and all relevant derivatives to be continuous at the edge
the mixed layer@10#:

Ū~y!512Gy2/2 for y<p, ~6!

Ū~y!5U~p!2GE
p

y

dy y/m for p<y<p1q, ~7!

Ū~y!5G~12y2!/2m for y>p1q. ~8!

HereG is the streamwise pressure gradient.
It can be seen, comparing the mean profileŪ(y) to that of

the neat fluid~cf. Fig. 3!, that nothing dramatic happens

FIG. 3. Profiles of the normalized viscositym(y) and normal-

ized velocityŪ(y) and the second derivativeD2Ū(y) for m50.9
~solid lines! andm51.0 ~dashed lines!. The mixed layer is between
the vertical dashed lines.
02631
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this profile even when the mixed layer is chosen to overla
typical critical layer. Accordingly, we need to look for th
origin of the large effect of Fig. 2 in the energetics of th
disturbances. To do so, recall that the streamwise and no
components of the disturbance velocityûp(x,y,t) and

v̂p(x,y,t) may be expressed via stream function as usu
ûp(x,y,t)5]f̂p /]y and v̂p(x,y,t)52]f̂p /]x. These func-
tions may be written in terms of complex envelopes simi
to Eq. ~1!,

ûp~x,y,t !5 1
2 $up~y!exp@ ikp~x2cpt !#1c.c.%exp~gpt !,

~9!

v̂p~x,y,t !5 1
2 $vp~y!exp@ ikp~x2cpt !#1c.c.%exp~gpt !.

The pressure disturbancep̂p is defined similarly.
Define now a disturbance of the density of the kine

energy of the primary instability

Êp~x,y,t !5 1
2 @ ûp~x,y,t !21 v̂p~x,y,t !2#. ~10!

We can express the mean~over x) density of the kinetic
energy as follows:

Ep~y,t ![^Êp~x,y,t !&x5Ep~y!exp~2gpt !,
~11!

Ep~y!5 1
4 ~ uup~y!u21uvp~y!u2!.

The physics of our phenomenon will be discussed
terms of the balance equation for the averaged disturba
kinetic energy. Starting from the linearized Navier-Stok
equations forûp and v̂p , dotting it with the disturbance ve
locity vector, averaging over one cycle inx and using Eqs.
~9!–~11! leads to

2gpEp~y!5“•Jp~y!1Wp1~y!2Wp2~y!, ~12!

where the energy fluxJp(y) in the y direction, rates of en-
ergy production~energy taken up by the primary instabilit
from the mean flow! Wp1(y) and energy dissipation~by the
viscosity! Wp2(y) are given by

Jp~y![
@up~y!pp* ~y!1c.c.#

4r
1

1

Re
m~y!“Ep~y!, ~13!

Wp1~y![2
1

4
DŪ~y!@up~y!vp* ~y!1c.c.#, ~14!

Wp2~y![
m~y!

Re H 2kp
2Ep~y!1

1

2
@ uDup~y!u21uDvp~y!u2#J .

The superscript * denotes complex conjugate. To plot th
functions we need to solve Eq.~2! as an eigenvalue problem
to obtaincp , gp , andfp(y) at given Re andkp . The value
0-3
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FIG. 4. Energy balance, productionWp1(y), solid line; dissipationWp2(y), dot-dashed line, Re55772. Left, m51, Gp15Gp2

50.0148. Right,m50.9, p50.3, Gp150.0158,Gp250.0148. In this figure and in the two subsequent figures the solid vertical lines s
the locationyc of the critical lines, whereas the region between the dotted lines is the mixed layer.
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of cp determines the position of the critical layer. It is co
venient to compute and compare the space averaged pro
tion and dissipation termsGp1 andGp2 defined by

Gp6[E
0

1

Wp6~y!dyY E
0

1

Ep~y!dy. ~15!

The local production of energy can be positive or negati
indicative of energy transfer from the mean flow to the p
mary disturbance and vice versa, respectively. The prod
tion in one region~where Wp1(y).0) can be partly can-
celed out by a ‘‘counterproduction’’ in other region~where
Wp1(y),0).

