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Diffusive transport and self-consistent dynamics in coupled maps
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The study of diffusion in Hamiltonian systems has been a problem of interest for a number of years. In this
paper we explore the influence of self-consistency on the diffusion properties of systems described by coupled
symplectic maps. Self-consistency, i.e., the backinfluence of the transported quantity on the velocity field of the
driving flow, despite of its critical importance, is usually overlooked in the description of realistic systems, for
example, in plasma physics. We propose a class of self-consistent models consisting of an ensemble of maps
globally coupled through a mean field. Depending on the kind of coupling, two different general types of
self-consistent maps are considered: maps coupled to the field only through the phase, and fully coupled maps,
i.e., through the phase and the amplitude of the external field. The analogies and differences of the diffusion
properties of these two kinds of maps are discussed in detail.
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[. INTRODUCTION The goal of the present paper is to study the problem of
diffusion of active scalars. In particular, we are interested in
Understanding transport is a problem of considerabldghe relationship between self-consistent chaos and diffusion
practical and theoretical interest in a great variety of fieldsdue to chaotic advection. The study of diffusion requires an
ranging from geophysics to chemical engineering and plasmaccurate numerical integration of the equations of motion for
physics. In some situations one can safely consider thegery long times and many initial conditions. A common strat-
simple case ofpassive transporin which the transported egy to bypass this technical difficulty is to describe the time-
guantity does not affect the advecting flo®;2]. In the case continuous equations of motion with a discrete-time map.
of a scalar passive fiel@(x,t), the evolution equation is the Here we follow this approach and study the problem of dif-
advection-diffusion equation fusion in self-consistent symplectic maps. In the remaining
of this introduction we discuss in some detail the problem of
self-consistent transport in fluids and plasmas. The intent of

(3] o S . . L
—+V-(vO)=D,V?0, ) this discussion is to provide a physical motivation for the use
at of globally coupled maps for studying self-consistent trans-
port.
wherev(x,t) is the velocity field D, the molecular diffusiv- One of the simplest physical examples of active transport

ity, and © represents the scalar concentration, e.g., the tenis two-dimensional incompressible flows. This motion is de-
perature of the fluid or the concentration of a pollutant. Thescribed by Navier-Stokes equati¢h in which © represents
domain of applicability of Eg(1) is limited by two important  the vorticity, =V Xv. Plasma physics is another area in
physical assumption® has to bdnert (no possible chemi- which the problem of self-consistent transport is crucial. For
cal or biological reactions are consideremd passivéthere  example, in the Vlasov description of an electron plagia

is no feedback on the velocjtyReactive processes can be (in a uniform neutralizing ion backgrounthe system is de-
taken into account by adding to the right hand side of@p. scribed by the phase space electron distribution fundtion
a function f(©) modeling the reaction kinetick3]. This  which, for an one-dimensional system, evolves according to
leads to the so-called advection-reaction-diffusion equationthe Liouville equation

widely used in the modeling of chemical and biological sys-

tems including combustion, diluted chemical reactions, and Iif +udf + dgd,f=Dodf, 2
population dynamic$4].

Taking into account the feedback & on v, i.e., the Wwhere the term on the right hand side is a Fokker-Planck
problem ofactive transportis in general more complicated collision operator, andx,u) are the phase space coordinates.
as this involves the equation of motion farBecause of this, ~This equation is analogous to Eq) if one identifiesO with
active transport is also callegelf-consistent transpartA  f, andv with the transport velocity in phase spaag dy¢).
well-known example is fluid convection in the Boussinesqin this case the self-consistent coupling is provided by the
approximation[5]. In this case© represents the fluid tem- Poisson equation
perature, which is an active scalar in the sense that it modi-
fies the velocity field through the buoyancy force in the 2,

Navier-Stokes equation for. &X(ﬁ_f foou,tidu—1, ©)
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where the right hand side is the charge distribution includingnas[10—12. In the plasma physics context, this approxima-

the fixed neutralizing ion background. That is, the dynamicdion known as the single-wave-modéWM), consists of

of an electron plasma is an active transport problem in whiclsimplifying the self-consistent coupling betweérand ¢

the transport velocity of the distribution functidrin phase given by Poisson’s equatiai3).

space is determined Hythrough Poisson’s equation. The SWM is a general model for the description of mar-
The previous ideas on self-consistent transport can be rgjinally stable fluids and plasmd43,14). Also the model

formulated within the Lagrangian description according tobears many interesting analogies with coupled oscillator

which transport is described in terms of individual particle models used in statistical mechan{d$]. As such, it is an

trajectories instead of scalar fields and distribution functionsinsightful model to explore the problem of self-consistent

