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Effects of high-Mach numbers and high initial amplitudes on the evolution of the single-mode Richtmyer-
Meshkov shock-wave induced hydrodynamic instability are studied using theoretical models, experiments, and
numerical simulations. Two regimes in which there is a significant deviation from the linear dependence of the
initial velocity on the initial perturbation amplitude are defined and characterized. In one, the observed reduc-
tion of the initial velocity is primarily due to large initial amplitudes. This effect is accurately modeled by a
vorticity deposition model, quantifying both the effect of the initial perturbation amplitude and the exact shape
of the interface. In the other, the reduction is dominated by the proximity of the shock wave to the interface.
This effect is modeled by a modified incompressible model where the shock wave is mimicked by a moving
bounding wall. These results are supplemented with high initial amplitude Mach 1.2 shock-tube experiments,
enabling separation of the two effects. It is shown that in most of the previous experiments, the observed
reduction is predominantly due to the effect of high initial amplitudes.
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[. INTRODUCTION +ay)/2, wherea, is the preshock amplitude. Recently, a
more detailed impulsive model, applicable for both the cases
The Richtmyer-MeshkoyRM) hydrodynamic instability of a reflected shock and a reflected rarefaction has been for-
[1] occurs when a shock wave passes through an initiallynulated[7].
perturbed interface between two fluids. Under such condi- In recent years, a more elaborate theoretical analysis of
tions, initially small perturbations on the interface grow into the initial velocity imprinted by the shock wave on the inter-
a formation of interpenetrating bubbles and spikes, causinface has been formulated by performing a small-amplitude
the two fluids to mix. This instability, together with the grav- perturbation expansion of the Euler equationsayk [8].
ity induced Rayleigh-Taylor instabilit}2], play a major role  This approach has been extended to late nonlinear stages by
in achieving energy gain in inertial confinement fusj@M].  means of Padeapproximation$9], yielding results which are
Since the first experimental demonstration of this instabilin good agreement with bubble evolution methods which are
ity by Richtmyer[1], much of the research has been focusedypically used to model the nonlinear stag#8]. This sort of
on the evolution of single-mode small-amplitude perturba-analysis yielded results which are much more accurate than
tions in the incompressible lim[tL,5,6]. In this regime, the the crude approximations of the impulsive models. Indeed, it
perturbation initially grows with a constant velocity, which is was shown that in some cases, the impulsive model predic-
well approximated by predictions of impulsive models: thetion deviates significantly from that of the exact perturbation
Richtmyer formula[1] in the reflected shock case and the expansion[8]. Further extensions of the perturbative ap-
Meyer-Blewett formuld5] in the case of a reflected rarefac- proach allow better dealing with nonlinearitg1]. This ap-

tion. The model prediction for the initial velocity is proach, however, has not been applied to the case of large
initial perturbation amplitudesapgk>1), as is the case in
Upubble= A*ka* Au, (1)  many of the recent experiments.

For the single-mode case, the late nonlinear stage of the
wherek is the wave numberA* is the postshock Atwood flow is characterized by an asymptotic floating velociky't.
number, andAu is the velocity jump induced by the shock In two dimensionsc goes fromc=1/37 for A=1 [6] to ¢
wave. For the Richtmyer formula* equals the postshock =1/27 for A—0 [12], while for three-dimensional perturba-
amplitudeag and for the Meyer-Blewett formula* =(a, tionsc varies betweem=1/27 for A=1 andc=1/x for A
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1.4 - ' ' cases, wher@gk>1 the experiments resulted in an initial
° velocity smaller than that predicted by the small-amplitude
1.2r 1 calculation. The above velocity reduction can be attributed to

two main effects: either the large initial amplitudes, for

which the small-amplitude assumption is inapplicable, or
compressibility effects due to the high-Mach numbers used
in the experiment$17,19.

In order to better distinguish between the two effects, we
conducted a set oM =1.2 shock-tube experiments with a
similar range of initial amplitudega detailed description of
the experiments follows belgwDespite the large scatter in
the experimental data, there exists a surprising resemblance
of the observed reduction in the growth rate for most experi-
ments(schematically grouped as cla&sn the figurg. Only

0 . ‘ ; ‘ ‘ . . the Aleshin He»Xe M =3.5 experiment$17] seems to ex-
o 05 1 15 2a'k 26 3 35 4 hibit a qualitatively different behavigischematically marked
0 as classB).

