PHYSICAL REVIEW E 67, 026222 (2003

Improvement of time-delayed feedback control by periodic modulation:
Analytical theory of Floquet mode control scheme

Wolfram Just®* Svitlana Popovich,Andreas Amann,Nillifer Babat and Eckehard Schid
Unstitut fir Theoretische Physik, Technische UniveitsBerlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
2 Theoretische Physik I, TU-Chemnitz, D-09107 Chemnitz, Germany
(Received 13 November 2002; published 27 February 2003

We investigate time-delayed feedback control schemes which are based on the unstable modes of the target
state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external
time scale in the control process. Phase shifts that develop between these modes and the controlled periodic
orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear
reaction diffusion system with global coupling and give a detailed investigation for tlsslétamodel. In
addition we provide the analytical explanation for the observed control features.
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I. INTRODUCTION known by engineers in the context of control theory for de-
caded14], and the crucial problem to adjust the delay time if
Control of chaos is still one of the most active topics inthe period of the orbit is not knowa priori [15-17. Mean-
applied nonlinear science. Despite the fact that engineers avhile, excellent reviews on chaos control problems are avail-
applied mathematicians have dealt with control problems foble[6], which cover most of these topics.
a long time and a huge amount of knowledge has been gath- Recgntly, the interest has ;hifted from _Iow—dimensional
ered(e.g., Refs[1-3]) some new ideas have been introduceddynamical systems to control in systems with many degrees
by physicists a decade add] and have boosted an enor- Of freedom, in particular, to spatiotemporal control. Such at-

mous amount of work on control problerf6]. These new tempts nicely demonstrate that control schemes have to be
-cp]ased on those eigenmodes which destabilize the state under

provides a large number of unstable states which can be st oprrr]r?le(?jeirr?ttlﬁg'coA:teii(z?gmt?:eiﬁls gzlgg]'ocvhg?: Fboefrri]erper_
bilized by a small control power. Thus, noninvasive control odes are the suitable pmodesy to con,stitute the control
schemes can be used efficiently to switch between quite dif!

ferent states of a single dynamical syst scheme.
erent stales of a singie dynamical system. To make such a statement more explicit, let us recall some

Standard control schemes usually require some knowlpqie tormal features of the time-delayed feedback control
edge of the underlying dynamics, €.g., some COSt function, g) ‘| et x(t) denote the internal degrees of freedom of the
mathematical model of the dynamics, some costly data prog, || gynamical system, e.g., a high-dimensional state vector.
cessing, or at least some degree of stability with respect Qe intend to stabilize an unstable periodic stai) = &(t
parameter changes. Tlme—delayed feedback scheme_s thatr), by applying suitable control forcd&(t). Using signals
have been developed in the wake of the above mentlone.g(t):g[x(t)] that depend on the state of the system through
developments remove most of these constraints and can Refunctiong to be specified, control forces are obtained from
successfully applied to stabilize time periodic states withoutime delayed differenceB(t) =K (s(t) —s(t— 7)). The con-
great effort[7]. Time-delayed feedback schemes are basegéol amplitudeK that acts as a linear amplification is the
on the measurement of a single sigsél) and generate a important control parameter. The full dynamics including the
control force using the time-delayed differensét) —s(t control forces is governed by equations of motion
— 7). The delay timer is adjusted to the period of the orbit
that will be stabilized. By construction, such a control force x(t)=f(x(t),F(1)). (1)
vanishes if control works successfully.

Despite its success in different experimental context®erforming a linear stability analysis of E.), we arrive at
(e.g., Refs[8,9]) and a large number of numerical simula- the Floquet eigenvalue problefho]
tions that have been performed, a deeper analytical under-
standing of time-delayed feedback control scheme has been A y(t)+U(t)=D; f(&t),0)U(t)
gained just over the past few yedrs0,11] by performing

stability analysis of the corresponding differential-difference —K(@—exp(—A7)ML&1)]U(L),
equations. Various aspects have been clarified, e.g., the en-
largement of the control domains by multiple delf$g], the Ut)=U(t+17), 2

limiting effect of a control loop latency13] that has been
where we have introduced the control matrM[ &=
—d,f(&0)®dg[ £] as an abbreviation. Floquet exponents
*Permanent address: School of Mathematical Sciences, Que@nd Flogquet eigenvectokd(t) depend on the control ampli-
Mary / University of London, Mile End Road, London E1 4NS, tude K, and we use the notatiox and u(t) to indicate the
UK. Email address: wolfram.just@physik.tu-chemnitz.de corresponding quantities of the uncontrolled syst&m;0.
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FIG. 1. Dependence of the Floquet exponents

