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Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities
for all density ratios
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We generalize the Layzer-type model for unstable interfaces to the system of arbitrary density ratio. The
predictions from the generalized model for bubble growth rates of Rayleigh-Té@RBr and Richtmyer-
Meshkov(RM) instabilities are in good agreement with numerical results. We present the theoretical prediction
for asymptotic growth rates for RT and RM bubbles for finite density ratios in two and three dimensions.
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The phenomenon of unstable interfacial fluid mixing oc-portance, but also is a key factor in the dynamics of the
curs frequently in basic sciences and engineering applicabubble merger in the evolution of multimode interfat@s].
tions. A gravity-driven interfacial instability is known as the ~ We consider an interface in a channel of widtHilled
Rayleigh-Taylor(RT) instability [1] and a shock-driven in- with two fluids of different densities in two dimensiofSee
terfacial instability is known as the Richtmyer-Meshkov Fig. 1). The fluids are assumed as incompressible and invis-
(RM) instability [2]. Both instabilities play important roles in cid. We denote densities of upper and lower fluidsasnd
many fields such as inertial confinement fusion and superp’, respectively. As shown in Fig. 1, the bubble pushes the
nova. To investigate dynamics of these instabilities, extenupper fluid and has a rounded shape, while the spike pen-
sive researches have been carried out in last decades. Recetrates the lower fluid and has a mushroom shape due to
progress on the study of RT and RM instabilities can bevorticities by the Kelvin-Helmholtz instability. Note that, for
found and traced from Ref§3-13). the case of infinite density ratio, the spike is a form of long

The linear stage of small perturbation amplitude<1, and narrow filament without the vortex structure.
wherek is the perturbation wave number, is well understood The flow around the bubble can be assumed as irrota-
[1,2]. As the amplitude becomes largey~ 1, the nonlinear tional, since the bubble has a smooth laminar structure. From
structure in the form of bubbles and spikes appears on ththe assumption of potential flows, each fluid around the
unstable interfaces. A bubblspike is a portion of the light bubble is governed by
(heavy fluid penetrating into the heawight) fluid. At later
times, a bubble in the RT instability attains a constant veloc-
ity, while a RM bubble has a decaying growth rate. Eventu-
ally, a turbulent mixing caused by vortex structures around
spikes breaks the ordered fluid motif38]. A’ (x,2,1)=0

Weakly nonlinear theorigf®,6] based on higher-order se- -
ries expansions of equations give growth rates for interfaces
up to early nonlinear regime, but fail to provide growth rateswhere ¢,¢’ are velocity potentials. The evolution of the
at late times. Layzef14] proposed a potential flow model, interface,z= 5(x,t), can be determined by the kinematic
based on the approximate description of the flow near thequation
bubble tip, and successfully described the evolution of a
single-mode RT bubble over all times. Since Layzer’s work,
the model was extended to a bubble for the RM instability by
Hecht et al. and to spikes for RT and RM instabilities by
Zhang[9]. However, most of the previous Layzer-type mod-
els have been limited to the system with an infinite density
ratio.

In this paper, we generalize the Layzer-type model to the z
unstable system for arbitrary density ratio. The predictions ot
from our approach are in good agreement with numerical
results for both RT and RM instabilities over all times. Our
approach also provides analytic solutions for asymptotic
growth rates of single-mode RT and RM bubbles in the sys-
tem of finite density ratio in two and three dimensions.

Note that the asymptotic solution of single-mode bubbles Fluid 2 of density p’
at unstable interfaces not only has its own fundamental im-

A ¢(x,z,t)=0 for upper fluid, D

for lower fluid. (2)

Fluid 1 of density p

z=n(xt)

spike

X/L

*Electronic address: sohnsi@tmic.tit.ac.kr FIG. 1. Flow descriptiong represents an external acceleration.
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—+u—-v=0, 3

and the Bernoulli equation

dp p[(a\* [dp\?
Pt z(& +(E) Tpyz
(9 2
= f&;’i+% (i) +<(% +p'gz. (4

Here,u andv arex andz components of the interface veloc-

ity, respectively, andy is an external acceleration.
Extending Layzer’s, we take velocity potentials

d(x,z,t)=a(t)cogkx)e (5)
@' (x,z,t)=—a(t)cog kx)e k2. (6)

where the wave numbéc=2=/L. The velocity fields for
each fluid are defined as

q=Vé¢
q=—-V¢’

for upper fluid, (7)

for lower fluid. (8)

The corresponding stream functions for EdS) and
(6) are (x,zt)=a(t)sinkye ¥ and '(x,zt)=
—a(t)sinke . The streamlines generated hy(x,z,t)
= (Xp,29,t) and ¢’ (x,z,t) = ¢’ (Xq,29,t), passing through
an arbitrary reference poinkg,z,), are

B 1I sinkx
Z—ZO+E n m . (9
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whereA=(p—p")/(p+p’) represents the Atwood number.
The differential equation$12)—(14) determine the evolu-
tions of bubbles in RT and RM instabilities.