FIG. 1. Measured initial growth velocity relative to the linear _. The qualltatlyely similar reduction, observed in cldsef
extrapolation of the small-amplitude calculatiod? §f M =15.3 ex- Fig. 1, for a V\_IIdE range of MaCh number_s, as low as 1.2,
periments of Dimonte(sinusoidal initial perturbation[18]; (A)  SU9Yests that in these experiments, there is a strong effect of
M=2.5 Ar—Xe experiments of Aleshirisinusoidal initial pertur- (€ high initial amplitude. The qualitatively different reduc-
bation [15]; (O) M=3.5 He—Xe experiments of Aleshittsinu-  tion observed in the Aleshin HeXe low agk experiment
soidal initial perturbation[17]; (V) present Mach 1.2 experiments Suggests the existence of a different mechanism reducing the
(sawtooth initial perturbation Schematic lines are plotted to distin- initial growth rate.
guish between the two classes of behavier) (classA behavior, The present work is a combined experimental and theo-
(——) classB behavior(see texk retical one, including numerical simulations with Mach num-

bers ranging from 1.2 to 15.3 with both small and large am-
—0 [13]. These late-time incompressible models have beeplitudes, shock-tube experiments at Mach 1.2, a vortex
verified extensively both by numerical simulatidits12,14  deposition model for the initial velocity of the RM instability
and by low-Mach-number experimerjts4—16. for high initial amplitudes, and a simple criterion, accounting

Along with the growing complexity of the theoretical both qualitatively and quantitatively for the different behav-
models, several experiments have been performed in recei@tr observed in the groug experiment. As the purpose of
years, in which the initial conditions greatly exceeded thethe present work is to distinguish between effects of large
limits of applicability of both small-amplitudeagk<1) and  amplitudes and those of compressibility, we should note that
incompressible modelsM~1). Such experiments include the work of Aleshinet al.[17], included such a characteriza-
moderate Mach shock tube experiments conducted bi{jon of shock-tube experimentspanning a wide range of
Aleshin et al. (M =2.5 incident shock wave, AsXe [15]  Atwood numbers—0.22—-0.94, and a wide range of initial
and M =3.5 He— Xe [17] experiments, both with an initial amplitude$. They termed the low-amplitude low-Mach-
gas pressure of 0.5 ajrand high Mach laser driven experi- humber region “soft,” the high-amplitude region “irregu-
ments conducted by Dimongt al.[M =15.3 incident shock lar,” and the low-amplitude high-Mach-number region
wave, Bep=1.7 glcni)—foam(p=0.12 g/cni) experi- “hard.” However, this characterization was based on the
ments [18]]. Initial amplitudes as large asok~4, well analysis of the experimental results and not on theoretical
above the limit of applicability of small-amplitude perturba- argumentation and was, therefore, less general in its applica-
tion expansion, were used in these experiments. While it i©ility.
commonly assumed that the deviation from small-amplitude
prediction of the initial perturbation growth rate in these ex-

. . . - Il. HIGH INITIAL AMPLITUDE EFFECTS
periments is mainly related to compressibility effects, due to

the high-Mach numbdrl7-19, the effect of the large initial We have conducted full numerical simulations using the
amplitude on the instability evolution seems to have beemexperimental setups of both Dimonte’s and Aleshin’s experi-
overlooked. ments, assuming ideal gas equations of dfatethe Be and

In this work, we attempt to distinguish between two re-foam adiabatic indices of 1.8 and 1.45 were used, respec-
gimes, where deviations from linear dependence of the initiatively, at an initial pressure of 0.1 MbarSimulations were,
imprinted velocity on the initial perturbation amplitude are however, performed for a much wider range of incident
observed: one where the dominant effects are those of conshock Mach number§l.2—15.3. All these were conducted
pressibility and one which is dominated by the effects ofusing LEEOR-2D, a two-dimensional hydrodynamic solver
large initial amplitudes. To do so, we first plot in Fig. 1 the which includes interface trackind]. Typical results of the
measured initial growth velocity in these experiments norsimulations are presented in Fig. 2 for a Mach 15.3 simula-
malized by the growth rate extrapolated from the smalltion of the Dimonte setup. The simulation results are in a
amplitude calculation as a function af k. Note that in all very good agreement with those of Rdfl9]. Dashed
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FIG. 2. Density contours from full numerical simulations of the RR — TSW
Dimonte experiment for a Mach number of 15.3 and watk
=0.6. (a) The incident shock, traveling upwards, hits the interface. B

(b)—(d) Evolution of the initial perturbation. Both the transmitted
shock and the reflected rarefacti@maveling downwardsare evi-
dent.