The Lagrangian description is important because it is thehaos, and will be our starting point for the construction of

natural description to formulate the self-consistent transporthe self-consistent symplectic map models in the present pa-

problem in terms of symplectic maps which are the mainper.

objects of study in the present paper. As it is well-kndwh The transition to the symplectic map description is eased
the Lagrangian formulation of Eql) is the Langevin equa- by first writing the SWM as a fulN+ 1 Hamiltonian system
tion in the particle coordinatex(,u;) and the mean field degrees
of freedom[16,10Q
dx
a:V(X,t)‘i‘\/ZDOﬂ(t), (4) ka IH dpk IH (8)

- , , dt dp,’  dt ox’
describing the motion of a test partidighe tracey, whereyn

is a normalized Gaussian white noise with zero mean&nd do oH dJ IH
correlated in time: T L T 9)
(D 7i(t))=6;8(t—t").
{m(O7(t))= ;00 =t") ® " Lith Hamiltonian
The passive scalar nature €f in Eq. (1) reflects in the N
absence of coupling in the Lagrangian equations of motion _ i 2 \ﬁ NS
(4). However, in an active transport problem, the self- H_gl 2T pj— 2L\ eosxj— )| —J. (10)

consistent coupling between the field and the transport ve-

locity leads to a nonlinear coupling between the LagrangiarFrom Eq.(10) it is clear that the SWM model consists Nf
equations of motion. The fact that particles inteff@etd usu-  pendulum Hamiltoniansnean-fieldcoupled through the am-
ally through long-range interactipimplies that the phase plitude J and the phas@. Therefore, as the standard map is
space evolution of particla, depends on the position of all the symplectic discretization of the pendulum Hamiltonian,

the N particles the models studied here will consist of an ensembleNof
standard maps. In the absence of coupling, i.e., ignoring self-
dXq(t) —v(x,(1) x(1)) 6) consistencyJ and # would be constant and the parameters of
dt B ANAS the standard map would be fixed numbers. However, when

] _self-consistency is incorporated,and & become dynamical
and therefore the system has a phase space of dimensiQgiaples(also described by symplectic mapand this leads
proportional toN. This is the well-knownN-body problem {5 5 dependence of the parameters of the maps on

that arises in many fields of physics, including gravitationalyy, x, ... x\} which gives rise to a global coupling of the
systems in Astronom{g], point vortices in two-dimensional maps. The specific form of this coupling will be discussed in
fluid dynamics[9], and atomic physics. Sec. lll, where we present a systematic discussion of the map

An approximation of theN-body problem(6), which is  ,odels in terms of generating functions.
often used, is a mean-field type approximation in which the The remaining of this paper is organized as follows. In
interaction among particles occurs through a global variablegg: || we briefly review the diffusion properties in the case
X function of all the particles. In the examples shown below,f the passive scalar, with particular emphasis on the stan-
the mean field will depend on the mean distribution of par-4arg map. As mentioned before, in Sec. Ill we introduce the

ticles only, thus Eq(6) formally reduces to two self-consistent systems studied in this work. Sections IV
dx and V are devoted to the discussion of the numerical results.
N ) . ;
E:Vext(xn)—i_v(xn_x)a Section VI contains the conclusions.
dX Il. ABRIEF REVIEW OF THE DIFFUSION PROPERTIES
St =FO& ), (7) OF PASSIVE SCALARS

There exists a huge literature about the transport proper-
where we have included the possible contribution of an exiies in the passive scalar linfit,2,17. On the contrary, there
ternal fieldvgy;. are very few attempts in the study of the self-consistent dif-

Recently, a mean-field description of this sort has beerfusion. The aim of this section is to recall the main results on
proposed to study self-consistent transport in fluids and plaghe diffusion problem for passive scalars in order to compare
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them with the self-consistent diffusion that will be consid- behavior. Casé) is physically more relevant. From E(.3)
ered in the following sections. It is remarkable that the La-one sees that anomalous superdiffusion is possible only if
grangian motion can exhibit nontrivial behavior even for aC;;(t) goes to zero slower than 1. Unfortunately, the be-
very simple velocity field/(x,t) [17,18. Complex behavior havior of C;;(t) is generated by the Lagrangian dynamics
can be originated both from chaotic advectigvhich is in  itself so it is not trivial at all, in the absence of molecular
general possible for stationaryd3flows or for time-  diffusivity, to determine whether the diffusion process will
dependent @ flows) and/or from combined effects of the be standard or anomalous. If molecular diffusivity is present
molecular diffusivity and the advection velocity. Under very rather general results due to Avellaneda, Majda, and Vergas-
general conditiongsee below the large scale field©®),  sola[23] show that, if the infrared contributions wgx,t) are
which is obtained as an average of a fighl evolving  not too strong, standard diffusion occurs.

