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Improvement of time-delayed feedback control by periodic modulation:
Analytical theory of Floquet mode control scheme
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We investigate time-delayed feedback control schemes which are based on the unstable modes of the target
state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external
time scale in the control process. Phase shifts that develop between these modes and the controlled periodic
orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear
reaction diffusion system with global coupling and give a detailed investigation for the Ro¨ssler model. In
addition we provide the analytical explanation for the observed control features.
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I. INTRODUCTION

Control of chaos is still one of the most active topics
applied nonlinear science. Despite the fact that engineers
applied mathematicians have dealt with control problems
a long time and a huge amount of knowledge has been g
ered~e.g., Refs.@1–3#! some new ideas have been introduc
by physicists a decade ago@4# and have boosted an eno
mous amount of work on control problems@5,6#. These new
concepts are based on the observation that chaotic mo
provides a large number of unstable states which can be
bilized by a small control power. Thus, noninvasive cont
schemes can be used efficiently to switch between quite
ferent states of a single dynamical system.

Standard control schemes usually require some kno
edge of the underlying dynamics, e.g., some cost functio
mathematical model of the dynamics, some costly data p
cessing, or at least some degree of stability with respec
parameter changes. Time-delayed feedback schemes
have been developed in the wake of the above mentio
developments remove most of these constraints and ca
successfully applied to stabilize time periodic states with
great effort@7#. Time-delayed feedback schemes are ba
on the measurement of a single signals(t) and generate a
control force using the time-delayed differences(t)2s(t
2t). The delay timet is adjusted to the period of the orb
that will be stabilized. By construction, such a control for
vanishes if control works successfully.

Despite its success in different experimental conte
~e.g., Refs.@8,9#! and a large number of numerical simul
tions that have been performed, a deeper analytical un
standing of time-delayed feedback control scheme has b
gained just over the past few years@10,11# by performing
stability analysis of the corresponding differential-differen
equations. Various aspects have been clarified, e.g., the
largement of the control domains by multiple delays@12#, the
limiting effect of a control loop latency@13# that has been
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known by engineers in the context of control theory for d
cades@14#, and the crucial problem to adjust the delay time
the period of the orbit is not knowna priori @15–17#. Mean-
while, excellent reviews on chaos control problems are av
able @6#, which cover most of these topics.

Recently, the interest has shifted from low-dimension
dynamical systems to control in systems with many degr
of freedom, in particular, to spatiotemporal control. Such
tempts nicely demonstrate that control schemes have to
based on those eigenmodes which destabilize the state u
consideration. An experimental realization has been p
formed in the context of optical systems@18#, where Fourier
modes are the suitable modes to constitute the con
scheme.

To make such a statement more explicit, let us recall so
basic formal features of the time-delayed feedback con
@10#. Let x(t) denote the internal degrees of freedom of t
full dynamical system, e.g., a high-dimensional state vec
We intend to stabilize an unstable periodic state,j(t)5j(t
1t), by applying suitable control forcesF(t). Using signals
s(t)5g@x(t)# that depend on the state of the system throu
a functiong to be specified, control forces are obtained fro
time delayed differencesF(t)5K„s(t)2s(t2t)…. The con-
trol amplitude K that acts as a linear amplification is th
important control parameter. The full dynamics including t
control forces is governed by equations of motion

ẋ~ t !5f„x~ t !,F~ t !…. ~1!

Performing a linear stability analysis of Eq.~1!, we arrive at
the Floquet eigenvalue problem@10#

LU~ t !1U̇~ t !5D1 f„j~ t !,0…U~ t !

2K„12exp~2Lt!…M @j~ t !#U~ t !,

U~ t !5U~ t1t!, ~2!

where we have introduced the control matrixM @j#5
2d2f (j,0)^ dg@j# as an abbreviation. Floquet exponentsL
and Floquet eigenvectorsU(t) depend on the control ampli
tude K, and we use the notationl and u(t) to indicate the
corresponding quantities of the uncontrolled system,K50.

en
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FIG. 1. Dependence of the Floquet exponen
on the control amplitude according to Eq.~3! for
lt511 ip. Solid line: largest branch, broken
gray line: nonleading branches.
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Since the orbit under consideration is unstable, at least on
the free exponentsl has a positive real part. For success
control, all eigenvalues of Eq.~2! must have a negative rea
part. Such a goal depends crucially on the control matrixM
that contains all the details of the coupling of the cont
force to the internal degrees of freedom and the propertie
the signals(t).

It is quite difficult to predict the Floquet exponents of th
controlled system on such a general level. There exists
control scheme which can be treated analytically and wh
we call diagonal control. If each degree of freedom is mea
sured and coupled to the system, such that the control m
M @j# becomes the identity, then the characteristic equa
of the eigenvalue problem~2! reads~cf. Ref. @10#!

L5l2K„12exp~2Lt!…. ~3!