FIG. 4. Schematic description of a shock-interface interaction.
(a) Fast-slow interaction(b) slow-fast interaction. ISW—incident
shock wave; TSW—transmitted shock wawgz—ISW velocity’

) o ) o Ul—unshocked interface; Sl—shocked interface; RSW—reflected
lines in Fig. 3 show the normalized deviation from the small-shock wave, RR—reflected rarefactian—shock interface inclina-

amplitude linear extrapolation of the initial velocity as a tion angle. Also marked are points and B on both sides of the
function of initial amplitude for several Mach numbers. As interface(see text

can be seen from the simulations, a qualitatively similar re-
duction is observed even for low-Mach numbers where in-
compressible models are applicable, implying the importance ) ]
of the high initial amplitudes. In the following, we describe a  Using shock polar analysis, Samtaney and Zabuy2ky
vorticity deposition model that, through the mechanism ofdémonstrated that for the case of a reflected shock, the vor-

shock-wave initial velocity imprint, quantifies the reduction ficity per unit length deposited on a straight interface by an

A. High initial amplitude vorticity deposition model

of the initial velocity due to the high-amplitude effect. oblique shock wavésee Fig. 4is given, for angles smaller
than the Mach reflection critical angle, by
. dr _ o
1.2 E:f(M.P1:P2:71:72,p1:p2)5m(a)+O(Sln(a) ),
(2

wheref is a function of the one-dimensional parameters of
the flow. It was also demonstrated that E8) can be ex-
trapolated for angles beyond the critical Mach reflection
angle(up to 60°), and that the local vorticity deposition on a
curved interface depends only on the local impact angle and
obeys Eq.(2) [20].
For the case of a reflected rarefaction, it was analytically
shown in Ref.[21] that Eq.(2) is still valid, although in a
A more restricted range of parameters. Using &§. one can
0.2 . . . . ‘ ‘ . determine the vorticity deposited during the shock-wave pas-
o o5 1 2,25 3 35 4 sage through the interface in the RM experiments for an
0 arbitrary initial shape of the interface and from that, using
FIG. 3. Experimental, numerical and theoretical reduction fac_qomplex POte”“a' methods,. it is possible to derive thg ini-
tors. (---) numerical simulations using the Dimonte setup, the tially Imprlr!ted bubbk? V_e|OC|tY- It should b_e noted that since
Mach numbers are indicated in the figure: ) vorticity deposition ~ the shock interaction with the perturbed interface is not in-

model (see text for the DimonteM =15.3 experiments.-—)  Stantaneousi.e., pointA in Fig. 4 moves before poir),
vorticity deposition model for the Aleshin AsXe experiments. the postshock perturbation amplitude decreases by a factor of

(O) M=15.3 Be-foam experimental results.A) M=2.5 Ar = (Ushock= AU)/Ugpock, Whereugyociis the velocity of the
— Xe experimental results. shock wave, as illustrated in Fig. 4. This shifts the vorticity
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deposited on the interface closer to the bubble tip and, there- iin N

fore, affects its initial velocity. Up (&)=—a Re{ —fJ asin(wXx/\) cot( — w/2x/\)dx
The velocity induced due to a general periodic vorticity 0

distribution on an interface is given §22] (7)

\ , which is, as expected, linear im However, at aboutgk
TZ—-2Z . . . -
u(Z)—iv(Z)Iif ¥(2) cot(— )dz’, (3) >1, higher-order terms are introduced causing deviations
0 2 A\ from linearity. We define the velocity reduction factor as
) ] ) S uo(a)/u'd”(a). While Eq. (6) may seem intractable due to
wherezis the complex coordinata, is the periodicity wave-  he complexity of the functior, the reduction factor turns
length, andy(z) =dI'/ds is the local vorticity on the inter- .t 1o be independent of it, and thus a full solution of this
face. Applying the above equations for the tip of the bubblejtia| velocity is unnecessary. Calculating the reduction fac-
yields for the initial tip velocity, tor for both the Dimonte and the Aleshin ArXe experi-
ments, the parameters of the Aleshin experiment are found
within the validity region of Eq(2). Since the parameters of
the Dimonte experiment are beyond this region, a numerical
. (4)  validation was conducted, where it was found to be valid
with an error of the order of 10% for angles of up to 60°
(equivalent toagk=4.5). In Fig. 3, the reduction factor is
C%ompared with both the experimental results and the numeri-
cal simulations for several Mach numbers, representing the
above experiments. The agreement between the model pre-
dictions and the experiments is good. The remaining small
differences between the model predictions and the numerical
and experimental results might be due to high-Mach-number
effects (see Sec. I). One should, however, also take into