through Eg.(1) on a volume whose dimensions are much Let us now discuss the well-known results for the diffu-
larger than the typical length scale wfobeys at large times sive behavior of the standard mégp complete overview can

a diffusion equation be found in Ref[22)),
«O) £ 9%(O) x(t+1)=x(t)+y(t+1) mod 2, (16)
T_lz] Djj IX;9x; " (11) B .
y(t+1)=y(t) +K sin(x(t)). (17)

with eddy diffusivity Dﬁ In other words, the effect of the
velocity field at large scales and time is the renormalizatio
of the transport coefficierD,. It is easy to understand the
origin of Eq. (11) in the Lagrangian framework. Starting
from Eq. (4), taking the average over many tracers, one has

The Taylor argument, when applied to thét) component
I'[in this work we always refer to the diffusion properties of
y(t)] of the standard map gives

DI(K)= %K2<sin2x)+zl K2(sinx(t)sinx(0)). (18
t=

t [t
(040 -x(09%)=2Dot+ | | atutafoy(xttwy(x0)
0’0 At large K, the map Eqs(16) and (17) exhibits widespread
t t, stochasticity and to a good approximation consecutive angles
=2Dot+2f dtzf dt,C;i(to,—ty), (12 x are decorrelated, thus one can neglect the second term in
0 0 Eq. (18) to obtain the quasilinedior random phase approxi-

where we have assumed tRat(x(t)))=0 and we have in- mation, RPA result[22]:

troduced the correlation of Lagrangian velociti€;(t) K2
=(vi(x(t))vj(x(0))). At large times, if the correlation de- Df(K>1)~DQL:T.
cays sufficiently fast, the integral in E(L2) converges to an
asymptotic value

(19

The above estimate is very crude: indeed it provides a good
o estimation of the diffusion coefficient only at very hidgh
J dtCii(t)=(vi2)TL, (13 Higher order corrections to the RPA approximation can be
0 obtained by means of the Fourier technid@]. At order

-1/2 H
which defines the Lagrangian correlation tiffie. From Eq. K one obtains

(12) one recovers the Taylor resyit9] K2 3 5
DE(K)=— 1—\/—cos(K——”. (20)
((i()=xi(0))*)~2(Do+(vf) Tt=2Dft,  (14) ’ B 7K B
which defines the eddy diffusivity in Eq11). This approximation is rather good apart from smidlland
Beyond the above typical scenario one can have anomaroundparticular values ofk. Fork <K ~0.972 because of
lous dispersion, i.e., the presence of separating KAM tori there is not diffusion at
all, DE(K)zO. On the other hand, at specific valueskof
((xi()—x;(0))?)~t?" (15  (e.g.,K~6.9115) corresponding to the existence of ballistic

_ _ - solutions in they direction, instead of the standard diffusion

diffusion (»>1/2) has been observed in incompressible
flows [21], random shear flows and, as we will see, also
symplectic mapg20,22. Anomalous diffusion can occur
only if some of the hypothesis of the above argument breaks In this section we introduce the symplectic map models
down. Practically, this can be due to two different mecha-that we propose for studying diffusion in self-consistent sys-
nisms: (a) infinite variance of the velocity(u2>=oo. (b) tems. As discussed in Sec. |, these maps consists of en-
Lack of decorrelation] | = . sembles of globally coupled standard maps.

The first condition, which leads to the class ofvie The definition of the maps and the coupling is guided by
flights, is not particularly realistic in physical systems, be-the well-known fact that if §,p) denotes the canonical con-
cause it requires infinite energy. We will not discuss here thigugate coordinates of a Hamiltonian system at timehen

Ill. SELF-CONSISTENT MAP MODELS
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the transformationd,p)—(q’,p’) given by

aS

'

_&p,,

!

q p (21)

defines a symplectic map with generating functih

=$5(q,p") [22].