Equation~3! can be discussed by analytical methods@19# and
the main results are summarized in Fig. 1. One typica
obtains a butterfly shaped spectrum and a finite control in
val bounded by flip~period doubling! and Hopf instabilities,
provided the Lyapunov exponent of the uncontrolled orb
Rel, is not too large@20#. Strictly speaking, such a shape f
the Floquet eigenvalue spectrum is only valid for diago
control. However, in terms of a perturbation expansion, o
can show that apart from a rescaling of the control am
tude, Eq.~3! remains valid@21# and that the properties o
other control schemes are captured at least qualitativ
From the analytical point of view, diagonal control seems
be the most powerful scheme since every degree of free
is measured and controlled. Unfortunately, the scheme is
ficult and often impossible to implement in real experimen
situations. Thus, one needs approaches which rely on
information about the state of the system. We have alre
mentioned that the unstable modes of the free orbit are
portant ingredients of a successful control scheme. Base
these objects, one can construct control forces that need
measurements compared to diagonal control, which are m
realistic from an experimental point of view, but which a
still amenable to an analytical treatment. Ifun(t) denotes an
unstable mode of the state which we intend to stabilize t
a suitable control matrix given byM @j(t)#5un(t) ^ vn* (t),
wherevn denotes some suitable adjoint vector. Such a c
trol matrix can be realized if we consider the control sign
s(t)5^vn(t)ux(t)&, where ^•u•& denotes an inner produc
and if we couple the forceF(t) to the internal degrees o
freedom through a Floquet eigenmode

f„x,F~ t !…5f~x,0!1un~ t !F~ t !. ~4!
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A coarse inspection of Eq.~2! indicates that the characterist
equation~3! is still valid ~cf. Sec. III!. Thus, the scheme tha
just uses a single signal is as efficient as diagonal contro
generalizes Fourier filtering techniques@18# to cases where
translation invariance is broken so that Fourier modes
longer yield the spatial characteristics of the unstable eig
modes.

In what follows, we investigate in detail the contro
scheme given by Eq.~4! from numerical and analytica
points of view. We first illustrate the scheme by numeric
simulations of a reaction-diffusion system with global co
pling ~Sec. II!. We will show on a phenomenological leve
that this scheme is even more efficient than diagonal con
and that phase shifts play an important role. Such an ana
is substantiated by an analytical treatment of the con
scheme~Sec. III!. We will partly solve the stability problem
of the controlled system on a general level. Finally, a f
discussion of the stability problem and the associated F
quet spectra will be presented~Sec. IV!. Since the character
istic equations have to be solved numerically, we resort
such a discussion to the Ro¨ssler model.

II. PHENOMENOLOGY OF FLOQUET MODE CONTROL

To illustrate our control method, we start the investig
tions by looking at numerical simulations of a model syste
that has proven its experimental relevance in semicondu
physics. The model was originally derived for charge tra
port in a layered semiconductor system such as the het
structure hot electron diode@22#. The resulting model equa
tions are of reaction-diffusion type with a global couplin
The equations in nondimensional units, including the fe
back control, read

] tu~ t !5a@ j 02~u2^a&!#2KFu~ t !,

] ta~x,t !5 f ~u2a!2Ta1]x
2a2KFa~x,t !. ~5!

Here, u(t) is the inhibitor anda(x,t) is the activator vari-
able. In the semiconductor context,u(t) denotes the voltage
drop across the device anda(x,t) is an internal degree o
freedom, e.g., an interface charge density. The local cur
density in the device isj (x,t)5u(t)2a(x,t), and j 0 is the
externally applied current that acts as a control parame
The one-dimensional spatial coordinatex corresponds to the
direction transverse to the current. We consider a system
width L with Neumann boundary conditions]xa50 at x
50,L corresponding to no charge transfer through the late
boundaries.T denotes the tunnelling rate through the colle
2-2
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IMPROVEMENT OF TIME-DELAYED FEEDBACK . . . PHYSICAL REVIEW E67, 026222 ~2003!
tor layer. The relaxation ratea is determined by the interna
and external capacitance. The global coupling represente

^a&~ t !5
1

LE0

L

a~x,t !dx ~6!

arises from the application of Kirchhoff’s law to the circu
in which the device is operated@23#. The nonlinear part of
the transport equation, giving rise to an S-shaped local
rent density vs field characteristic, is canonically modeled
a simple Lorentzian of the form

f ~ j !5 j /@ j 211#. ~7!

Equations~5! contain control forcesFa andFu for stabiliz-
ing time periodic patterns. A variety of different choices a
possible, cf., e.g., Ref.@24# for a discussion of differen
schemes. In the semiconductor context, these forces ca
implemented by appropriate electronic circuits@25#.

Throughout our investigations, we consider a parame
regime (T50.05, a50.035, L540, andj 051.262), where
the motion without control forces exhibits chaotic sequen
of single spatiotemporal spikes pinned at one boundary.
chaotic spiking that corresponds to flashing current filame
in a semiconductor context arises via a period doubling s
nario @25#. Thus, unstable periodic patterns are embedde
the chaotic attractor which typically develop a single u
stable Floquet mode and where the corresponding Flo
multiplier exp(lt) is negative. Although the full set of equa
tions of motion is a spatiotemporal system, the dynamic
essentially low-dimensional since it relaxes to a lo
dimensional inertial manifold. Such a feature, of course,
pends on boundary conditions and, in particular, on the
of the system, and is characteristic for globally coupled s
tems.

