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Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities
for all density ratios
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We generalize the Layzer-type model for unstable interfaces to the system of arbitrary density ratio. The
predictions from the generalized model for bubble growth rates of Rayleigh-Taylor~RT! and Richtmyer-
Meshkov~RM! instabilities are in good agreement with numerical results. We present the theoretical prediction
for asymptotic growth rates for RT and RM bubbles for finite density ratios in two and three dimensions.
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The phenomenon of unstable interfacial fluid mixing o
curs frequently in basic sciences and engineering app
tions. A gravity-driven interfacial instability is known as th
Rayleigh-Taylor~RT! instability @1# and a shock-driven in-
terfacial instability is known as the Richtmyer-Meshko
~RM! instability @2#. Both instabilities play important roles in
many fields such as inertial confinement fusion and sup
nova. To investigate dynamics of these instabilities, ext
sive researches have been carried out in last decades. R
progress on the study of RT and RM instabilities can
found and traced from Refs.@3–13#.

The linear stage of small perturbation amplitudekh!1,
wherek is the perturbation wave number, is well understo
@1,2#. As the amplitude becomes largekh;1, the nonlinear
structure in the form of bubbles and spikes appears on
unstable interfaces. A bubble~spike! is a portion of the light
~heavy! fluid penetrating into the heavy~light! fluid. At later
times, a bubble in the RT instability attains a constant vel
ity, while a RM bubble has a decaying growth rate. Even
ally, a turbulent mixing caused by vortex structures arou
spikes breaks the ordered fluid motion@3,8#.

Weakly nonlinear theories@5,6# based on higher-order se
ries expansions of equations give growth rates for interfa
up to early nonlinear regime, but fail to provide growth rat
at late times. Layzer@14# proposed a potential flow mode
based on the approximate description of the flow near
bubble tip, and successfully described the evolution o
single-mode RT bubble over all times. Since Layzer’s wo
the model was extended to a bubble for the RM instability
Hecht et al. and to spikes for RT and RM instabilities b
Zhang@9#. However, most of the previous Layzer-type mo
els have been limited to the system with an infinite dens
ratio.

In this paper, we generalize the Layzer-type model to
unstable system for arbitrary density ratio. The predictio
from our approach are in good agreement with numer
results for both RT and RM instabilities over all times. O
approach also provides analytic solutions for asympto
growth rates of single-mode RT and RM bubbles in the s
tem of finite density ratio in two and three dimensions.

Note that the asymptotic solution of single-mode bubb
at unstable interfaces not only has its own fundamental
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portance, but also is a key factor in the dynamics of
bubble merger in the evolution of multimode interfaces@3,8#.

We consider an interface in a channel of widthL filled
with two fluids of different densities in two dimensions~See
Fig. 1!. The fluids are assumed as incompressible and in
cid. We denote densities of upper and lower fluids asr and
r8, respectively. As shown in Fig. 1, the bubble pushes
upper fluid and has a rounded shape, while the spike p
etrates the lower fluid and has a mushroom shape du
vorticities by the Kelvin-Helmholtz instability. Note that, fo
the case of infinite density ratio, the spike is a form of lo
and narrow filament without the vortex structure.

The flow around the bubble can be assumed as irr
tional, since the bubble has a smooth laminar structure. F
the assumption of potential flows, each fluid around
bubble is governed by

Df~x,z,t !50 for upper fluid, ~1!

Df8~x,z,t !50 for lower fluid. ~2!

where f,f8 are velocity potentials. The evolution of th
interface,z5h(x,t), can be determined by the kinemat
equation

FIG. 1. Flow description.g represents an external acceleratio
©2003 The American Physical Society01-1
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]h

]t
1u

]h

]x
2v50, ~3!

and the Bernoulli equation

r
]f

]t
1

r

2 F S ]f

]x D 2

1S ]f

]z D 2G1rgz

5r8
]f8

]t
1

r8

2 F S ]f8

]x D 2

1S ]f8

]z D 2G1r8gz. ~4!

Here,u andv arex andz components of the interface veloc
ity, respectively, andg is an external acceleration.

Extending Layzer’s, we take velocity potentials

f~x,z,t !5a~ t !cos~kx!e2kz, ~5!

f8~x,z,t !52a~ t !cos~kx!e2kz. ~6!

where the wave numberk52p/L. The velocity fields for
each fluid are defined as

q5“f for upper fluid, ~7!

q52“f8 for lower fluid. ~8!

The corresponding stream functions for Eqs.~5! and
~6! are c(x,z,t)5a(t)sin(kx)e2kz and c8(x,z,t)5
2a(t)sin(kx)e2kz. The streamlines generated byc(x,z,t)
5c(x0 ,z0 ,t) andc8(x,z,t)5c8(x0 ,z0 ,t), passing through
an arbitrary reference point (x0 ,z0), are

z5z01
1

k
lnS sinkx

sinkx0
D . ~9!