! on the control amplitude according to E®) for
= NT=1+is. Solid line: largest branch, broken/

/2
2t / gray line: nonleading branches.
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Since the orbit under consideration is unstable, at least one @ coarse inspection of Eq2) indicates that the characteristic
the free exponents has a positive real part. For successful equation(3) is still valid (cf. Sec. Ill). Thus, the scheme that
control, all eigenvalues of Eq2) must have a negative real just uses a single signal is as efficient as diagonal control. It
part. Such a goal depends crucially on the control maitix generalizes Fourier filtering techniqugk3] to cases where
that contains all the details of the coupling of the controltranslation invariance is broken so that Fourier modes no
force to the internal degrees of freedom and the properties dbnger yield the spatial characteristics of the unstable eigen-
the signals(t). modes.

It is quite difficult to predict the Floquet exponents of the  In what follows, we investigate in detail the control
controlled system on such a general level. There exists ongecheme given by Eq(4) from numerical and analytical
control scheme which can be treated analytically and whichpoints of view. We first illustrate the scheme by numerical
we call diagonal control If each degree of freedom is mea- simulations of a reaction-diffusion system with global cou-
sured and coupled to the system, such that the control matriding (Sec. I). We will show on a phenomenological level
M[ £] becomes the identity, then the characteristic equatiothat this scheme is even more efficient than diagonal control

Im(A1)
a

of the eigenvalue probler{2) reads(cf. Ref.[10]) and that phase shifts play an important role. Such an analysis
is substantiated by an analytical treatment of the control
A=A—K(l—exp—A71). 3 schemeg(Sec. Ill). We will partly solve the stability problem

of the controlled system on a general level. Finally, a full
Equation(3) can be discussed by analytical methftig] and  discussion of the stability problem and the associated Flo-
the main results are summarized in Fig. 1. One typicallyquet spectra will be present¢8ec. I\V). Since the character-
obtains a butterfly shaped spectrum and a finite control interistic equations have to be solved numerically, we resort for
val bounded by fligperiod doubling and Hopf instabilities, such a discussion to the Bsler model.
provided the Lyapunov exponent of the uncontrolled orbit,
Re\, is not too largd20]. Strictly speaking, such a shape for || pHENOMENOLOGY OF FLOQUET MODE CONTROL
the Floquet eigenvalue spectrum is only valid for diagonal
control. However, in terms of a perturbation expansion, one To illustrate our control method, we start the investiga-
can show that apart from a rescaling of the control amplitions by looking at numerical simulations of a model system
tude, Eq.(3) remains valid[21] and that the properties of that has proven its experimental relevance in semiconductor
other control schemes are captured at least qualitativelghysics. The model was originally derived for charge trans-
From the analytical point of view, diagonal control seems toport in a layered semiconductor system such as the hetero-
be the most powerful scheme since every degree of freedogiructure hot electron diod@2]. The resulting model equa-
is measured and controlled. Unfortunately, the scheme is diftions are of reaction-diffusion type with a global coupling.
ficult and often impossible to implement in real experimentalThe equations in nondimensional units, including the feed-
situations. Thus, one needs approaches which rely on le&ck control, read
information about the state of the system. We have already

mentioned that the unstable modes of the free orbit are im- du(t)=aljo— (u—(a))]-KFy(1),
portant ingredients of a successful control scheme. Based on
these objects, one can construct control forces that need less da(x,t)y=f(u—a)—Ta+ af(a— KFa(x,t). (5)

measurements compared to diagonal control, which are more

realistic from an experimental point of view, but which are Here, u(t) is the inhibitor anda(x,t) is the activator vari-