The most efficient control method might be expected
be diagonal control, which means in case of our spatia
extended system that each variable is measured and
trolled locally. It corresponds to the control forces

Fu~ t !5u~ t !2u~ t2t!,

Fa~x,t !5a~x,t !2a~x,t2t!. ~8!

Although the scheme is quite effective, it is almost impo
sible to be implemented in real experiments. Nevertheles
proves to be quite useful in numerical simulations and it c
be used as a reference scheme since all its properties ca
described analytically by the characteristic equation~3!. Our
model exhibits a periodic stateap(x,t)5ap(x,t1t), up(t)
5up(t1t) with periodt5985.9. Using the control schem
~8! with an appropriate value of the control amplitudeK, the
spiking becomes regular~cf. Fig. 2!.

Experimentally accessible control schemes cannot
based on diagonal control; but, in general, it is impossible
understand the performance of other time-delayed feedb
schemes on an analytical level. There are, however, a
exceptions. Following the ideas of Ref.@26#, we base con-
trols schemes on the unstable modes of the pattern which
intend to stabilize. Let@cu(t),ca(x,t)# denote the unstable
02622
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Floquet eigenmode of the state@up(t),ap(x,t)# and
@wu(t),wa(x,t)# the eigenmode of the corresponding adjo
problem~cf. Sec. III for formal definitions!. For the control
force, we propose

Fu~ t !5K„cu~ t !s~ t !2cu~ t2t!s~ t2t!…,

Fa~x,t !5K„ca~x,t !s~ t !2ca~x,t2t!s~ t2t!…, ~9!

where the signals(t) is determined by the product of th
state and the adjoint eigenmode

s~ t !5wu~ t !u~ t !1E wa~x,t !a~x,t !dx. ~10!

The force~9! is based on the measurement of a single sign
and the mode@wu(t),wa(x,t)# plays the role of a spatiotem
poral filter for the internal degrees of freedom. The coupli
of the control force to the internal dynamics is mediated
the unstable Floquet eigenmode@cu(t),ca(x,t)#.

The control scheme equations~9! and~10! are a straight-
forward generalization of Fourier control. If one conside
systems which are translational invariant, then the spa
structure of the eigenmodes is given by plane waves. T
our scheme reduces to Fourier control@18#. However, our
concept takes properly into account all effects that bre
translation invariance, i.e., boundary conditions or the det
of the spatiotemporal pattern which we intend to stabili
The actual eigenmodes can be computed straightforwa
from the corresponding eigenvalue problem. Figure 3 d
plays the spatiotemporal characteristics of the unsta
eigenmode of our model. While the Floquet right eigenmo
displays spatiotemporal oscillations, the adjoint left eige
mode shows sharp spatiotemporal spiking with an amplit
that is several orders of magnitude larger than the ba
ground. We add two technical remarks. Floquet modes
of course, only defined up to some normalization constant
order to compare the control scheme equations~9! and ~10!
and in particular the values of the control, amplitudeK to
diagonal control we take eigenmodes which are normali
to one ~cf. Sec. III for the formal details!. Furthermore,
eigenmodes are usually complex valued since the co
sponding Floquet exponents are complex numbers. In g
eral, one has to take the real and imaginary part of the m
separately into account to obtain a real valued control for
Here, we are dealing with a flip orbit where the imagina
parts of the Floquet exponent is given byp/t. Then the

FIG. 2. Space time plot of the currentj (x,t) for time periodic
spiking, stabilized by time-delayed feedback control.
2-3
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FIG. 3. ~a! Floquet right eigenmodecu(t) and
ca(x,t) for the largest Floquet exponent,~b! cor-
responding adjoint left eigenmodewu(t) and
wa(x,t). Eigenmodes are computed for the sta
displayed in Fig. 2, left and right eigenmodes a
normalized to one.
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corresponding eigenmodes are a product of a real va
factor and a complex phase given by exp(ipt/t). Such a
phase drops from our control scheme equations~9! and~10!
and we just take the real valued factor of the modes to c
struct the control force. Since the full eigenmodes are p
odic with periodt, the real valued factors are antiperiod
i.e., periodic with period 2t, as it is obvious from Fig. 3.

A naive view suggests that Floquet mode control is
efficient as diagonal control provided only a single unsta
mode triggers the instability of the pattern. We test this c
jecture numerically by comparing the control performance
diagonal control~8! and of Floquet mode control equation
~9! and~10!. For our simulations we take a fixed initial con
dition in the vicinity of the unstable periodic orbit to exclud
effects that are related to initial conditions and basins
attraction. By changingK we observe that a finite contro
interval appears, just in accordance with the analytical re
in Eq. ~3! ~cf. Fig. 4!; but for Floquet mode control, the
interval is enlarged by six orders of magnitude. It is, in fa
surprising that Floquet mode control and diagonal con
differ at all.