The use of these measures can be exemplified by the
fluid (m51.0 here!. The laminar flow displays its first linea
instability at a threshold Reynolds number of Reth55772,
which means that the total productionGp1 across the layer
becomes equal to the total dissipationGp2 at this value of
Re. Examining Fig. 4, we can see that the disturbance kin
energy is produced predominantly within the critical lay
where the basic flow velocity is close to the phase spee
the disturbance, while most of the dissipation is in the w
layer. The balance is not changed significantly when the
cosity ratio is changed to 0.9 so long as the mixed laye
not close to the critical layer. There is a small region
production and one of counter production within the mix
layer, whose effects cancel out, leaving the system clos
marginal stability.

We now turn our attention to Fig. 5, in which our ma
point is demonstrated. The Reynolds number is the sam
before, but the mixed layer has been moved close to
critical layer. It is immediately obvious that the earlier ba
ance is destroyed. The counterproduction peak in the m
layer is much larger than before, making the flow mo
stable. The wave number used is that at which the flow
least stable for the given Reynolds number at thisp. For m
50.9, the threshold Reynolds number is 46 400. Figur
02631
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shows the energy balances at marginal stability—the pic
is qualitatively the same here as at Re'5772 for the neat
fluid.

B. The mechanism of stabilization

The main factor determining the instability is the ener
intake from the mean flow, which is driven by the pha
change caused by the viscosity stratification. The dissipa
on the other hand depends only on Reynolds number
does not respond disproportionately to changes in visco
We will show below @cf. Eqs. ~19! and ~20!# that in neat
fluids, the term containingD2Ū(y) in Eq. ~2! is always much
smaller than the important terms that govern the equation
the critical layer. However, with the introduction of a visco
ity gradient within the critical layer, the gradients of the bas
velocity profile will scale according to the mixed-layer coo

FIG. 5. Energy balance, productionWp1(y), solid line; dissipa-
tion Wp2(y), dot-dashed line. Re55772, m50.9, p50.85, Gp1

520.0114,Gp250.0122.
0-4
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STABILIZATION OF HYDRODYNAMIC FLOWS BY . . . PHYSICAL REVIEW E67, 026310 ~2003!
dinate j. We show in the analysis that follows that forq

<O(Re21/3), the term containingD2Ū is now among the
most dominant. Since most of the production of disturba
kinetic energy takes place within the critical layer, we retu
to Eq.~2! and isolate all lowest-order effects within the cri
cal layer. The relevant normal coordinate in the critical lay
is

h[
y2yc

e
, ~16!

whereyc is the critical point defined byU(yc)5c, ande is
the critical layer thickness, which is a small parameter
large Reynolds number. The basic channel flow velocity m
be expanded in the vicinity of the critical point as

U~y!5c1~y2yc!DU~yc!1
~y2yc!

2

2!
D2U~yc!1•••.

~17!

We use Eq.~17!, and redefinefp(y)[F(h) and m(y)
[n(j), to rewrite Eq.~2! within the critical layer. We obtain

e;Re21/3[~kpRe!21/3, ~18!

and the lowest-order equation in the critical layer,

ih
dU

dy U
c

D2F2
iGp

n2
xDnF5nD4F12xDnD3F

1x2D2nD2F, ~19!

wherex[e/q is O(1) for the mixed layer. In the absence
a viscosity gradient in the critical layer~i.e., n51), Eq.~19!
would reduce to

ih
dU

dy U
c

D2F5D4F, ~20!

FIG. 6. Energy balance, productionWp1(y), solid line; dissipa-
tion Wp2(y), dot-dashed line. Re546400,m50.9, p50.85, Gp1

5Gp250.0053.
02631
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which is the traditional lowest-order critical layer equatio
for a parallel shear flow@8#. The mechanism for the stabili
zation now begins to be apparent: there are several
terms which can upset the traditional balance between i
tial and viscous forces. In order to narrow down the sea
further, we resort to numerical experimentation, because
though all terms in Eq.~19! are estimated to be ofO(1),
their numerical contributions are different. It transpires th
the second term on the left hand side of Eq.~19! is particu-
larly responsible; first, it is straightforward to verify that

originates from the term containingD2Ū(y) in the modified
Orr-Sommerfeld equation. As testimony, note the drama

effect on D2Ū in Fig. 3. Second, this term dominates th
energy intake from the mean flow to the disturbance. A
reasonable viscosity gradient of the right sign is seen to p
up this term, leading to a vastly enhanced stability. On
other hand all the terms on the rhs of Eq.~19! contribute only
to dissipation.