The generating functions of the models proposed here

have the generic form

S=S,+S5i+S, (22
whereS; defines the uncoupled evolution of the particlgs,
defines the uncoupled evolution of the mean field, &d
defines the particles-mean-field interaction.

For S, we assume the standard map generating function,. - .
P P9 g field J (i.e., no self-consistengyone could argue that the

effect of the field variabl® in Egs.(28) would be the same

as that of a noise and thus will destroy the correlations in the
y, variables. In this case one expects that the deviations of
the diffusion coefficient with respect to the quasilinear pre-
diction discussed in the preceding section would be strongly
suppressed. Of course, this kind of argument cannot be com-

N
1
Sp=2 xny,q+—2F 124+ K,co8Xn |, (23
n=1 n

wherel’,,, andK,, are constants, the indexlabels the par-
ticles, and we have used the notatioft) =x and x(t+1)

=x'. In S, the particles are uncoupled and each one follow:
independently a standard map dynamics.

S

PHYSICAL REVIEW E 67, 026224 (2003

Xp=X,+y, mod 2,

Yn=Ynt+ K sinx,+e cogx,— 6),

0'=60+0Q7",

J'=J-g2, cogx,—0). (28)

The parametes measures the strength of the coupling. For
e=0 we recover the situation discussed in the preceding
section forN independent particles. One may expect that, in
general, the inclusion of a coupling between the different
particles will change the diffusive behavior of the system. If
there were no feedback from the particle variablggo the

pletely justified in presence of the full coupling in E428).

In order to preserve the symplectic structure of the sys-

tem, the field is represented by two conjugate variables a

phased and an amplitudd which, in the absence of inter-
action with particles, evolve according to the generating
function

sf=03'+f w(3')dJ, (24)
according to which
0'=0+w(d),
J'=J. (25

That is, in the absence of coupling the amplitude and fre-

guency of the mean field are constant.

The self-consistent coupling between the particles and th
mean field is specified by two functiofigndg in the inter-
action generating function

N
s=g<a'>n§1 f(Xn— 6). (26)

Based on this generating function, we will consider two&

B. Amplitude and phase coupling
In this second case, it is assumed that

g:2\/J—’, f=T,cogx,—0), w=-, (29

where(} is constant and’,, are N independent parameters.

The dynamics in this case is determined by

Xp=Xn T YTy,

Y=Y+ K sinx,— 2,3’ sin(x,— 6),

1 N
0'=60-Q— \/7 nzl I',cogx,— 6),

e

N
J'=3+23"> T,sin(x,—0), (30)
n=1

where, to simplify matters, we have assumed that the exter-

nal field is such thak,/T',=K being K a constant. This
globally coupled map was originally proposed in R&0] as
symplectic discretization of the single wave model Hamil-

models, one introducing a coupling only through the phasdonian system in Eq(10). Compared with Eq(28), in the

of the mean field, and another introducing a coupling
through the phase and the amplitude of the mean field.

A. Phase coupling

In this case, it is assumed that
g: &, w:QJ,, (27)

andI',=1, K,=K for n=1,2,... N; with g, , K con-
stants. The complete equations of motion thus become

f=sin(x,— 6),

map (30) J and # are both coupled to the particles and this
leads to a self-consistent modification of the phasd the
amplitude of the mean field.

The map forJ is implicit. However, rescaling the vari-
ablesy,—TI',y,, K—T',K, and defining

N
k=23, yp=2T, n=n§1 yoSin(x,— 6), (31

the map can be written in a fully explicit form &%0]
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Xn=Xn+ VY, T
n nTYn 100E : _RE:%A i
H o-a

Yh=Yn+ K sinx,— &’ sin(x,— ),

k' =K+ 72+, 310 .
8
Q%
0= -4~ 7 32
B K 00 (32 J
In this model, the mean-field amplitude plays the role of . . ' . . . .
the standard map parametbesides theé constan), which 6 8 10 12 14 16 18 20
is self-consistently coupled to the particles through the order K

parameteryn. In the mean-field particle dynamics one can

define the totamomenturrof the system as FIG. 1. Normalized diffusion coefficient s for different val-

ues of thee parameter; squares fer=0, circlese =0.05 and dia-

2 N monds fore =0.1. Solid line represents the theoretical prediction as
P= K- + 2 yoy (33 given by the higher order RPA approximati@@0). The number of
2 &= particles isN=60000,0=0.1 and the number of steps is 10 000.