The difference in the control performance can be attr
uted to an essential degree of freedom, which we misse
the previous reasonings. Our system without control is
tonomous. Thus, the phase of the periodic orbit is not fixe
all and orbits@up(t1d),ap(x,t1d)# with arbitrary value of
d yield a periodic solution. If we apply the time-delaye
feedback control, the control force vanishes at these sta
and every solution is a candidate for successful control.
the diagonal scheme, the phased does not matter since sta
bility is governed by the characteristic equation~3!. The final

FIG. 4. Regime of Floquet eigenmode control~dotted line! and
diagonal control ~full line!. The spatiotemporal average«
5^ua(x,t)2a(x,t2t)u1uu(t)2u(t2t)u&x,t is plotted versus the
control amplitudeK as a measure of successful control.
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value of the phase only depends on the initial condition,
Floquet mode control introduces an additional time sc
through the Floquet modes. Thus, the system subjecte
control is not autonomous and the stability of the perio
pattern may depend on the value of the phase shiftd. If the
phase shift vanishes, then stability is still governed by E
~3! like for the diagonal control, but the system may devel
a finite phase shift during the control process which th
leads to a different control performance as it was observe
Fig. 4.

Our simulations confirm such a kind of conjecture. W
have measured the time dependence of the stabilized
and compared it with the time dependence of the Floq
modes. In order to visualize the phase difference, we disp
the stabilized orbit and the periodic orbit which were used
determine the Floquet modes~cf. Fig. 5!. A phase difference
is clearly visible if we consider control amplitudes outside
the diagonal control interval. In addition, these data allow
measure the dependence of the observed phase differen
the control amplitude in the whole control interval~cf. Fig.
6!. We clearly see that a finite phase difference develop
we leave the control interval of diagonal control. Thus, F
quet mode control uses the freedom to adjust the phase o
orbit properly so that a wider control interval is obtaine
Similar types of resonancelike phenomena are quite comm
in time-delayed feedback control or more gene
differential-difference equations@27,28#. They have been
used for different purposes in the past, e.g., for stabiliz
periodic orbits without torsion@29#.

FIG. 5. Time dependence of the voltageu(t) for the periodic
orbit stabilized with Floquet mode control atK51027 ~solid line!
and for the periodic orbit used for computing the Floquet mod
~broken line!.
2-4



as
is
A

ica
d
d

-

ue

of
o

in

r

n
a

ite
pl
th

bits
ns.
the

can

s

nc-

en-
h
ued,
e

tor,

ack

st

ce
on

the
es-
is.

in-

r-

l i

IMPROVEMENT OF TIME-DELAYED FEEDBACK . . . PHYSICAL REVIEW E67, 026222 ~2003!
III. ANALYTICAL TREATMENT OF CONTROL
PROPERTIES

Our previous simulations have already shown that ph
shifts between the orbit and the controller are a mechan
for the improved performance of Floquet mode control.
better understanding of this mechanism calls for analyt
investigations. For this purpose, we consider a general
namical system where the internal state of the system is
scribed by a state vectorx(t). It obeys the equation of mo
tion

ẋ~ t !5f„x~ t !…. ~11!

We suppose that Eq.~11! admits a periodic orbitj(t)5j(t
1t). Its stability is determined by the associated Floq
eigenvalue problem,

lnun~ t !1u̇n~ t !5Df„j~ t !…un~ t !,

un~ t !5un~ t1t!. ~12!

Here, Df denotes the linearization of the full equation
motion and Floquet exponentsln are as usually restricted t
a single Brillouin zone, e.g., ImlnP(2p/t,p/t#. The cor-
responding adjoint eigenvalue equation reads

lnvn
†~ t !2v̇n

†~ t !5vn
†~ t !Df„j~ t !…, vn~ t !5vn~ t1t!.

~13!

The original eigenvectorsun and their adjointsvn
† constitute

a biorthogonal set and we adopt the normalization accord
to the Kronecker symbol,

^vm~ t !uun~ t !&5vm
† ~ t !un~ t !5dmn . ~14!

We concentrate on the simplest cases, i.e., a periodic o
with a single unstable eigenmode. Letl1 denote the expo-
nent with positive real part, whereas all the other expone
ln (nÞ1) have a negative real part. Since torsion is
essential ingredient for time delayed feedback methods
work at all @10,11#, the unstable exponent must have a fin
imaginary part. Two generic cases are possible, a com
conjugate pair or a single exponent on the boundary of

FIG. 6. Observed phase difference for Floquet mode contro
dependence on the control amplitude.
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Brillouin zone, l15Rel11 ip/t. Here we deal with the
latter case, since it corresponds to unstable periodic or
which have been generated in period doubling bifurcatio
Since the unstable Floquet exponent is complex valued,
corresponding eigenmodesu1(t) and v1(t) are complex
valued as well. For our case of a flip orbit, these modes
be written as u1(t)5exp(ipt/t)û1(t) and v1(t)
5exp(ipt/t)v̂1(t) with real valued but antiperiodic factor
û1(t)52û1(t1t) and v̂1(t)52v̂1(t1t).

In order to stabilize the periodic orbitj(t), we implement
a time-delayed feedback loop that is based on a filter fu
tion w(t) and on the unstable eigenmodeu1(t),

ẋ~ t !5 f „x~ t !…2K@u1~ t !^w~ t !ux~ t !&

2u1~ t2t!^w~ t2t!ux~ t2t!&#. ~15!