Ug(a)=Imlu(ia)—iv(ia)]=

R fkdl“ [(wz—z’d,
- 0ECOE N z

Rewriting Eq.(4) in real coordinatefx,y(x)] and taking
into account the amplitude change due to the shock interfa
interaction:y " (x) =f,y " (x), Eq. (2): dI'/ds=f sifa"(x)],
wherea ™ (X) is the local preshock inclination angle between
the interface and the incident shock, andz/ds
=1/coga’(X)], wherea™ (x) is the local postshock inclina-
tion angle results in

rsifa ()] account the effect of increasing error in HE) asagk in-
ug(a)=—R f(M,P11P2y71-72,D1'I02)f -t e creases above unity, and the non-negligible dependency of
ocoda’(X)] the reduction factor on the initial interface shape. All these

effects seem, however, small relative to the effect of high
initial amplitudes.

X cof 7/2[ —x+iafy(1—y(x))N}dx|. (5)

B. High initial amplitude, low-Mach shock-tube experiments
From Eqg.(5) and depending on the initial shape of the
interface(typically either sinusoidal or sawtoditthe initial
velocity of the bubble tip can be found. For example, in the
case of a sinusoidal initial perturbati¢as in the experiments
by Dimonte[18] and Aleshin[17]), the derivation results in

An experimental verification of the high-amplitude effect
is obtained using a shock-tube appardti at a low-Mach
number of 1.2, with sawtooth initial perturbations of both
low and high initial amplitudesgyk=0.5-3). In the ex-
periments, the shock travels from air togSBoth initially at

N sin(a) atmospheric pressure. The Atwood number equalsAto
Ug(a)=— Re{ f(M,p1,02:Y1,¥2,P1,P2) =0.7. Both gases are initially separated by a thin membrane
0 coda’) that was shown to have little effect on the instability evolu-

tion [23]. Shown in Fig. 5 is a set of Schlieren images taken
6) from the shock-tube experiment. As described in the caption,

both the bubbles and the transmitted shocks are clearly seen

in the pictures. In Fig. 6, a comparison between the results
using from anay k=2.4 experiment and a simulation of the experi-
ment is shown, with very good agreement between the two.
This allows us to deduce the exact initial bubble velocity
from the simulations. Figure 7 compares the experimental
reduction factor with the predictions of the vorticity deposi-
and tion model. As can be seen, the agreement is as good as that
achieved for the moderate and high-Mach-number experi-

x coff /2] —x+iaf,(1—cog 7x))}/\}dx

) taff — (7/N)asi N
dx =arctaf — (w/N)asin(7x/N)]

B d
a” =arcta

T (x) . ments. In addition to the above, we plot in Fig. 7 the reduc-
+_ _ )
@ —arctar( dx =arctaf — (/M) fpasin(mx/\)], tion factor predicted from the vorticity model for a sinusoidal
(rather than sawtoojhnitial perturbation. Note that the re-
the integral can be solved numerically. duction in the sinusoidal case is smaller than in the sawtooth
Rewriting Eq.(6) for small initial amplitudes §9k<<1), case, similar to the difference seen in Fig. 1 between our
low-Mach numbers f(,=1) and introducing only first-order experiment and the experiments of Dimonte and Aleshin,
terms, results in where the initial perturbation was sinusoidal.
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aa -k=1.6 aa -k=1.9

FIG. 5. Schlieren images of
M=1.2 shock-tube experiments.
Each column presents several
frames from a single experiment.
Both the transmitted shock
wave (sharp black lines and
the bubbles(round gray features
are evident. The  experi-
ments were done with
agk=1.6(\=8 cmay, =2 cm),
19(\=4 cmay=1.2cm),24
=2 cma, =0.76 cm), as marked
in the figure. The thick black re-
gions are the remnants of the
membrane initially separating the
two gases.