still amenable to an analytical treatmentulf(t) denotes an able. In the semiconductor contexi(t) denotes the voltage
unstable mode of the state which we intend to stabilize themlrop across the device ara{x,t) is an internal degree of

a suitable control matrix given bW[ &(t)]=u,(t)®v%(t), freedom, e.g., an interface charge density. The local current
wherev , denotes some suitable adjoint vector. Such a condensity in the device i$(x,t)=u(t) —a(x,t), andjg is the

trol matrix can be realized if we consider the control signalexternally applied current that acts as a control parameter.
s(t)=(v,(t)|x(t)), where(-|-) denotes an inner product, The one-dimensional spatial coordinateorresponds to the
and if we couple the forc&(t) to the internal degrees of direction transverse to the current. We consider a system of

freedom through a Floquet eigenmode width L with Neumann boundary conditionga=0 at X
=0,L corresponding to no charge transfer through the lateral
fOx,F(1))=1(x,0)+u,(t)F(t). (4) boundariesT denotes the tunnelling rate through the collec-
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tor layer. The relaxation rate is determined by the internal _
and external capacitance. The global coupling represented by J

1L
(@)= acxvax ®)

arises from the application of Kirchhoff’s law to the circuit

in which the device is operatg@3]. The nonlinear part of 10000 e - X

the transport equation, giving rise to an S-shaped local cur- t 14000

rent density vs field characteristic, is canonically modeled by _ i _ o
a simple Lorentzian of the form FIG. 2. Space time plot of the currepfx,t) for time periodic

spiking, stabilized by time-delayed feedback control.
f(3)=j/%+1]. (7 ,
Flogquet eigenmode of the statgu,(t),ay(x,t)] and
Equations(5) contain control forces, andF, for stabiliz- [ ¢,(t),¢(X,t)] the eigenmode of the corresponding adjoint
ing time periodic patterns. A variety of different choices areproblem(cf. Sec. Il for formal definitions For the control
possible, cf., e.g., Refl24] for a discussion of different force, we propose
schemes. In the semiconductor context, these forces can be

implemented by appropriate electronic circyigs]. Fu() =K (g (t)s(t) — fy(t=1)s(t— 1)),
Throughout our investigations, we consider a parameter
regime (T=0.05, «=0.035,L=40, andj,=1.262), where Fa(X,t) =K(@a(x,t)s(t) = a(x,t=7)s(t=17)),  (9)

the motion without control forces exhibits chaotic sequences ) . )

of single spatiotemporal spikes pinned at one boundary. Th&here the signas(t) is determined by the product of the
chaotic spiking that corresponds to flashing current filament§tate and the adjoint eigenmode

in a semiconductor context arises via a period doubling sce-

nario[25]. Thus, unstable periodic patterns are embedded in s(t)= QDu(t)U(t)‘f'f ea(x,t)a(x,t)dx. (10)
the chaotic attractor which typically develop a single un-

stable Floguet mode and where the corresponding Floqu

multiplier exp.7) is negative. Although the full set of equa- )
tions of motion is a spatiotemporal system, the dynamics i?nd thg mOd@‘P”(t.)"pa(x't)] plays the role of a spatiotem-
poral filter for the internal degrees of freedom. The coupling

essentially low-dimensional since it relaxes to a low- . S .
dimensional inertial manifold. Such a feature, of course, depf the control force to Fhe internal dynarmics is mediated by
e unstable Floquet eigenmopg,(t), ¥.(X,t)].

pends on boundary conditions and, in particular, on the sizEh Th | sch X 4610 iah

of the system, and is characteristic for globally coupled sys- e contro scheme equatlo@) and(10) are a stra|g_t-
tems. forward generalization of Fourier control. If one considers
systems which are translational invariant, then the spatial