where the first term on the right hand side represents th& the uncoupled limit §=0). Therefore, the first effect of

momentum of the mean field, and the second term the totdhe mean field is to remove the ballistic contributions to the

momentum of the particles. This quantity is a constant ofdispersion.

motion of Eq.(30), Thus, let us try to focus on the case, where the standard
map (E=0) shows an anomalous behavior, for e.K.,

P ="P. (39 =6.9115, and see where the differences with the self-

consistent mapg# 0) appear. The diffusion coefficient is an

This conservation law plays an important role in the diffu- asymptotic quantity. For finite time, the evolution of E8)

sive properties of the system. with smalle maintains a memory of the behaviorsat 0 up
to a timeT (&) (saturation timg We defineT(¢) as the time
IV. DIFFUSION IN PHASE COUPLED MAPS at which the finite-time diffusion coefficient, as given by Eg.

(35), is reasonably close to its asymptotic value.

Let us study the diffusion properties in the phase coupled |n Fig. 2 we showT (¢), for a system witlK =6.9115, as
map (28). In particular, we will see that the effect of the gz function of 14/e. The approximately linear behavior in the
mean-field coup_ling is the randomization of the phase. Thablot indicates the dependend’e(s)~exp(c/\/§), with ¢ an
is, when coupling occurs only through the phase, selfypitrary constant. Let us note that the anomalous diffusion is
consistency increases the stochasticity of the map, and tr}ﬁainly due to the presence of ballistisonchaotit trajecto-
diffusive properties of the coupled maps are practically in-jies Therefore, the failing of anomalous transport can be
distinguishable from the dynamics of a phase-randomizedeen as the recover of a generic statistical behavior. In this
uncoupled map. o . sense this is consistent with a scenasida Nekhoroshev

In the limit £ =0 the diffusion coefficientfor they com-  [22]. we also remark that, within the range of values inves-

ponen}, as a function of the parametk displays the com-  tigated, there is not evidence of dependence on thehsie
plex behavior discussed in Sec. Il. The first natural question

is whether this complexity survives in the presence of cou- T - T : T

pling with a self-consistent mean fielde., for e >0). 1.6x10°F 1
In Fig. 1 we shOV\DE(K) (normalized with the RPA pre-

diction K?/4) in the uncoupled cases £0) and for some

other values of the couplings& 0.05 ands =0.1). Numeri- i 5

cally, D5(K) is calculated by taking the large time limit of

the expression

T(©)

3.1x10°f ° 5
([y(H)—y(0)]?)

Ety—
Dy(t)= o

(35
L O

For cpmparisons, we also plo'g the valugDﬁ(K)/DQ,_ with 5{0 . 1(').0 : 15'.0
the higher order RPA corrections as given by E2). As 12

one can see, for a generic large valuekathe presence of a

small coupling do not change the diffusion coefficient, apart FIG. 2. Saturation timeT(e), vs 1he for K=6.9115 and
for the values at which one can observe anomalous diffusioN =60 000.
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16.0[

. [ [ L
1.0 1000

10000

FIG. 3. D?/DQL against time for two different number of par-
ticles, K=6.9115, and different values af. Solid line is for N
=60 000 and the dashed line fbr=40 000.

can be seen in Fig. 8again forK=6.9115). It is worth
mentioning here that in Fig. 3 fot=0 one observes the
typical anomalous behavior of the diffusivity, that iB,E
«t93[24].
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16.0F ]
=0
8.0 -
QE" £=0.03
m >‘4.0 o B
A
----- €=0.1
2.0 -
1.0 1 1 N 1 "
1 10 100 1000 10000

t

FIG. 4. D)E(K:6.9115)DQL vs time for different values o
andN =60 000. The solid line is for an external self-consistent field
and the dashed line is for an external random field. The random
external field is generated by picking, at every time step, a random
number regularly distributed in the intervid,27].

dom map. At smalK, one observes a weak dependence of
Dy onK, while DJ=z?/4, leading to a finite diffusivity also

The discussed results indicate that the main effect of thér K=0. As mentioned before, it is the breaking of the
self-consistent field is to reduce the deviations from the stat€gular orbits of the standard méfor K smal) induced by
tistical prediction. This is to be expected because in this caséh® mean field, that allows the diffusion of particles. This is
as mentioned before, the phase coupling leads to a randorflearly seen in Fig. 6 where it is shown some trajectories in
ization of the phase which is precisely what is assumed in thée phase space fét=1 for both the standard map and the
statistical arguments based on the random phase approximg@upled map mode8) with s=0.1.
tion. We check this statement by replacing the self-consistent N summary, for mode(28) the coupling to an external

field with an external noise. We study a systeniNgfarticles

self-consistent mean field is equivalent to the effect induced

whose evolution is how given by a time_dependent generatby an external random field. This result is valid also Kor

ing function

N N
s<{xa},{yn},t>=n§l So(Xp.Yn) & nzl f(x,— n(1)),
(36)

<1, where the standard map shows barriers to transport.