It has been shown in Reffz,14] that the linear theory of
Layzer's model for infinite density ratio agrees with the re-
sult from the linearized Euler equations. One can easily show
that this property also holds for the present model for finite
density ratios.

We now find asymptotic solutions for bubbles. Eliminat-
ing a from Egs.(12) and(13), we have

k
E(t)=| &g+ g|e ST 2, (15)
whereéy= £(t=0) andhy=h(t=0).
We introduce a new variable

H(t)=ekn®, (16)

Then, Eq.(14) is written in the form

d2 H 2
1+ 2§)H— A(W) —AkgH= (17)

To derive asymptotic solutions for bubbles, we consider be-
haviors for largeh(t). Forkh(t)>1, £&— —k/6 by Eq.(15),
so that Eq(17) becomes, approximately,

d2

b (18

H 2
_ 2_
+A( dt) AkgH2=0.

For the RT instability ¢=const-0), Eq. (18 has the

The interface velocityJ=(u,v), is defined as the average Solution

of velocities below and above the interface

u=%(v¢—v¢') atz=7. (10)

H(t)=e", (19

with a=AKg/(A+2). This leads to the asymptotic solu-

The shape of the interface near a bubble tip is, under the

parabola approximation,

n(X,1)=h(t) + &t)x2. (11)

(20

tion
o Ag . k
e NrAak R

Then, from Eqgs(10) and (11), components of the interface Here, v denotesdh/dt and the superscript represents a

velocity are u~—ak?e *"x and v~—ake K1 (k%2

+ké&)x?]. Substituting these expressions into E(®. and

(4) and expanding it up to the second ordek,nve have the
following equations:

dh
a=—ake*kh, (12
¢ _ ., M
Jr=ak 3+ 5)e ™, (13)
o kh k|da 21,3 g 2kh
£+ 5| g tARK e 2N AgE=0, (19

quantity at asymptotic large time. For the RM instability (
=0), Eq.(18) has the solution

H(t)=t?, (21
with 8=2/(A+2). Thus, the asymptotic solution is
VRMT (21 AVkt’ SR T 5 (22)

Therefore, the growth rate of a RT bubble in the system of
finite density ratios converges to an asymptotic limit and that
of a RM bubble decays to zero. For both RT and RM insta-
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1.2 T T T T B \/Tg . k 23
VR~ \ 311 AVK SRT T g (23

and

) (3+A)
VRMT 31 Akt

1.1}

ok

Ratio

1.05¢ The functional expressions of Eq$20) and (22) for

asymptotic velocities are different from Eq®3) and (24).
However, quantitative differences between these solutions
are not large. Figure 2 shows ratios of E¢80) and (23),
Crr=2/3(1+A)/(1/\2+A) for the RT case, and ratios of
0.95; 02 04 06 08 1 Eqg. (22) and (24), Cru=[(3+A)/3(1+A)]/(2/(2+A)] for
A the RM case. We see that the difference of asymptotic solu-
. . ) .. tions for the RT case is small for largeeand slightly large
FIG. 2. Ratios of solutions for asymptotic bubble velocities. for small A, while that for the RM case is small for a.
Crr=\2/3(1+ A)/(1V2+A) for the RT case, andCan=[(3 For limiting values ofA, analytic solutions for finite times
+AB(1+A)JI[2/(2+A)] for the RM case. can be derived. Differentiating Eq12) and substituting it
into Eq. (14), we have
bilities, the asymptotic velocities of bubbles are independent

of initial conditions. We see that, fixingg and k, the d’h  2(1-A)ké+k?(dh\? 2Ag¢
asymptotic velocity for a RT bubble is an increasing function ﬁ + 2&+k dat 2¢+k 0. (29)
of the Atwood numberA, while that for a RM bubble is a
decreasing function oA. From the relationd?h/dt?>=(d¢&/dt) (dv/dé) = — (k/4)(6¢
Recently, Goncharoj13] has extended the Layzer model +k)(dv?/d¢), Eq.(25) becomes
to the system of arbitrary density ratio, using different forms
dv? 4(2(1-A)é+k) 8Agé

of velocity potentials from ours. Since the Layzer model is = 2 _
an approximate description for the flow around the bubble dé¢  (6&+K)(2€6+K) k(6&+k)(2&€+Kk)
tip, various forms of approximate potentials can be given to (26)
the system. The potentia(§) and (6) used in our approach , )

may be the simplest ones among possible approximate pd-"€n: the solution for the case A0 is

0.