For instance, we may choose for the filter the adjoint eig
modew(t)5v1(t) but we do not restrict our analysis to suc
a special choice. Since the eigenmodes are complex val
Eq. ~15! would not make sense without any comment. If w
demand that the filter is real up to a complex phase fac
i.e., w(t)5exp(ipt/t)ŵ(t), then the control loop is indeed
real valued and it can be written in various ways:

u1~ t !^w~ t !ux~ t !&2u1~ t2t!^w~ t2t!ux~ t2t!&

5u1~ t !@^w~ t !ux~ t !&2^w~ t2t!ux~ t2t!&#

5û1~ t !^ŵ~ t !ux~ t !&2û1~ t2t!^ŵ~ t2t!ux~ t2t!&

5û1~ t !@^ŵ~ t !ux~ t !&1^ŵ~ t2t!ux~ t2t!&#. ~16!

Thus, our control scheme is in fact a time-delayed feedb
scheme based on a real valued scalar signals(t)
5^ŵ(t)ux(t)&. In order to avoid a heavy notation, we ju
stick to the notation used in Eq.~15!.

The control loop introduces an explicit time dependen
into Eq. ~15!. Thus the system is no longer time translati
invariant. Nevertheless, an orbitj(t1d) with an arbitrary
phased is a periodic state of the controlled system, since
control force vanishes on such a special trajectory. We inv
tigate the stability of the orbit in terms of a linear analys
Observing the time evolution of small incrementsdx(t)
5x(t)2j(t1d), we get a linear differential-difference
equation that is solved by the usual exponential formdx(t)
5exp(Lt)U(t). The Floquet exponentsL and the eigen-
modesU are determined by the eigenvalue equation~cf.,
e.g., the approaches used in Ref.@10#!

LU~ t !1U̇~ t !5Df„j~ t !…U~ t !2K„12exp~2Lt!…u1~ t2d!

3^w~ t2d!uU~ t !&,

U~ t !5U~ t1t!. ~17!

In order to simplify subsequent considerations, we have
troduced a new time scalet̄ 5t1d for writing down Eq.
~17!. For simplicity of the notation, we omit the bar. In fo
mal terms, the solution of the eigenvalue problem~17! is

n

2-5
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JUSTet al. PHYSICAL REVIEW E 67, 026222 ~2003!
quite simple. Let us define functionsGd
(m)@k# to be the Flo-

quet exponents of the auxiliary time-delayed Floquet pr
lem ~cf. Ref. @30# for general properties of time-delayed Fl
quet problems!

Gd
(m)@k#Qd

(m)~ t !1Q̇d
(m)~ t !5Df„j~ t !…Qd

(m)~ t !2ku1~ t2d!

3^w~ t2d!uQd
(m)~ t !&,

Qd
(m)~ t !5Qd

(m)~ t1t!. ~18!

The indexm numbers the different exponents, the subscripd
indicates the dependence on the phase, and the argumenk is
just an independent variable. Then by comparison, the c
acteristic equation of Eq.~17! reads

L5Gd
(m)@K„12exp~2Lt!…#. ~19!

Equation ~19! is still an exact expression, but we need
compute the function appearing on the right-hand side.
already see on such a general level that stability of the s
may depend on the phase, sinced enters the characteristi
equation explicitly.

We are left with computing the functionsGd
(m)@k# from

Eq. ~18!. Let us first consider the simplest case,d50. Here
a complete analytic solution is available~cf. the Appendix!.
It reads

Gd50
(n) @k#5ln ,~nÞ1 !, ~20!

Gd50
(1) @k#5l12xk, ~21!

where

x5
1

tE0

t

^w~ t !uu1~ t !&dt. ~22!

Equation~20! shows that the stable branches of the unc
trolled system do not contribute to the stability features
the controlled orbit. The characteristic equation arising fr
the unstable branch@cf. Eqs. ~19! and ~21!# coincides with
the corresponding expression of diagonal control@cf. Eq.
~3!#, apart from a linear rescaling of the control amplitude
the parameter~22!. Thus, for in-phase orbits, Floquet mod
control is as efficient as diagonal control. Above all, the
sults are almost independent of the choice of the filterw(t),
i.e., independent of the measured signal. It is the couplin
the force to the internal degrees of freedom via the unsta
mode which plays the crucial role here.

We now dwell on the out-of-phase orbits, i.e., on the s
bility problem for dÞ0. Apparently, there does not exist
closed analytical solution forGd

(m)@k#. Only periodicity
Gd

(m)@k#5Gd1t
(m) @k# that results from the periodicity of th

orbit is obvious from Eq.~18!. Thus, we are bound to per
turbative approaches. Since the solutions that are relate
stable branches of the uncontrolled system do not play
role for d50, we restrict ourselves to the casem51, i.e., to
the branch which connects tol1 . The corresponding char
acteristic equation reads
02622
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L5Gd
(1)@K„12exp~2Lt!…#, Gd

(1)@0#5l1 . ~23!