The most efficient control method might be expected to t the ei des is ai by ol Th
be diagonal control, which means in case of our spatiaIIyStrUCture of the eigenmodes Is given by plane waves. Then
ur scheme reduces to Fourier contf@B]. However, our

extended system that each variable is measured and cofl .
trolled locally. It corresponds to the control forces concept taI_<es properl_y into_account all .e_ffects that b re"?"‘
translation invariance, i.e., boundary conditions or the details

qlhe force(9) is based on the measurement of a single signal,

Fut)=u(t)—u(t—7), of the spatiotemporal pattern which we intend to stabilize.
The actual eigenmodes can be computed straightforwardly
Fa(x,t)=a(x,t)—a(x,t— 7). (8) from the corresponding eigenvalue problem. Figure 3 dis-

plays the spatiotemporal characteristics of the unstable
Although the scheme is quite effective, it is almost impos-eigenmode of our model. While the Floquet right eigenmode
sible to be implemented in real experiments. Nevertheless, displays spatiotemporal oscillations, the adjoint left eigen-
proves to be quite useful in numerical simulations and it cat€mode shows sharp spatiotemporal spiking with an amplitude
be used as a reference scheme since all its properties can thait is several orders of magnitude larger than the back-
described analytically by the characteristic equat®n Our  ground. We add two technical remarks. Floquet modes are,
model exhibits a periodic stat,(x,t)=ay(x,t+7), up(t) of course, only defined up to some normalization constant. In
=up(t+ 7) with period 7=985.9. Using the control scheme order to compare the control scheme equati@sand (10)

(8) with an appropriate value of the control amplitudethe  and in particular the values of the control, amplitudeo
spiking becomes reguldcf. Fig. 2. diagonal control we take eigenmodes which are normalized
Experimentally accessible control schemes cannot b& one (cf. Sec. Ill for the formal detai)s Furthermore,
based on diagonal control; but, in general, it is impossible teeigenmodes are usually complex valued since the corre-
understand the performance of other time-delayed feedbadponding Floguet exponents are complex numbers. In gen-
schemes on an analytical level. There are, however, a fewral, one has to take the real and imaginary part of the mode
exceptions. Following the ideas of R¢R6], we base con- separately into account to obtain a real valued control force.
trols schemes on the unstable modes of the pattern which wdere, we are dealing with a flip orbit where the imaginary

intend to stabilize. Lef (1), ¥a(x,t)] denote the unstable parts of the Floquet exponent is given by 7. Then the
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corresponding eigenmodes are a product of a real valuedalue of the phase only depends on the initial condition, but
factor and a complex phase given by ex(r). Such a Floquet mode control introduces an additional time scale
phase drops from our control scheme equati@sand(10)  through the Floquet modes. Thus, the system subjected to
and we just take the real valued factor of the modes to coneontrol is not autonomous and the stability of the periodic
struct the control force. Since the full eigenmodes are peripattern may depend on the value of the phase #hift the
odic with periodr, the real valued factors are antiperiodic, phase shift vanishes, then stability is still governed by Eq.
i.e., periodic with period 2, as it is obvious from Fig. 3. (3) like for the diagonal control, but the system may develop
A naive view suggests that Floquet mode control is asa finite phase shift during the control process which then
efficient as diagonal control provided only a single unstabldeads to a different control performance as it was observed in
mode triggers the instability of the pattern. We test this con¥ig. 4.
jecture numerically by comparing the control performance of Our simulations confirm such a kind of conjecture. We
diagonal control8) and of Floquet mode control equations have measured the time dependence of the stabilized orbit
(9) and(10). For our simulations we take a fixed initial con- and compared it with the time dependence of the Floquet
dition in the vicinity of the unstable periodic orbit to exclude modes. In order to visualize the phase difference, we display
effects that are related to initial conditions and basins othe stabilized orbit and the periodic orbit which were used to
attraction. By changind we observe that a finite control determine the Floquet modésf. Fig. 5. A phase difference
interval appears, just in accordance with the analytical resuls clearly visible if we consider control amplitudes outside of
in Eqg. (3) (cf. Fig. 4; but for Floquet mode control, the the diagonal control interval. In addition, these data allow to
interval is enlarged by six orders of magnitude. It is, in fact,measure the dependence of the observed phase difference on
surprising that Floguet mode control and diagonal controthe control amplitude in the whole control intervaF. Fig.
differ at all. 6). We clearly see that a finite phase difference develops if
The difference in the control performance can be attrib-we leave the control interval of diagonal control. Thus, Flo-
uted to an essential degree of freedom, which we missed iquet mode control uses the freedom to adjust the phase of the
the previous reasonings. Our system without control is auerbit properly so that a wider control interval is obtained.
tonomous. Thus, the phase of the periodic orbit is not fixed aBimilar types of resonancelike phenomena are quite common
all and orbits[ up(t+ 6),ap(x,t+ &) ] with arbitrary value of in time-delayed feedback control or more general
S yield a periodic solution. If we apply the time-delayed differential-difference equation§27,28. They have been
feedback control, the control force vanishes at these stategsed for different purposes in the past, e.g., for stabilizing
and every solution is a candidate for successful control. Foperiodic orbits without torsiofi29].
the diagonal scheme, the phad8eloes not matter since sta-