tentials for the case of arbitrary density ratio. In Goncharov’s 2 7112
study, the velocity potential for the lower fluid has two un- y=Q' A—g(G—G )+ Yo (27)
knowns, which results in five sets of differential equations. 2k 0 gr '

The asymptotic bubble velocities for two dimensio2D)
given in Ref.[13] are where

Velocity Velocity
0.5 v v r v v 0.6 T

0.5f

0.4f

0.3f

0.2

0.1f

%% 2 4 6 8 10 2 Oy 4 % 3

(a) Time (b) Time

FIG. 3. Comparisons for bubble velocities in the RT instability in 2D. Atwood numbergaarke=0.33, (b) A=0.8. Solid curves are
predictions from the present model, dashed lines are the asymptotic sqR@oinom Ref.[13], and symbols are numerical results taken
from Ref.[15]. Thex andy axes correspond to dimensionless time and dimensionless velocity, scaldgkaand v\/k/g, respectively.
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1 T T A=0.2, 0.5, and 0.9. The results in R¢8] are obtained
from full-scale simulations of two-dimensional Euler equa-
tions in incompressible limit. Physical parameters are set to
g=0 and k=27 cm ! and initial conditions arew,

=1 cm/ms,hy=0, and¢,=0. We observe that asymptotic
decaying rates agree well for all three cases and, at early
times, the results for larger values Afare in better agree-
ment.

The results for bubbles in two dimensions can be directly
extended to bubbles in three-dimensional cylindrical geom-
etry. The bubble motion in 3D was first studied by Layzer
[14] for the system of infinite density ratio. Extending again
Layzer’s, we take the potentials

Velocity (cm/ms)

Time (ms)

#(r,z,t)=a(t)Jo( B1r/R)e PZR (29)
FIG. 4. Comparisons for bubble velocities in the RM instability

in 2D. The solid curves are predictions from the present model for &' (x,2,)=—a(t)Jy( B r/R)e P1Z/R (30)

A=0.2, 0.5, and 0.9 from above to below. Symbols are numerical o oPL '

results taken from Ref8]: O, A=0.2; X, A=0.5; @, A=0.9. whereR is the radius of a cylindrical channel ag is the

first zero of the Bessel functiod,(r). Then, differential

G(h)= n (Q"+(2k)")? equations for dynamics of bubbles in 3D are
(2007 [ 1 Q% (2K Q"+ (2k)™
rAr r dh k —kh (31)
+243tan’? 49k +—, dt
\/§kr Q2r
dé 2 K} —kn
Q(h):(6go+k)ef3k(hfho). a—ak 2§+Z e , (32
Here, Go=G(hy), Qo=Q(hy), andr=3%. From Eq.(27), g ’
: . 0/ ST 3 . a
the height of bubble tip at timeis implicitly given by ke k| £+ ; E+Aa2k3 £+ 5 e 2N=Ags, (33
1
(h)= fh (2k) Qg dr wherek= B, /R. Applying the same procedures as in 2D, we
ho Q(T)r[Agng(G(T)_G0)+2kyg]1/2 ' give the asymptotic solutions for RT and RM bubbles in 3D:
(28)
Thus, we obtained analytic solutions foerand ¢ over all vi— ALR £o—— ﬁ (34)
times forA— 0. Giving the bubble height, timet is deter- B1 8R
mined by Eq.(28), £ by Eq. (15), and v by Eqg. (27). Note
that the analytic expression for finite time solutions for the@nd
case ofA=1 is given in Refs[9,10].
The present model is validated by comparing with results . R . B
of numerical simulations in two dimensions. In Fig. 3, we VRM™ g1 érM— T gR- (35

compare the solutions from the present model for a bubble of
the Rayleigh-Taylor instability with numerical results from
the vortex method in Ref15] and the asymptotic solution |ioq out. This result will be published elsewhere.

(23) from Ref.[13]. The vortex simulations i15] are per- In conclusion, the Layzer-type model has been extended
formed in incompressible fluids, following the marker par-, ihe unstable 'system for afl, using simple forms of ve-

ticles on the interface in Lagrangian manner. The Atwood ity potentials. | have shown, through comparisons with
rlumbers for Fig. @) and Fig. 3b) are A=0.33 andA  ,merical results, that the present model provides a compre-
=0.8, respectively. For both casgsandk are set to 1 and  pensjye theory for the evolution of RT and RM bubbles over

initial conditions are »o=0.04, h=0.049, and &= 4| time ranges from the small amplitude linear stage to the
—0.022. We see that the predictions from the present modekie nonlinear stage.

are in good agreement with the numerical results.

Figure 4 shows the comparison of the solutions from the This work was supported by Grant No. R01-2000-00002
present model for a Richtmyer-Meshkov bubble with nu-from the Basic Research Program of the Korea Science &
merical results in Ref8] for three cases of Atwood numbers Engineering Foundation.

The validation study for these solutions in 3D is being car-
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