V. DIFFUSION IN FULLY SELF-CONSISTENT MAPS

In this section we study the diffusive properties of fully
self-consistent maps. By this we mean maps coupled through
the phasandthe amplitude of the mean field. Our study will

where 7 is a random process with the same statistical prophe based on magd2) with =0, and in the absence of

erties of the self-consistert, i.e.,  is a random number
uniformly distributed in the interval0,27]. The result for
DE(K=6.9115)DQL against time is plotted in Fig. 4 for

both the self-consistent and the random field. One observes
that the random approximation is rather accurate. Therefore,

taking into account the results fé¢ large and the specific

values ofK, where the standard map is anomalous, one can

say that the dynamics fdf large in the self-consistent map
model (28) is equivalent to areffectivestandard map.

Most interestinga priori, is the case of small values Kt
As we have recalled in the preceding section,Ker1 and
£=0 there is no diffusion due to the presence of KAM tori.
However, as Fig. 5 shows, the phase couplee Q) self-
consistent map displays finite diffusion for arbitrary small
values ofK. This is, once again, a manifestation of self-
consistent driven phase randomization.

The same scenario as for large value¥dfas been iden-

0.01

Q>‘ e=0.1

0.001

. I
0.000 1O

FIG. 5. D5 vs K for different values of. Here the number of
particles isN=60 000 and the final time is 10 000. The solid line is

tified, that is, the external self-consistent field is equivalentior an external self-consistent field and the dashed line is for an

when diffusion properties are under study, to an external ranexternal random field. The straight lines correspond to the lines
dom field. This can be seen again in Fig. 5, where we aIS®5=82/4 for £=0.1 (dashed-dotted and £=0.05 (dashed-

plot the diffusion coefficient obtained from the effective ran-

doubledotted
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—_ N W s

<

. 7y A
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X

FIG. 6. Left, standard map phase spaceier1, and, right, the
trajectory of one particle for the system E@8) with K=1 and
=0.1.

external field K=0) since we are mostly interested in self-

consistent effects. 0.03 ¥
We consider an ensemble Nfparticles with coordinates

(x;,y)), 1=12,... N, in the rectanglexe (— ,7) andy

e (—m/2,m/2). We will focus in the study of a Gaussian

distributed active field

B —(x¢+y})
NV T

37 0

For these nonuniformy; distributions it is useful to distin-
guish between the particle varianaéy, and the concentra- (b
tion varianceaiy defined as

FIG. 7. Phase space particle distribution in the fully self-
2 _ _ 2 2 _ _ 2 38 consistent ma32) for a Gaussian distributed active scalar accord-
Toy =Y =WplDp, oy ={ly=(¥, 1%, (39 ing to Eq.(37) with 26°=0.2 andy,=0.0269 and initial conditions
k(1)=0.8 andf(1)=0. The two panels show the particle distribu-
tion at the initial and final time, after 137 000 steps. The height of a
vertical lines corresponds to the active scalar concentratjoaf

N N
1 1 . . -
<q>p:N 121 a;, <q>7:N jzl ¥,d; - (39) the jth particle located at{y)=(X;.y;).

where

the phase& exhibits random behavior while in the fully self-
A. Subcritical diffusion consistent map, as shown in Fig.@has a regular behavior.
In the first simulation we iterated the map with initial ~ The oscillations ofc are caused by the feedback effect of
conditionsx(1)=0.8, andd(1)=0. The upper panel of Fig. the active scalar trapped in the period-one island of the map
7 shows the initialy distribution. Fort>0, the scalar mixes (see Fig. 7. We describe the coherent part of the distribution,
and in the process modifies and 6. In particular, in this i.e., the part of the distribution trapped in the period-one
case, as shown in Fig. &, oscillates in time around a mean island, as anacroparticle The macroparticle representation
value (x)=0.966 (-) is the temporal averagelightly be- is a sort of renormalization process in which a group of par-
low the critical valuex,=0.9716 for the destruction of KAM ticles with different values of, are replaced by one with an
barriers and the onset of diffusion in the standard map. Theffective y. The macroparticle concept provides a link be-
phase(see also Fig. Bdecreases monotonically. tween systems with larger infinite) degrees of freedom and
That is, the self-consistent coupling drives the system pefow dimensional systemgl6,12,25. In the case considered
riodically between a diffusive regime with no KAM barriers here, at a gi\/en time the macropartide rotates around the
(k>x¢) and a nondiffusive regime with KAM barriers<( point of an effective standard map with coupling constant
<k—c). As shown in Fig. 9, this yields to diffusive particle K= (t) and phase(t).
transport iny, o2, =2Dt, even though on the averageis The oscillation period for a standard map of coupling pa-
below the threshold for diffusion, that is there is subcriticalrameterK can be estimated 482]
diffusion. Because the peak of the distribution remains