Indeed, in the light of this discussion, we can expect t
the large effect of retardation of the instability would ev
increase if we make the mixed layer thinner. This is inde
so. Nevertheless, one cannot conclude that instability can
retarded at will, since other disturbances, differing from t
primary mode, become unstable first, albeit at a much hig
Reynolds number than the primary mode; when we stabi
a given mode substantially, we should watch out for oth
preexisting and newly destabilized modes which may now
the least stable.

Finally, we connect our findings to the phenomenon
drag reduction in turbulent flows. Since the total dissipat
can be computed just from the knowledge of the veloc
profile at the walls, any amount of drag reduction must
reflected by a corresponding reduction of the gradient at
walls. Concurrently, the energy intake by the fluctuatio
from the mean flow should reduce as well. Indeed, the la
effect was measured in both experiments@11# and simula-
tions@12,13#. The question is which is the chicken and whic
is the egg. In our calculation we identified that the reduct
in production comes first. From Figs. 4 and 5 that are at
same value of Re, we see that the dissipation does
change at all when the mixed layer moves, but the prod
tion is strongly affected. Of course, at steady state, the
locity gradient at the wall must adjust as shown in Fig. 6

C. Continuous viscosity profile

One could think that the strong stabilization discussed
the preceding subsection is only due to the precise posit
ing of the mixed layer at the critical layer. If so, the resu
would have very little generic consequence. In this subs
tion we show that any reasonable viscosity profile achie
the same effects. We do not attempt here to ‘‘optimize’’ t
viscosity profile to achieve larger stabilization. Our conce
is with the point of principle, i.e., thatanyviscosity profile in
the critical layer, in which the viscosity reduces towards t
wall would lead to stabilization. As a physical example, w
consider the effective viscosity profile reported in Ref.@7# ~in
0-5
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GOVINDARAJAN et al. PHYSICAL REVIEW E 67, 026310 ~2003!
their Fig. 5! which is obtained from simulations of a turbu
lent channel flow with polymer additive. It may be pr
scribed as

m~y!51 for 0<y<p, ~21!

m~y!511~m21!S y2p

q D 3

, ~22!

with q;0.4 andm;0.7, as shown in Fig. 7. The energ
balance for the least stable primary mode at Re55772 for
this case~Fig. 8! shows a large counter production of distu
bance kinetic energy, which is in fact more pronounced th
what we obtained with a mixed layer~Fig. 5!. Thus the

FIG. 7. Prescribed continuous viscosity profile~in accordance
with that obtained in direct numerical simulations of polyme

flow!. The corresponding laminar velocity profileŪ(y) and its sec-
ond derivative are also shown.

FIG. 8. Energy balance, productionWp1(y), solid line; dissipa-
tion Wp2(y), dot-dashed line. Re55772, m50.7, p50.6, q
50.4, Gp1520.0345,Gp250.0138.
02631
n

strong stabilization effect does not require careful placing
the viscosity variation at a particular layer. It is sufficient th
there exists a viscosity variation in the region of the critic
layer ~indicated as the vertical line in Fig. 8! to achieve the
stabilization. The reader should note that in our example
insert the viscosity profile by hand. This differs from oth
stability studies of the full viscoelastic equations for a no
Newtonian fluid where the viscoelastic profiles, if they exi
should appear naturally@14#.

It comes as no surprise that this continuous viscosity p
file behaves very similarly to the thin mixed layer. If w
return to Eq.~19!, we will see that all we have now done
to increase bothDn ~which is proportional tom21) andq
threefold~the effectiveq here is closer to 0.3 than 0.4, as w
can see from Fig. 7!, so the ratio remains the same.