In particular, we are interested in the critical control amp
tudes which limit the control interval~cf., e.g., Fig. 1!. At the
lower boundary, the interval is limited by a flip bifurcation
i.e., the corresponding control amplitudeK5Kfl(d) is deter-
mined by the conditionL5 ip/t. Hence, Eq.~23! results in

ip/t5Gd
(1)@2Kfl~d!#. ~24!

To determine the sensitivity of the control threshold on t
phase shift, we take the derivative with respect tod and get
~cf. the Appendix!

]dKfl~d!52A~d!Kfl~d!. ~25!

Whenever the coefficientA(d) is positive, we obtain an ex
ponential decrease of the control amplitude

Kfl~d!.Kfl~0!expS 2E A~d!dd D , ~26!

i.e., an increase in the control interval which is quite sen
tive on the phase shift~cf. the simulations of Sec. II!. For
small d and the special choicew(t)5v1(t), we obtain
Kfl(d).Kfl(0)exp(2A0d

2) with constantA0 ~cf. the Appen-
dix!.

A similar estimate can be formulated for the upper cont
boundary that is governed by a Hopf instability. In order
get quantitative results, we have to solve the full eigenva
problem ~23!. Such an analysis has to resort to numeri
approaches, which we are going to supply in the followi
section for a simple model system.

IV. NUMERICAL EVALUATION FOR THE RO ¨ SSLER
MODEL

A more detailed investigation of our control scheme ca
for a quantitative evaluation of the stability problem asso
ated with the characteristic equation~19!. This can be done
only by numerical computation of the right-hand side. F
such a task, our original model~5! is far too complicated.
Since we focus on the principal aspects of Floquet mo
control, we choose for the purpose of illustration the Ro¨ssler
equations

ẋ152x22x32Ku1~ t !@s~ t !2s~ t2t!#,

ẋ25x11ax22Ku2~ t !@s~ t !2s~ t2t!#,

ẋ35b1x1x32cx32Ku3~ t !@s~ t !2s~ t2t!#, ~27!

with parameter valuesa50.2, b50.2, c55.7. We are focus-
ing on the periodic orbit with periodt511.758 63. The un-
stable Floquet exponent is given by Rel50.106 84, and
@u1(t),u2(t),u3(t)# and@v1(t),v2(t),v3(t)# denote the Flo-
quet right eigenmode and the solution of the adjoint proble
respectively. The time-delayed control force is derived fro
the signal

s~ t !5^v~ t !ux~ t !&5 (
k51

3

vk* ~ t !xk~ t !. ~28!
2-6
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We recall that the control force is real valued and can
written in various ways@cf. Eq. ~16!#.

The control performance is governed by the Floquet sp
tra, which are determined by the stability problem~17! and
the characteristic equation~19!, respectively. We use a Ben
ettin algorithm @31# for the numerical computation of th
Floquet exponents. Such an algorithm can be applied ea
to obtain the leading part of the eigenvalue spectrum, si
one just requires the forward integration of the lineariz
equation and successive reorthogonalization. The algori
yields the real parts of the exponents, ReL, since it detects
the expansion in phase space but ignores the torsion. Re
are displayed in Fig. 7. We observe the typical butter
shaped behavior that is already known from our analyt
investigations~cf. Fig. 1!. On increasing the phase shift, th
spectrum first moves upwards and apparently the size of
control interval decreases.

The Floquet spectra clearly show that the control inter
depends sensitively on the phase shift. To reveal such a
pendence of the control boundaries, let us evaluate the lo

FIG. 7. Largest Floquet exponent of the controlled Ro¨ssler sys-
tem dependent on the control amplitude for different values of
phase shift:d50 ~solid!, d50.04t ~dashed!, d50.08t ~dotted!.
Arrows indicate the control interval. The trivial exponentL50 is
not displayed.
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control boundary using Eq.~24!. For numerical purposes, w
introduce the Floquet multiplierz5exp(Lt) so that the char-
acteristic equation~19! is given by

05det@12z21Wz21~t!#, ~29!

where we have introduced the evolution matrix of the co
trolled system via

Ẇz21~ t !5@Df„j~ t !…2K~12z21!u1~ t2d!

^ w~ t2d!#Wz21~ t !,Wz21~0!51. ~30!

Equation~30! is very convenient for numerical computatio
of the spectrum~cf. Ref. @32#!. Here we are interested in th
lower critical control amplitudeKfl(d). Thus, we fix z5
21 @cf. Eq. ~24!# and solve numerically Eq.~29! for K. The
results are displayed in Fig. 8. We observe a quite com
cated dependence of the threshold on the phase shift.Kfl(d),
is of course, periodic ind with period t. For small phase
shift, the threshold increases so that the threshold has a
minimum atd50. The corresponding quadratic dependen
on d is in accordance with our perturbative results~cf. the
Appendix!. For intermediate values of the phase shift, t
threshold lowers and there is a pronounced region of bi
bility where stable in-phase and certain out-of-phase or
coexist. In addition, the orbit is stable even below the thre
old of diagonal control for certain phase shifts. Whether su
linearly stable states are reached during the control pro
depends of course on the basin of attraction of these sta