bility is governed by the characteristic equati@. The final 15
chaos = eigenmode control-»: chaos
10 _"-:i‘" 1
15
1 R
e}
0.1 =
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K
FIG. 4. Regime of Floquet eigenmode cont(dbtted line and FIG. 5. Time dependence of the voltagét) for the periodic

diagonal control (full line). The spatiotemporal average orbit stabilized with Floquet mode control Kt=10"7 (solid line)
=(la(x,t) —a(x,t—7)| +|u(t) —u(t— 7)) is plotted versus the and for the periodic orbit used for computing the Floquet modes
control amplitudeK as a measure of successful control. (broken ling.
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01 T T Brillouin zone, A , =Re\, +iw/7. Here we deal with the
I 1 latter case, since it corresponds to unstable periodic orbits
0.08 - . which have been generated in period doubling bifurcations.
e Since the unstable Floquet exponent is complex valued, the
(.06 |- . corresponding eigenmodas, (t) and v, (t) are complex
valued as well. For our case of a flip orbit, these modes can
0.04 |- . be written as u.(t)=exp(mt/Du.(t) and wv.(t)
=exp@wt/r){:+(t) with real valued but antiperiodic factors
0.02 - . Uy ()=—U,(t+7) ando. ()= -0 (t+7).
I ] In order to stabilize the periodic orbé(t), we implement
0 1(;_3 S 10‘_6‘ 1(;4‘ : 072 a time-delayed feedback loop that is based on a filter func-
K tion w(t) and on the unstable eigenmode(t),
FIG. 6. Observed phase difference for Floquet mode control in x(t)=f(x(t))— K[u, (t){w(t)|x(t))
dependence on the control amplitude.
—u (t=7)(W(t—7)[x(t—7))]. (15
Ill. ANALYTICAL TREATMENT OF CONTROL . . L .
PROPERTIES For instance, we may choose for the filter the adjoint eigen-

modew(t) =v ., (t) but we do not restrict our analysis to such
Our previous simulations have already shown that phase special choice. Since the eigenmodes are complex valued,
shifts between the orbit and the controller are a mechanisriq. (15) would not make sense without any comment. If we
for the improved performance of Floquet mode control. Ademand that the filter is real up to a complex phase factor,
better understanding of this mechanism calls for analyticaj e | w(t)=exp(nt/7W(t), then the control loop is indeed

investigations. For this purpose, we consider a general dyreg| valued and it can be written in various ways:
namical system where the internal state of the system is de-

s_cribed by a state vectoq(t). It obeys the equation of mo- U (D)W |X()) —uy (t—7){W(t—7)|x(t—7))

fer =, (DLW X(D) — (w(t— 7)[x(t~ )]

=0 (WD) [X(1)) = Uy (t— T)(W(t— 7) [ X(t— 7))
=0 (WO X)) H(WMt=7)|x(t=7)]. (16

Thus, our control scheme is in fact a time-delayed feedback
- scheme based on a real valued scalar sigsét)
Nu,(t)+u,(t) =DF(&t))u,(t), ~ . . .
(D F U1 (&)U =(w(t)|x(t)). In order to avoid a heavy notation, we just
U (t)=u,(t+7). (12) stick to the notation used in E¢L5).
Y Y The control loop introduces an explicit time dependence
Here, Df denotes the linearization of the full equation of into Eq.(15). Thus the system is no longer time translation

motion and Floquet exponents, are as usually restricted to invariant. Nevertheless, an orbf(t+ &) with an arbitrary
a single Brillouin zone, e.g., Im,e (— 7/ 7,7/ 7]. The cor- Phases is a periodic state of the controlled system, since the