III. SECONDARY INSTABILITIES

A laminar flow through a channel is linearly unstable
Re55772. In all except the cleanest experiments, howe
the flow becomes turbulent at much lower Reynolds nu
bers, as low as 1000@15,16#. This is because the linear sta
bility analysis is carried out on a steady laminar veloc
profile, whereas a real flow, except under carefully desig
clean conditions, consists in addition of small but finite d
turbances~most of whom will decay at long times!. The
stability behavior of the real flow is quite different from th
of the steady profile: the actual flow is unstable to n
modes, often referred to as secondary modes. The secon
modes are often three dimensional, and their signatur
prominent in fully developed turbulence. As described b
low, the secondary instabilities are studied by a Floq
analysis of the periodic primary flow we obtained earlier.

As usual in the analysis of secondary instabilities@17,18#,
we begin by splitting the flow into a periodic compone
~consisting of the mean laminar profile in addition to t
primary wave! and a secondary disturbance, e.g.,

Utotal~x,y,z,t !5U~x,y,t !1us~x,y,z,t !, ~23!

where

U~x,y,t !5Ū~y!x̂1Ap~ t !$@up~y!x̂1vp~y!ŷ#

3exp@ ikp~x2cpt !#1c.c.%. ~24!

Here x̂ and ŷ are unit vectors inx ~steamwise! and y ~wall
normal! directions. The amplitudeAp of the primary distur-
bance changes very slowly with time, anddAp /dt may be
neglected during one time period. The spatial and temp
dependence of the secondary disturbance is written in
form

us~y,r' ,t ![Re$us1~y!exp@ i~k1•r'2v1t !#

1us2~y!exp@ i~k2•r'2v2t !#%, ~25!

where r'[xx̂1zẑ, and k65k6x̂6kzẑ. We substitute the
above ansatz into the Navier-Stokes and continuity eq
0-6
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tions, and retain linear terms in the secondary disturba
On averaging overx, z, and t, only the resonant modes su
vive, which are related by

k11k25kpx̂, therefore k656q1
kp

2
x̂, ~26!

for any vectorq, and

v15v1 ig and v25~vp2v!1 ig . ~27!

Eliminating the disturbance pressure and streamwise com
nent of the velocity, we get the equations for the second
disturbances vs and ws . Using the notation f 6

[2 iws6 /kz , the equations read@19#

@ i~v12k1U !1n~D22k1
2 2kz

2!1~Dn!D#

3@~k1
2 1kz

2! f 12Dv1#2 ik1DUv12
Apk1

2k2
$@ ik1upD

1vpD21 ik2Dup#v2* 1@~kz
22k2k1!vpD

1 ik1~k2
2 1kz

2!up# f 2* %50 ~28!

and

@ i~v12k1U !1n~D22k1
2 2kz

2!1~Dn!D#~D f 12v1!

1@2 ik1~DU !1~D2n!D1~Dn!~D22k1
2 2kz

2!# f 1

1
Ap~kp1k2!

2 F iup~v2* 1D f 2* !2
vp

k2
Dv2* G

1
Ap

2 FvpS kpkz
2

k2
1D2D 2 ik2~Dup!G f 2* 50, ~29!

The boundary conditions are

us50 at y561. ~30!

Equations~28! and~29!, along with two corresponding equa
tions in v2* and f 2* , describe an eigenvalue problem for th
secondary instability. The four equations are solved b
Chebychev collocation spectral method, details of the so
tion procedure are available in Ref.@19#. The computations
have been conducted on a half channel on grounds of s
metry. Both varicose and sinuous modes have been tried,
the more unstable of the two, i.e., the modes varicose inv1

andv2 have been used. Simulations on a full channel sh
that the most unstable modes could havev1 andv2 different
at the centerline. However, the difference with present res
of the growth rates would be small.

The most unstable secondary mode in our case is foun
be the subharmonic, for whichq5kzẑ. The production and
dissipation are computed as before.