coherent, in this case there is no diffusion in the concentra- 20

tion. As discussed in the preceding section, also in phase T=—— (40
coupled map(28) there is a subcritical diffusion regime. arcco%l—K)

However, there is an important difference between these two 2

cases because in the phase coupled map the time evolution of To use this result to calculate the rotation period of the
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n 4
10 -5.338 x10
5 10n15 20 13718 1'3,319 2'?;52 FIG. 10. Self-consistent suppression of diffusion in ni@®) for

a Gaussian distributed active scalar according to(&f.and initial

FIG. 8. Time evolution ofc and ¢ in fully self-consistent map ~conditions«(1)=0.6 and#(1)=0. Upper panel shows the time
(32) for a Gaussian distributed active scalar according to(8d. evolution (_)fK and_ the lower panel the time evolution of the square
and initial conditions<(1)=0.8 andé(1)=0. The plots show the of the particle variance. chre_(l,6>< 104, K_reaches values above
evolution in time windows at the beginnirge (0,60) and at the the threshold for KAM barriers destructionx{~1). For later
endn e (137 000,137 060) of the run. The same periodic behavior idiMes, the maximum ok drops systematically below. and diffu-
observed at intermediate times. sion is suppressed.

self-consistent oscillation ok, note that according to the wherel',.=Z2,7y, is the effectivey.¢; of the macroparticle

conservation of momentum in EG3), andY . they coordinate of the macroparticle. According to
Eq. (42), the oscillation period of equals the rotation pe-
N riod of the macroparticle, which can be estimated using Eq.
K20 =K1+ > yolyn(1) —ya(D]. (41 (40 with K=(x). For (x)~1 this approximation gives a
n=1 periodT~6, which is in good agreement with the numerical

results(see Fig. 8.

In the macroparticle description, this relation can be written
as B. Self-consistent suppression of diffusion

In the previous example, the constant rotation of the ac-
tive scalar trapped in the period-one island gave rise to sta-
tionary oscillations ofx and steady particle diffusion ig.
However, this is not always the case, and it is possible that
diffusion is suppressed rather than maintained by self-
consistent effects. As an example, consider the same initial
conditions as before but with a smaller initial value of the
coupling parametek, namely, k(1)=0.6. In this case, as
Fig. 10 shows, there is an initial regime in whigloscillates
beyond «. and diffusive transport is present wit
=0.0014. However, after a fraction of particles have mi-
grated to regions of largg « drops systematically below,
and diffusion is suppressed. At this point the system enters in
a transient subdiffusive regime leading to the eventual elimi-
nation of the diffusion. As shown in Fig. 10, and in more
detail in Fig. 11, the suppression of the diffusion is accom-
. panied by a damping of the coupling parameteiNote that

consistent with the estimation in EG10), the period of os-

FIG. 9. Subcritical diffusion in fully self-consistent mgg) for ~ Cillation remains constant~6. According to momentum
a Gaussian distributed active scalar according to(&f).and initial ~ conservation in Eq(42), this damping can be viewed as a
ConditionsK(l)zo_S and 0(1):0 Even though in this case, as momentum transfer from the mean field to the partiC|es. This
shown in Fig. 8, the mean value ¢k) is below the critical value is reminiscent of the Landau damping mechanism in plasmas
for the destruction of all KAM barriers, the variance shows clearin which an energy transfer from the field to the particles
evidence of diffusive transport with125=0.0038. leads to a collisionless damping of the field.