Ill. SHOCK PROXIMITY EFFECTS rive a crude, yet effective, model for evaluating the reduction
factor of the initial velocity as a function of the perturbation
o ; . amplitude. The model is based @d hocincorporation of
ment[17], a decrease of the initial velocity relative to the the shock wave in a simple analytical incompressible model

Sma"'f”‘m.p"‘“de .calculatlon .has begn observ'ec.j' even fO[rFor the sake of simplicity, the derivation assumes that the
small initial amplitudes. In this experiment, the initial value Atwood number is positivel{ght—heavy shock]

of the postshoclak is smaller than unity and, therefore, the The model suggests that the small-amplitude prediction is

high initial amplitude effect IS almost negl|g|ble_. .Th's de- valid as long as the predicted initial velocity is much smaller
crease must therefore be attributed to compressibility effect§han the transmitted shock velocity relative to the unper-

In this section, we suggest a simple criterion for determinin :
) : _ in<< —Au.
whether such effects exist for small amplitudes. We also dgf_urbed Interfacein<Ushoci— AU. Moreover, the effect of

As can be seen in Fig. 1, in the Aleshin H&Xe experi-
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FIG. 7. Experimental reduction factor for a sawtooth initial in-
FIG. 6. The bubble height relative to the one dimensional interterface(with experimental error-barsand the theoretical reduction
face as a function of time for thag k=2.4 case. A comparison factor for the Mach 1.2 shock-tube experiment for a sawtooth initial
between the experiment)) and the numerical simulation—(). interface (~) and for a sinusoidal initial interface—- —).
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FIG. 8. Compressibility criterion for ideal gases. The=1 con- Time

tour is plotted for several adiabatic indices, Regions far below

and far above the lines are expected to behave in an incompressible F'_G 9. I_Dlmensmnlgss bUbb|§ velocity unlt§ ofuo,_ the sma_ll-
and compressible manner, respectively. amplitude incompressible predictiprversus dimensionless time

(kugt) from the potential model. A comparison between the wall

the interaction between the shock and the interface on th&cdel (——) and the incompressible potential modet ). Also
initial growth rate of small initial perturbations is only de- Plotted is the asymptotic value of (1#3A/t. Notice the immediate

pendent on the ratid, =, /(Ugec— AU). Calculatingf, rise in velocity for the incompressible case and that for the wall

for the above Aleshin cases results in 0.625 and 1.25 even fon?OdeI a redu?Ed maximal velocitgefined as the initial velocity
. . . of 0.42 is achieved.
the two experiments with the smallest amplitudes and, there-

fore, shock-wave proximity effects are expected to appear. the velocity derived from the small-amplitude model and
Assuming that the equation of state of both the material$ater decelerating until reaching the asymptotic behavior of

is that of an ideal gad,. can be solved resulting in (1/37)\/t. For a bubble bounded above by a wall, it is seen
) that the bubble initially accelerates from zero initial velocity
f = A*Kkat 2(M°—1) ®) in early times(when the shock wave is close to the bubble
¢ 2+ (y— 1)M2’ converging to the incompressible solution as the shock wave

(bounding wal) travels away from the instability front. This
whereM is the transmitted Mach number ands the heavy sort of behavior is similar to that used by Zhagtgal. [9] in
material adiabatic index. It should be noted that the onlyextending the perturbative approach to the nonlinear stage.
dependence df; on the light fluid parameters is through the We quantitatively define the reduction factor as the ratio of
determination oM. For this case, we plot in Fig. 8 the con- the maximal velocity in the wall model relative to that of the
tour of f;=1 on the initial amplitudeakA—M plane for  incompressible one.
several values of. For low Atwood numbers, the flow is rotational, hence