We survey in turn the thin mixed-layer profile, and th
continuous viscosity profile to see what the viscosity var
tion does to the secondary instability.
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A. Mixed layer

The velocity and viscosity profiles here are as given
Fig. 3, and the primary instability is that presented in S
II A. Since the subharmonic (k15k25kp/2) is the least
stable mode, we present this case alone. In Fig. 9 a typical
dependence of the growth rate of the secondary mode on
spanwise wave number is shown. We can see that the vis
ity variation damps the secondary mode significantly, but i
still unstable. However, there is a crucial difference in t
primary instabilities of the two: the primary is unstable for
constant viscosity flow, but very stable in the mixed-lay
case. Therefore at long times, the secondary mode, w
feeds on the primary for its existence, dies down in the la
case. To compute the time dependence of the amplitud
the secondary mode, we computed the growth rateg by ne-
glecting the time dependence of the amplitude of the prim
modes. As a result we obtain the growth rateg@Ap(t)#, in
which Ap(t) can be an exponentially growing or a decayi
function of time. Having this growth rate we can present t
time dependence of the amplitude of the secondary mo
see Fig. 10. Without the viscosity contrast, the amplitude
the secondary mode increases~essentially exponentially!.
With the viscosity contrast the amplitude decays in time.

We now observe the balances of energy initially and a
later time in Figs. 11 and 12, respectively. The initial balan
of energy is not so different from the constant viscosity ca
At the later time, however, the production of secondary
netic energy is significantly lower. The locationyc of the
critical point is seen from the figures to be close to the la
of stratified viscosity. If the two were well separated, t
stratification would do nothing to the secondary mode.

A lowest-order analysis of the secondary stability equ
tions is not as straightforward as for the primary mode, sin
the secondary is highly dependent on the amplitude of
primary @19#. We may, however, make the following obse
vations from a critical layer analysis of Eqs.~28! and ~29!

FIG. 9. Dependence of growth rate on spanwise wave num
Solid line, varying viscosity (p50.8,q50.1,m50.9); dashed line,
constant viscosity (m51). kp51,Ap50.005,Re56000.
0-7
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and their counterparts. WhenAp@e, @cf. Eq. ~18!# only the
nonlinear terms appear at the lowest order, and the secon
mode is completely driven by the primary. WhenAp
;O(e), both the basic terms and the nonlinear terms c
tribute at the lowest order. It may be numerically determin
however, that the secondary is slaved to the primary her
well. When Ap5o(e), the lowest-order theory for the sec
ondary is~not surprisingly! exactly that given by Eq.~19! for
the primary.

A direct estimate of the effect of the viscosity stratific
tion on the secondary mode is obtained from the thresh
amplitudeAth of the primary for the instability. At a Rey

FIG. 10. Amplitude of the secondary mode in logarithmic sc
as a function of time. Dashed line, constant viscosity,m51. Here
gp50.0003, and the primary mode is unstable. Solid line, vary
viscosity; heregp520.0206, the primary mode is stable. All con
ditions are like in Fig. 9, in particular,Ap(t50)50.005.

FIG. 11. ProductionWs1 and dissipationWs2 of the kinetic
energy of the secondary disturbance at time50. Solid line,
Ws1 ,m50.9; dot-dashed line, Ws2 ,m50.9; long dashes
Ws1 ,m51; dotted line,Ws2 ,m51. The vertical lines showyc

~the critical point location! for m50.9 ~solid! andm51 ~dotted!.
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nolds number of 6000 and primary wave number ofkp51,
for a neat fluid, all secondary modes are damped ifAth
,0.002, while for the continuous viscosity profile, all se
ondary modes continue to be damped even for larger prim
disturbances, up toAth50.005. When the Reynolds numbe
is reduced to 2000, the threshold amplitudes are 0.012
0.016 for the neat and viscosity-stratified fluids respective

B. Continuous viscosity profile

The velocity and viscosity profiles here are as given
Fig. 7, and the primary instability is that presented in S
II C. The counterparts for the continuous viscosity profile
Figs. 9–12 are presented in Figs. 13–16, respectively.
clear that nothing has changed qualitatively.

Figure 17 shows the dependence of the growth rate of
secondary mode on the amplitude of the primary disturban

g

FIG. 12. ProductionWs1 and dissipationWs2 of the kinetic
energy of the secondary disturbance at time540. Solid line,
Ws1 ,m50.9; dot-dashed line,Ws2 ,m50.9,Ap50.002 15; long
dashes,Ws1 ,m51; dotted line,Ws2 ,m51, Ap50.005 06.