The interface velocity,U5(u,v), is defined as the averag
of velocities below and above the interface

U5
1

2
~“f2“f8! at z5h. ~10!

The shape of the interface near a bubble tip is, under
parabola approximation,

h~x,t !5h~ t !1j~ t !x2. ~11!

Then, from Eqs.~10! and ~11!, components of the interfac
velocity are u;2ak2e2khx and v;2ake2kh@12(k2/2
1kj)x2#. Substituting these expressions into Eqs.~3! and
~4! and expanding it up to the second order inx, we have the
following equations:

dh

dt
52ake2kh, ~12!

dj

dt
5ak2S 3j1

k

2De2kh, ~13!

ke2khS j1
k

2Dda

dt
1Aa2k3je22kh2Agj50, ~14!
02630
e

whereA5(r2r8)/(r1r8) represents the Atwood numbe
The differential equations~12!–~14! determine the evolu-
tions of bubbles in RT and RM instabilities.

It has been shown in Refs.@7,14# that the linear theory of
Layzer’s model for infinite density ratio agrees with the r
sult from the linearized Euler equations. One can easily sh
that this property also holds for the present model for fin
density ratios.

We now find asymptotic solutions for bubbles. Elimina
ing a from Eqs.~12! and ~13!, we have

j~ t !5S j01
k

6De23k(h2h0)2
k

6
, ~15!

wherej05j(t50) andh05h(t50).
We introduce a new variable

H~ t !5ekh(t). ~16!

Then, Eq.~14! is written in the form

2S 11
k

2j DH
d2H

dt2
1AS dH

dt D 2

2AkgH250. ~17!

To derive asymptotic solutions for bubbles, we consider
haviors for largeh(t). For kh(t)@1, j→2k/6 by Eq.~15!,
so that Eq.~17! becomes, approximately,

2H
d2H

dt2
1AS dH

dt D 2

2AkgH250. ~18!

For the RT instability (g5const.0), Eq. ~18! has the
solution

H~ t !5eat, ~19!

with a5AAkg/(A12). This leads to the asymptotic solu
tion

nRT
` →A Ag

~21A!k
, jRT

` →2
k

6
. ~20!

Here, n denotesdh/dt and the superscript̀ represents a
quantity at asymptotic large time. For the RM instability (g
50), Eq. ~18! has the solution

H~ t !5tb, ~21!

with b52/(A12). Thus, the asymptotic solution is

nRM
` ;

2

~21A!kt
, jRM

` →2
k

6
. ~22!

Therefore, the growth rate of a RT bubble in the system
finite density ratios converges to an asymptotic limit and t
of a RM bubble decays to zero. For both RT and RM ins
1-2
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bilities, the asymptotic velocities of bubbles are independ
of initial conditions. We see that, fixingg and k, the
asymptotic velocity for a RT bubble is an increasing functi
of the Atwood numberA, while that for a RM bubble is a
decreasing function ofA.

Recently, Goncharov@13# has extended the Layzer mod
to the system of arbitrary density ratio, using different form
of velocity potentials from ours. Since the Layzer model
an approximate description for the flow around the bub
tip, various forms of approximate potentials can be given
the system. The potentials~5! and ~6! used in our approach
may be the simplest ones among possible approximate
tentials for the case of arbitrary density ratio. In Goncharo
study, the velocity potential for the lower fluid has two u
knowns, which results in five sets of differential equatio
The asymptotic bubble velocities for two dimensions~2D!
given in Ref.@13# are

FIG. 2. Ratios of solutions for asymptotic bubble velocitie
CRT5A2/3(11A)/(1/A21A) for the RT case, andCRM5@(3
1A/3(11A)#/@2/(21A)# for the RM case.
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nRT
` →A 2Ag

3~11A!k
, jRT

` →2
k

6
, ~23!

and

nRM
` ;

~31A!

3~11A!kt
, jRM

` →2
k

6
. ~24!

The functional expressions of Eqs.~20! and ~22! for
asymptotic velocities are different from Eqs.~23! and ~24!.
However, quantitative differences between these soluti
are not large. Figure 2 shows ratios of Eqs.~20! and ~23!,
CRT5A2/3(11A)/(1/A21A) for the RT case, and ratios o
Eq. ~22! and ~24!, CRM5@(31A)/3(11A)#/(2/(21A)# for
the RM case. We see that the difference of asymptotic s
tions for the RT case is small for largeA and slightly large
for small A, while that for the RM case is small for allA.

For limiting values ofA, analytic solutions for finite times
can be derived. Differentiating Eq.~12! and substituting it
into Eq. ~14!, we have

d2h

dt2
1

2~12A!kj1k2

2j1k S dh

dt D
2

1
2Agj

2j1k
50. ~25!