The evaluation and even the visualization of global pro
erties of differential-difference equations is a complicat
task since the phase space is infinite dimensional. Thus,
cannot expect to get a complete overview of the basin
attraction for the orbit under consideration. Nevertheless,
go beyond linear stability analysis and compute for differe
initial conditions which value for the phase shift develo
during the control process. In order to capture our essen
degree of freedom, namely, the phase, we choose a fi
initial condition in a reference frame that is shifted in time
d, t̄ 5t1d ~cf. Sec. III!. Thus, the phase shift enters th
control matrix as a parameter and we can study the influe
of different phase-shifted initial conditions just by sweepi

e

FIG. 8. Dependence of the lower control thresholdK5Kfl on the phase shiftd. Left: Dependence over two complete periodsdP
@2t,t#. Right: Enlarged section for small phase shift. Arrows indicate parameters used for the spectra in Fig. 7.
2-7
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this external parameter in our simulation. We compute
asymptotic state by neglecting a transient of lengtht
5470t. The value of the control force at integer multiples
the period is displayed in Fig. 9 dependent onK. In each
case, we observe a finite control interval where the con
signal displays a finite jump at the lower boundary. Thus,
corresponding bifurcation is subcritical. Beyond the instab
ity, the solution locks to a period-two state1 which then un-
dergoes a period doubling sequence on loweringK further.
For d50, the control boundary coincides with the results
the linear stability analysis~cf. Fig. 7!. For initial condition
with phase shiftd50.04t, we obtain essentially the sam
control interval. Thus, in the control region where the pha
shifted orbit is linearly unstable, the phase of the initial co
dition drifts during the control process and locks to the st
d50 which is linearly stable. We have already found suc
feature in the simulations of the reaction-diffusion model~cf.
Fig. 6!. If we choose initial conditions with even larger pha
shifts,d50.08t, we enter a regime where the linearly stab
control interval covers control amplitudes where the in-ph
orbit is unstable. Thus, control extends beyond the thresh
of diagonal control. These states are not accessible from
initial condition without phase shift,d50, since they canno
be reached continuously through a sequence of line
stable orbits~cf. Fig. 8!. Whenever the orbit becomes lin
early unstable and no nearby stable orbit exists, the trajec
locks to the period-two state which is not a proper orbit
the uncontrolled system. Thus, Fig. 8 gives us a hint wh
state is accessible during the control process from a ce
initial condition.

V. CONCLUSION

Time-delayed feedback methods are very useful for c
trolling unstable time periodic states. Since the origin

1Since the controlled system is nonautonomous, the period o
period-two state is given by 2t. Thus,x(t)2x(t2t)52@x(t1t)
2x(t)# and«(t)5ix(t)2x(t2t)i5ix(t1t)2x(t)i5«(t1t).

FIG. 9. Control signal«(t)5( i 51
3 uxi(t)2xi(t2t)u at times t

5nt, 0<n<30 dependent on the control amplitudeK for different
values of the phased of the initial condition.
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scheme is based on the measurement of a single variable
control can be applied, in principle, in quite different expe
mental situations. It is, however, difficult to estimate how t
properties of the measured signal and the coupling of
control force to the internal degrees of freedom affect
performance of the control. Such questions are usually
dressed by control theory for non-time-delayed feedb
schemes. Here, we proposed a coupling scheme that is b
on the unstable modes of the target state. A partial analyt
treatment of the corresponding time-delayed control pr
lem, and numerical simulations of two different model sy
tems have been presented. More research going beyond
work would be desirable to investigate how such a sche
can be directly implemented experimentally.

The Floquet eigenmodes play a double role. On one ha
the unstable mode mediates the coupling of the control fo
to the internal degrees of freedom. On the other hand,
adjoint mode yields a suitable filter that generates a sig
from which the control force is derived. Since these mod
inherit an explicit time dependence the control loop brea
the time translation invariance. Therefore, the phase of
unstable periodic orbit which is an independent variable
the uncontrolled autonomous system may adjust prop
and may increase the control performance. Such a phen
enon resembles synchronization mechanisms, although
phase locking has been found.

We have illustrated the increase of control performan
by stabilizing spatiotemporal patterns in a nonlinear reacti
diffusion system. We observed an enhancement in con
efficiency by several orders of magnitude. In addition,
have been able to explain the basic features in analyt
terms. In particular, our approach predicts a superexpone
increase in the control interval~cf. Ref. @26# and the Appen-
dix!.

Our analytical approach indicates that several features
independent of the particular choice of the coupling and
filter function. For instance, all properties of the in-pha
orbit, i.e., control without phase shift, are independent of
filter w(t) provided that the coupling of the force to th
internal degrees of freedom is mediated by the unstable
quet eigenmode. Our analysis is, in fact, symmetric betw
the eigenmode and its adjoint. Therefore, the control per
mance of in-phase orbits does not depend on coupling to
internal degrees of freedom, provided we generate a sig
s(t) through the adjoint eigenmode. Thus, our results do
depend on all the details of the eigenmodes, and an exp
mental implementation of our control idea seems to be f
sible. In fact, we have observed in our simulations that
increase of the control performance persists if we change
filter functions used in Sec. II.