FIG. 13. Dependence of growth rate on spanwise wave num
Solid line, varying viscosity@according to Eq.~22!#; dashed line,
constant viscosity. Wave numbers and Re as in Fig. 9.
0-8
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It is clear that the instability is reduced by the stratification
viscosity, but there is no dramatic effect in the second
instability alone. We may conclude that the large effe
comes from the complete reliance of the secondary dis
bance on the primary. To make this point clearer, we inv
tigated a situation in which the primary disturbance is stab
This is the case for example, whenR53000. The results for
this Reynolds number are shown in Figs. 18 and 19. Th
are similar to Figs. 13 and 14 above, except that the prim
disturbance is stable for both constant and varying visc
ties. Accordingly, the disturbances die out at long times. N
that in the case of a constant viscosity, there is more time
nonlinearities to act, and the transition to turbulence is m
likely.

FIG. 14. Variation of the amplitude of the secondary instabil
mode with time. Solid line, varying viscosity,gp520.0244;
dashed line, constant viscosity,gp50.0003. Wave numbers and R
as in Fig. 10.

FIG. 15. Production and dissipation at time50. Solid line, vary-
ing viscosity; dashed line, constant viscosity,Ap50.005 for both.
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IV. CONCLUDING REMARKS

We addressed the primary and secondary instability
simple channel flows, and examined the effects of small v
cosity variations. We find dramatic effects of stabilizatio
when the viscosity variations exist in the vicinity of the crit
cal layers, in which the speed of propagation of the mo
coincided with the mean velocity of the basic flow. Wi
about 10% viscosity changes we can have very large
creases in the threshold Reynolds numbers for instability
all cases we find that the main mechanism for the large
fects is the reduction of the intake of energy from the me
flow to the putative unstable modes, which therefore beco
stable. For the same Reynolds numbers in Newtonian flu
there is no such mechanism for stabilization, and these fl
will become turbulent. We would like to propose that simil

FIG. 16. Production and dissipation at time540. Solid line,
varying viscosity,Ap50.001 84; dashed line, constant viscosi
Ap50.005 06.

FIG. 17. Dependence of growth rate of the secondary mode
the amplitude of the primary disturbance. Solid line, stratified v
cosity; dashed line, constant viscosity.kp51, k150.5, kz51, Re
56000.
0-9
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effects should be examined in the case of turbulent drag
duction by polymer additives.

We recognize that in a turbulent flow there are many m
modes that interact, but we propose that as here, it is
energy budget~specifically the energy intake from the mea
flow! of the energy containing modes that will change due
the existence of a space-dependent effective viscosity
fact, this view is born out by recent direct numerical sim
lations of the FENE-P model equations, cf. Ref.@20#. The
advantage of the present calculation is that we can cons
explicitly all the putative unstable modes, and conclude t
with a viscosity gradient similar to that seen in polyme
turbulent flows the linear threshold Reth goes up five times
~to 31 000!. We note in passing that this effect had not be
put to an experimental test, and it would be exciting to ha
a confirmation of our predictions by future experiments. F
actual turbulent flows, we will need first to identify what a
the main modes that interact between themselves and
the mean flow. A significant numerical effort is required, b
appears worthwhile due to the importance of the pheno
enon of drag reduction, and its relative lack of understa
ing.

FIG. 18. Dependence of growth rate on spanwise wave num
Solid line, varying viscosity, dashed line, constant viscosity.kp

51, Ap50.02, Re53000.
ett
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We have demonstrated that the exact form of the visco
profile is immaterial; a continuous profile of viscosity in th
critical region behaves exactly like a thin mixed layer. W
have shown that the secondary three-dimensional mode
instability are ‘‘slaved’’ to the primary linear mode of insta
bility: the mechanism which stabilizes the primary mode
directly ensures that the secondary is damped out quickl

Finally we note that a linear disturbance can rear its h
either in the form of the fastest growing~or slowest decay-
ing! mode as considered here; or in a nonmodal form wit
transient growth followed by long-term decay@21#. The
former situation will correspond to relatively high Reynold
numbers, or cleaner setups. We expect similar conclusion
the latter situation as well.
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FIG. 19. Amplitude of the secondary mode as a function
time. Solid line, varying viscosity, dashed line, constant viscos
all conditions are like Fig. 18, in particular,Ap(t50)50.02.
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