() =f(x(t)). (12)

We suppose that Eq11) admits a periodic orbig(t) = &(t
+ 7). Its stability is determined by the associated Floquet
eigenvalue problem,

responding adjoint eigenvalue equation reads control force vanishes on such a special trajectory. We inves-
tigate the stability of the orbit in terms of a linear analysis.
Mot —olt)=ol(H)DIEL), v, (H)=v,(t+7). Observing the time evolution of small incremengx(t)
(13 =x(t)—&(t+ ), we get a linear differential-difference
equation that is solved by the usual exponential famxgt)
The original eigenvectors, and their adjointe | constitute =exp(At)U(t). The Floquet exponentd and the eigen-
a biorthogonal set and we adopt the normalization accordingnodesU are determined by the eigenvalue equatich,
to the Kronecker symbol, e.g., the approaches used in Rédf0))
(v (O]u,(D)=vl(Du)=85,,. (14 AUt) +U(t)=DFE)U(t) — K (1—exp — A 7)u, (t— &)
We concentrate on the simplest cases, i.e., a periodic orbit X{w(t—8)|U(t)),
with a single unstable eigenmode. Let denote the expo-
nent with positive real part, whereas all the other exponents Ut)=U(t+ 7). (17

N\, (v#+) have a negative real part. Since torsion is an

essential ingredient for time delayed feedback methods t81 order to simplify subsequent considerations, we have in-
work at all[10,11], the unstable exponent must have a finitetroduced a new time scale=t+ & for writing down Eg.
imaginary part. Two generic cases are possible, a compleil7). For simplicity of the notation, we omit the bar. In for-
conjugate pair or a single exponent on the boundary of thenal terms, the solution of the eigenvalue probléh?) is
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quite simple. Let us define functiod&/[ «] to be the Flo- A=T{I)[K@-exp—A7)], TI[0]=r,. (23
guet exponents of the auxiliary time-delayed Floquet prob-
lem (cf. Ref.[30] for general properties of time-delayed Flo- In particular, we are interested in the critical control ampli-

quet problemp tudes which limit the control intervdtf., e.g., Fig. 1. At the
_ lower boundary, the interval is limited by a flip bifurcation,
T 1 (1) + QW (1) = DF(&(1) QW (1) — kU, (t— &) i.e., the corresponding control amplituble= K4(4) is deter-
- 5 oWt mined by the conditiom\ =i /7. Hence, Eq(23) results in
(w(t=2IQ¥"(V), il 7= ([ 2Kq()]. (24)
(1) (1) = Olw)
Q" (1)=Q4 (t+17). (18) To determine the sensitivity of the control threshold on the

The indexu numbers the different exponents, the subscfipt phase shift, we.take the derivative with respecttand get
indicates the dependence on the phase, and the argunient (cf. the Appendix
just an independent variable. Then by comparison, the char- dsKa(8)=—A(8)Kq(3). (25

acteristic equation of Eq17) reads o . N ]
Whenever the coefficien&( ) is positive, we obtain an ex-

A=TW[K(1—exp —A7)]. (190  ponential decrease of the control amplitude

Equation (19) is still an exact expression, but we need to Kﬂ(5)=Kﬂ(0)eXI{—f A(5)d5), (26)
compute the function appearing on the right-hand side. We
already see on such a general level that stability of the statgs  an increase in the control interval which is quite sensi-
may depend on the phase, sinéeenters the characteristic tjye on the phase shiftcf. the simulations of Sec.)ll For
equation explicitly. _ _ small 5§ and the special choicev(t)=v (t), we obtain
We are left with computing the function8{)[ ] from Kq(8)=Kg(0)expA,8) with constantA, (cf. the Appen-
Eq. (18). Let us first consider the simplest cage; 0. Here ().
a complete analytic solution is availatflef. the Appendix. A similar estimate can be formulated for the upper control
It reads boundary that is governed by a Hopf instability. In order to
) get quantitative results, we have to solve the full eigenvalue
Fy2olk]l=N, ,(v#+), (20) problem (23). Such an analysis has to resort to numerical
approaches, which we are going to supply in the following
IO k]=N.—xx, (21)  section for a simple model system.
where IV. NUMERICAL EVALUATION FOR THE RO ~SSLER
MODEL