There remains the general problem of how to adjust
measured signal and the coupling to the internal degree
freedom in order to optimize the control performance
time-delayed feedback control. Our scheme just gives a
tial answer to this question. The free phase may adjust du
the control process to give a better adaptation of the filter
the coupling functions. Of course, our analysis is constrai
to the linear regime. Global features such as basins of att
tion are still out of reach, and would in any case be diffic

e

2-8
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to visualize in high-dimensional phase spaces that are rel
with the dynamics of differential-difference equations.
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APPENDIX: ANALYTICAL PROPERTIES OF FLOQUET
PROBLEMS

In order to determineGd50
(m) @k#, we consider Eq.~18! for

d50. Multiplication with an adjoint eigenmodevn(t)
yields, taking Eqs.~13! and ~14! into account,

Gd50
(m) @k#^vn~ t !uQd50

(m) ~ t !&1
d

dt
^vn~ t !uQd50

(m) ~ t !&

5ln^vn~ t !uQd50
(m) ~ t !&2dn,1k^w~ t !uQd50

(m) ~ t !&.

~A1!

If we considernÞ1, then we obtain

~Gd50
(m) @k#2ln!^vn~ t !uQd50

(m) ~ t !&1
d

dt
^vn~ t !uQd50

(m) ~ t !&50.

~A2!

Since the inner product is by definition periodic in time, E
~A2! tells us that either the inner product or the bracket
the left-hand side vanishes. Hence, we obtain Eq.~20!, and
all exponents but one are determined. Choosingn51, Eq.
~A1! yields

~Gd50
(1) @k#2l1!^vn~ t !uQd50

(1) ~ t !&1
d

dt
^vn~ t !uQd50

(1) ~ t !&

52k^w~ t !uQd50
(1) ~ t !&. ~A3!

Since we have already shown that the eigenmodeQd
(1)(t) is

orthogonal tovn(t), nÞ1, we haveQd50
(1) (t)5a(t)u1(t)

with a periodic modulation factora(t)5a(t1t). Then Eq.
~A3! simplifies to

Gd50
(1) @k#2l11

ȧ~ t !

a~ t !
52k^w~ t !uu1~ t !&. ~A4!
02622
ed

f

.
n

Integration over one period yields Eq.~21!.
One may calculate the derivatives ofGd

(1)@k# with respect
to d and k by standard methods of linear algebra. If w
consider the adjoint eigenvalue equation

Gd
(1)@k#Pd

(1)†~ t !2Ṗd
(1)†~ t !

5Pd
(1)†~ t !Df„j~ t !…2k^Pd

(1)~ t !uu1~ t2d!&w†~ t2d!,

Pd
(1)~ t !5Pd

(1)~ t1t!, ~A5!

take the derivative of Eq.~18! with respect tod, and multi-
ply with Pd

(1)(t), we obtain

]dGd
(1)@k#^Pd

(1)~ t !uQd
(1)~ t !&1

d

dt
^Pd

(1)~ t !u]dQd
(1)~ t !&

5k„^Pd
(1)~ t !uu̇1~ t2d!&^w~ t2d!uQd

(1)~ t !&

1^Pd
(1)~ t !uu1~ t2d!&^ẇ~ t2d!uQd

(1)~ t !&…. ~A6!

Observing the periodicity and normalization of the eigenv
tors, we end up with

]dGd
(1)@k#5

k

t E0

t

^Pd
(1)~ t !uu̇1~ t2d!&^w~ t2d!uQd

(1)~ t !&

1^Pd
(1)~ t !uu1~ t2d!&^ẇ~ t2d!uQd

(1)~ t !&dt.

~A7!

In a similar fashion, the derivative with respect tok can be
evaluated,

]kGd
(1)@k#52

1

tE0

t

^Pd
(1)~ t !uu1~ t2d!&

3^w~ t2d!uQd
(1)~ t !&dt. ~A8!

Taking the derivative of Eq.~24! with respect tod, we obtain
Eq. ~25!, where
A~d!52

E
0

t

^Pd
(1)~ t !uu̇1~ t2d!&^w~ t2d!uQd

(1)~ t !&1^Pd
(1)~ t !uu1~ t2d!&^ẇ~ t2d!uQd

(1)~ t !&dt

E
0

t

^Pd
(1)~ t !uu1~ t2d!&^w~ t2d!uQd

(1)~ t !&dt

. ~A9!
2-9
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Here,Qd
(1)(t) denotes the solution of the eigenvalue proble

~18! andPd
(1)(t) is the solution of the corresponding adjoi

problem ~A5! for k52Kfl(d) and Gd
(1)@k#5 ip/t. The

evaluation of Eq.~A9! becomes quite tedious, even in th
limit of small d. If, however, we confine attention to th
special choicew(t)5v1(t), then Eq. ~A5! tells us that
Pd50

(1) (t)5v1(t). SinceQd50
(1) (t)5u1(t) holds@cf. Eq. ~18!#,
-

-

e

v.

e

al

r,

02622
the normalization~14! yields

A~d!5O~d!. ~A10!

Thus, for the special choicew(t)5v1(t), the dependence o
Kfl(d) on the phase shift is according to Eq.~26! of second
order ind in the exponent.
nd
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