k(1) =k*(1) + T Y mdb), (42

500

400}

Py

300}

2001

100}

2 4 6 8 10 12
n x 10
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FIG. 11. Damping of during the self-consistent suppression of
diffusion shown in Fig. 10. The curve with larger amplitude shows  F|G. 12, Macroparticle instability and diffusion of passive scalar
the beginning of the time serie$op panel of Fig. 10 withM concentration in the fully self-consistent mé&g2) for a Gaussian
=25) and the curve with the smaller amplitude shows the tail of theyjistributed active scalar according to E§7) and initial conditions

time series(top panel of Fig. 10 wittM = 14x 10%). x(1)=3.3 andg(1)=0. Paneka) shows the time series af,, (b)
the phasef,, (c) f the concentration varianceiy, and (d) the
C. Macroparticle instability and diffusion of concentration particle variances;,. The lower and upper dashed lines have

. ) slopes equal to 1 and 0.62, respectively. Aroumd5x 1%, the

In the previous examples, the value ofwas relatively  macroparticle looses coherence, exhibits large fluctuationss,
small, and the macroparticié.e., the conglomerate of par- drops to a constant value, and there is aiumlﬁip and Ugy.
ticles with the largest values of) remained coherent. This
yields either steady diffusiofsee Fig. 9 or transient diffu- Pe seen in Fig. 14 by plotting thBet/DqL Vs Kefr, and
sion (see Fig. 1Dof the particle distribution, but no diffusion With solid line we plot the RPA approximation E(R0).
of the concentration, i.eq,,~0. However, self-consistent
effects can destabilize the macroparticle and the concentra- VI. CONCLUSIONS

tion field diffuses. To illustrate this, we consider the same v have studied self-consistent diffusion in active system
Gaussian distributiofiEq. (37) as before but with a larger yegcribed by globally coupled symplectic maps. We focused
initial value of , namely,x(1)=3.3]. In this case, as Fig. oyr analysis in two systems: an ensemble of phase coupled
12 shows, up ta~5x10°, « remains approximately con- maps, and an ensemble of maps coupled through the phase
stant, the phase, [panel(b)] decreases monotonically, the and the amplitude. The latter model is a symplectic discreti-
concentration variance,, does not grow and the particle zation of the single wave model and as such represents a
variance o, exhibits standard diffusion. Arounadh~5  simplified description of self-consistent transport in plasmas
X 10° there is a transition and grows rapidly giving rise to  and fluids. Numerical results obtained with this model indi-
a diffusion of the concentration and a jump in the particlecate that self-consistency plays a critical role in the diffusive
diffusion. Figure 13 shows the active scalar distribution atproperties of the system. In particulds) for small initial
two different times. values of the standard map parameig]l)=0.8, coherent
oscillations of the active scalar give rise to periodic oscila-
tions of k above and below the threshold for barrier destruc-
. . tion (k,=0.9716) leading to subcritical diffusior(b) for
In the phase and amplitude coupled map there is also amajler initial valuesx(1)=0.6, there is a diffusive tran-

regime in which the phase is random and the map is equivasient that eventually is suppressed by self-consistent effects;
lent to a random standard map. This leads to quasilineat) for larger valuesx(1)=3.3, the active scalar loses co-
diffusion as shown in the following. This regime is ap- herence and this leads to a jump in the particle diffusion and
proached for initiak (1) such that, in the long-time limit, the to the diffusion of the concentration fieldd) for large
time average valu&gs= 1/(Nt—NO)ENLN k(n) is larger enough initial values oik there is widespread chaos and

. ' . o . (with the exception of initial values close to accelerator mod-
than 1, beingN, the final time, andN, a proper time chosen els self-consisﬁency is shadowed by stochasticity leading to

to avoid the initial transient behavior. Since the valuexof Y P ;
depends on the iteration time, the eddy diffusivity is alsoquasnmear difusion. The behavior of the phase coupled map

time dependent, and we must define an effective dif“fusivityIs in general different. In this case, we have shown (aain

A : ! . the limit of largeK, that is strong stochasticity of the flow,
which is nothing but the time average of the mstantaneoua1 ) . A
e N E ) . e external self-consistent fieldt least for diffusion prop-
diffusion, Deff=1/(Nt—NO)EHLNODy(n). With these defi-

ertie9 is equivalent to a random fieldb) the singular prop-
nitions, the quasilinear approximation is recovered. This carmrties of the standard map, like the existence of ballistic

D. Quasilinear diffusion
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FIG. 14. With circles the numerically obtained values for
Det1/DgL againstKg;. Solid line shows the RPA approximation
Eq. (20).
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