X= ;fo (w(t)|u, (1))dt. (22) A more detailed investigation of our control scheme calls
for a quantitative evaluation of the stability problem associ-

Equation(20) shows that the stable branches of the unconated with the characteristic equati¢t®). This can be done
trolled system do not contribute to the stability features ofonly by numerical computation of the right-hand side. For
the controlled orbit. The characteristic equation arising fromsuch a task, our original modéb) is far too complicated.
the unstable brancfcf. Egs.(19) and (21)] coincides with ~ Since we focus on the principal aspects of Floquet mode
the corresponding expression of diagonal confafl Eq.  control, we choose for the purpose of illustration thes&er
(3)], apart from a linear rescaling of the control amplitude byeguations
the paramete(22). Thus, for in-phase orbits, Floquet mode Yy v el
control is as efficient as diagonal control. Above all, the re- X1 X~ Xs~ Kuy(Os(t) =s(t=7)],

sults are almost independent of the choice of the filié), Xo= X1+ ax,— Kuy(t)[s(t)—s(t—7)],
i.e., independent of the measured signal. It is the coupling of .
the force to the internal degrees of freedom via the unstable X3=Db+X1X3—Cxg— Kus(t)[s(t) =s(t—7)], (27

mode which plays the crucial role here. )

We now dwell on the out-of-phase orbits, i.e., on the staWith parameter values=0.2,b=0.2,c=5.7. We are focus-
bility problem for 8+ 0. Apparently, there does not exist a iNg on the periodic orbit with period=11.758 63. The un-
closed analytical solution foﬂ“%ﬂ)[,{]. Only periodicity stable Floquet exponent is given by Re 0.106 84, and
T x]=T® [«] that results from the periodicity of the LU1(t).u2(t),us(t)] and[va(t),v5(t),v5(t)] denote the Flo-
orbit is obvious from Eq(18). Thus, we are bound to per- quet rlg_ht elgenmo_de and the solution of the ?‘dJO'”F problem,
turbative approaches. Since the solutions that are related f spectlvely. The time-delayed control force is derived from
stable branches of the uncontrolled system do not play an e signal
role for =0, we restrict ourselves to the cage- +, i.e., to 3
?C(iel?irsatir::cquL\J/zLic:nc%grgescts to, . The corresponding char- s(t)=(v(t)|x(t)>=k21 VE(D)X(1). (28)
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0.06 control boundary using Eq24). For numerical purposes, we
f . introduce the Floquet multipliez=exp(A7) so that the char-
0.04 Nz i acteristic equatiori19) is given by
\ T O=def1—z W, 1(7)], (29
0.02 - y 7 where we have introduced the evolution matrix of the con-
< e trolled system via
Job) \ ) . B
c ° o W,-1(t) =[ DF(&(1)— K(1—2 Hu. (t—6)
v e EW(t— 8)IW, 1(1).W,-1(0)=1.  (30)
e s/d0.08 * ]
Equation(30) is very convenient for numerical computation
Y I R T T P P B B of the spectrunicf. Ref.[32]). Here we are interested in the
004 005 006 007 008 009 01 011 012