From the relationd2h/dt25(dj/dt)(dn/dj)52(k/4)(6j
1k)(dn2/dj), Eq. ~25! becomes

dn2

dj
2

4~2~12A!j1k!

~6j1k!~2j1k!
n22

8Agj

k~6j1k!~2j1k!
50.

~26!

Then, the solution for the case ofA→0 is

n5QrFAg

2k
~G2G0!1

n0
2

Q0
2rG 1/2

, ~27!

.

en

FIG. 3. Comparisons for bubble velocities in the RT instability in 2D. Atwood numbers are~a! A50.33, ~b! A50.8. Solid curves are

predictions from the present model, dashed lines are the asymptotic solution~23! from Ref. @13#, and symbols are numerical results tak
from Ref. @15#. Thex andy axes correspond to dimensionless time and dimensionless velocity, scaled astAgk andnAk/g, respectively.
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G~h!5
1

~2k!2r H lnS ~Qr1~2k!r !2

Q2r2~2k!rQr1~2k!2r D
12A3tan21S 4rQr2kr

A3kr D J 1
1

Q2r
,

Q~h!5~6j01k!e23k(h2h0).

Here, G05G(h0), Q05Q(h0), and r 5 1
3 . From Eq. ~27!,

the height of bubble tip at timet is implicitly given by

t~h!5E
h0

h ~2k!1/2Q0
r

Q~t!r@AgQ0
2r~G~t!2G0!12kn0

2#1/2
dt.

~28!

Thus, we obtained analytic solutions forn and j over all
times forA→0. Giving the bubble heighth, time t is deter-
mined by Eq.~28!, j by Eq. ~15!, andn by Eq. ~27!. Note
that the analytic expression for finite time solutions for t
case ofA51 is given in Refs.@9,10#.

The present model is validated by comparing with resu
of numerical simulations in two dimensions. In Fig. 3, w
compare the solutions from the present model for a bubbl
the Rayleigh-Taylor instability with numerical results fro
the vortex method in Ref.@15# and the asymptotic solution
~23! from Ref. @13#. The vortex simulations in@15# are per-
formed in incompressible fluids, following the marker pa
ticles on the interface in Lagrangian manner. The Atwo
numbers for Fig. 3~a! and Fig. 3~b! are A50.33 andA
50.8, respectively. For both cases,g andk are set to 1 and
initial conditions are n050.04, h050.049, and j05
20.022. We see that the predictions from the present mo
are in good agreement with the numerical results.

Figure 4 shows the comparison of the solutions from
present model for a Richtmyer-Meshkov bubble with n
merical results in Ref.@8# for three cases of Atwood numbe

FIG. 4. Comparisons for bubble velocities in the RM instabil
in 2D. The solid curves are predictions from the present model
A50.2, 0.5, and 0.9 from above to below. Symbols are numer
results taken from Ref.@8#: s, A50.2; 3, A50.5; d, A50.9.
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A50.2, 0.5, and 0.9. The results in Ref.@8# are obtained
from full-scale simulations of two-dimensional Euler equ
tions in incompressible limit. Physical parameters are se
g50 and k52p cm21 and initial conditions aren0
51 cm/ms,h050, andj050. We observe that asymptoti
decaying rates agree well for all three cases and, at e
times, the results for larger values ofA are in better agree
ment.

The results for bubbles in two dimensions can be direc
extended to bubbles in three-dimensional cylindrical geo
etry. The bubble motion in 3D was first studied by Layz
@14# for the system of infinite density ratio. Extending aga
Layzer’s, we take the potentials

f~r ,z,t !5a~ t !J0~b1r /R!e2b1z/R, ~29!

f8~x,z,t !52a~ t !J0~b1r /R!e2b1z/R, ~30!

whereR is the radius of a cylindrical channel andb1 is the
first zero of the Bessel functionJ1(r ). Then, differential
equations for dynamics of bubbles in 3D are

dh

dt
52ake2kh, ~31!

dj

dt
5ak2S 2j1

k

4De2kh, ~32!

ke2khS j1
k

4D da

dt
1Aa2k3S j1

k

8De22kh5Agj, ~33!

wherek5b1 /R. Applying the same procedures as in 2D, w
give the asymptotic solutions for RT and RM bubbles in 3

nRT
` →AAgR

b1
, jRT

` →2
b1

8R
, ~34!

and

nRM
` ;

R

b1t
, jRM

` →2
b1

8R
. ~35!

The validation study for these solutions in 3D is being c
ried out. This result will be published elsewhere.

In conclusion, the Layzer-type model has been exten
to the unstable system for allA, using simple forms of ve-
locity potentials. I have shown, through comparisons w
numerical results, that the present model provides a com
hensive theory for the evolution of RT and RM bubbles ov
all time ranges from the small amplitude linear stage to
late nonlinear stage.

This work was supported by Grant No. R01-2000-000
from the Basic Research Program of the Korea Science
Engineering Foundation.
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