In attempt to incorporate the shock-wave proximity effectpotential flow models are inapplicable. Vorticity based mod-
in a simple incompressible model and since shocked materials can, however, be applied to derive the instability evolu-
cannot advance ahead of the shock, we model the shodion [12,16,24. In the incompressible case, the instability is
wave as a “wall” that moves with velocityug,oci— AU, modeled by two counter-rotating vortex lines. A bounding
bounding the bubbles from above, and inhibiting theirwall condition is obtained by adding two more vortex lines,
growth. This approximation assumes that the shock velocityvhich are mirror images of the original vortex lines relative
is unaffected by the perturbation of the interface, and is exto the wall location. The instability evolution behaves simi-
pected to provide decent results whép<1. Despite the larly to the high Atwood number case. Due to the lower
crudeness of this model, it is shown both to provide goodnitial velocity imprinted at low Atwood numbers, it is much
guantitative predictions of the initial velocity, and to shed more difficult to achieve conditions, for which>1 in the
light on the nature of the interaction of the shock wave andow Atwood range.
the perturbed interface. For both low and high Atwood numbers, the shock effect

For high values of the Atwood number, we apply the gen-depends only ori. since only the shock velocity relative to
eralization of Hechet al. for Layzer’s potential flow model the bubble velocity is of importance. Hence, one can predict
for the case of a fluid layer bounded above by a Wajlto  the dominance of the compressibility effect through the value
the problem of Richtmyer-Meshkov instability evolution in of a single parameter of the flow, .
the vicinity of a shock wave, where the wall location is taken The above wall model has been applied to predict the
asd(t) = (ushock— Au)t. In Fig. 9, a comparison between the results of full numerical simulations of the HexXe shock-
bubble velocity from the incompressible potential mo@s-  tube experiments of Aleshiet al. for the cases deviating
suming an infinite shock spegdnd that of the “wall” model  from linear dependence of the initial velocity on the pertur-
(simulating the compressible cass seen. For the incom- bation amplitude (initial zero to peak amplitude of,
pressible limit, it is seen that the bubble immediately reaches=2.5,5,10, and 15 mmSince the Atwood number in these
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FIG. 11. Comparison of the experimental reduction factor from

Aleshin experiment from simulation~), incompressible potential ]Ehe Alre]shln He—_>)ieﬂ experllrlnentj ?n_?hth(_e p‘_laltchllng_re(_jugtl(;n fzctor
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agk=0.86, () agk=1.72, and(d) agk=2.58. e maximum growth velocity obtained in the early stages of the
flow (see Fig. 9.

FIG. 10. Bubble height versus time representing the-bke

experiments isA=0.94, the potential model based wall These results lay a solid theoretical basis for a division to
model is used. In Fig. 10 are plotted the bubble heights athree regimes: a low-amplitude low-Mach-number regime, a
obtained from the simulatiotfound, again, to be in a good high-amplitude regime, and a high-Mach-number low-
agreement with the experiment, see Fig. 2 in R&7)), the  amplitude regime, similar to the one derived from experi-
incompressible potential model, and the wall model. As carinental observation by Aleshiet al.[17]. It was shown that
be seen, the initial simulation bubble velocity is in good the reduction in the imprinted velocity in several high-Mach-
agreement with the wall model prediction for all the cases. Imumber experiments is qualitatively similar to that observed
Fig. 11, one can see a comparison between the experiment8l!ow-Mach-number experiments with equivalent initial per-
reduction factor and the reduction factor predicted from thdurbation amplitudes. A vorticity deposition model that de-
model. scribes the effects of high initial amplitudes as well as those
However, despite the good agreement between the modéf the interface shape, and a modified potential model de-
and the simulation results at early times, at later times, thécribing effects of shock proximity, both predicting a reduc-
transverse pressure gradients created by the perturbed shoéin in the initial bubble velocity, in good agreement with
wave structure can cause either deceleration or acceleratigievious experimental results are presented. These are

of the bubble and spike areas, and render this simple wafupplemented by new shock-tube experiments and full nu-
model invalid. merical simulations. We believe that these findings will be of

use in attempting to analyze and quantify the instability evo-
lution in complex cases where both compressibility and high
IV. SUMMARY initial amplitude effects are observed.

Using a combination of analytical models, experiments,
and numerical simulations, we have been able to qualita-
tively distinguish between regimes, where deviations from The authors wish to thank Professor Dan Meiron for help-
linear dependence of the imprinted initial velocity on theful discussions and the Department of Applied Mathematics
initial perturbation amplitude are due to the large initial per-at CalTech and the Laboratory for Laser Energetics at the
turbation amplitudes or due to compressibility effeGts.,  University of Rochester for their hospitality and partial sup-
proximity of the shock wave to the perturbed interface port during this work.
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