lower critical control amplitudeKy(5). Thus, we fixz=
K —1 [cf. Eq.(24)] and solve numerically Eq29) for K. The
FIG. 7. Largest Floguet exponent of the controlletssler sys-  'esults are displayed in Fig. 8. We observe a quite compli-
tem dependent on the control amplitude for different values of thecated dependence of the threshold on the phase KR(f8),
phase shift:6=0 (solid), 6=0.04r (dashed, 5=0.08r (dotted. is of course, periodic ind with period r. For small phase
Arrows indicate the control interval. The trivial exponent=0 is  shift, the threshold increases so that the threshold has a local
not displayed. minimum ats=0. The corresponding quadratic dependence
on § is in accordance with our perturbative resuit$. the
We recall that the control force is real valued and can beéAPpendiX. For intermediate values of the phase shift, the
written in various wayscf. Eq. (16)]. threshold lowers and there is a pronounced region of bista-
The control performance is governed by the F|Oquet Specblllty where stable in-phase and certain OUt'Of'phase orbits
tra, which are determined by the stability probléiy) and coexist. In addition, the orbit is stable even below the thresh-
the characteristic equatiqii9), respectively. We use a Ben- ©ld of diagonal control for certain phase shifts. Whether such
ettin algorithm[31] for the numerical computation of the linearly stable states are reached during the control process
Floquet exponents. Such an algorithm can be applied easiffepends of course on the basin of attraction of these states.
to obtain the leading part of the eigenvalue spectrum, since The evaluation and even the visualization of global prop-
one just requires the forward integration of the linearizederties of differential-difference equations is a complicated
equation and successive reorthogonalization. The algorithrisk since the phase space is infinite dimensional. Thus, one
yields the real parts of the exponents,AResince it detects Cannot expect to get a complete overview of the basin of
the expansion in phase space but ignores the torsion. Resuft§raction for the orbit under consideration. Nevertheless, we
are displayed in Fig. 7. We observe the typical butterflydo beyond linear stability analysis and compute for different
shaped behavior that is already known from our analyticainitial conditions which value for the phase shift develops
investigations(cf. Fig. 1). On increasing the phase shift, the during the control process. In order to capture our essential
spectrum first moves upwards and apparently the size of th@egree of freedom, namely, the phase, we choose a fixed
control interval decreases. initial condition in a reference frame that is shifted in time by
The Floquet spectra clearly show that the control intervals, t=t+ ¢ (cf. Sec. ll). Thus, the phase shift enters the
depends sensitively on the phase shift. To reveal such a deentrol matrix as a parameter and we can study the influence
pendence of the control boundaries, let us evaluate the lowaf different phase-shifted initial conditions just by sweeping

— 0.16 . .
09 ——
012 | _
0.6
0.08 B
0.04 i
| o
~0.04- i
03 0.0
-0.08 g
-0.6
-0.12- -
-0.9} “——h.._,_"_q' ‘ ~0.1 ) ) ) ) )
0.02 0.04 0.06 K 0.08 0.1 0.03 0.04 0.05 0.06 0.07 0.08
K

FIG. 8. Dependence of the lower control thresh&ler Ky on the phase shif6. Left: Dependence over two complete periodls
[—7,7]. Right: Enlarged section for small phase shift. Arrows indicate parameters used for the spectra in Fig. 7.
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scheme is based on the measurement of a single variable, the
control can be applied, in principle, in quite different experi-
mental situations. It is, however, difficult to estimate how the
, properties of the measured signal and the coupling of the
; control force to the internal degrees of freedom affect the
performance of the control. Such questions are usually ad-
dressed by control theory for non-time-delayed feedback
schemes. Here, we proposed a coupling scheme that is based
on the unstable modes of the target state. A partial analytical
treatment of the corresponding time-delayed control prob-
lem, and numerical simulations of two different model sys-
tems have been presented. More research going beyond this
! . ! . work would be desirable to investigate how such a scheme
0.04 0.045 005 0.055 0.06 can be directly implemented experimentally.
The Floquet eigenmodes play a double role. On one hand,
FIG. 9. Control signaks(t)=32_,|x(t)—x(t—7)| at timest  the unstable mode mediates the coupling of the control force
=nr, 0=<n=<30 dependent on the control amplituddor different  to the internal degrees of freedom. On the other hand, the
values of the phasé of the initial condition. adjoint mode yields a suitable filter that generates a signal,
from which the control force is derived. Since these modes
this external parameter in our simulation. We compute thénherit an explicit time dependence the control loop breaks
asymptotic state by neglecting a transient of length the time translation invariance. Therefore, the phase of the
=470r. The value of the control force at integer multiples of unstable periodic orbit which is an independent variable in
the period is displayed in Fig. 9 dependent lénin each the uncontrolled autonomous system may adjust properly
case, we observe a finite control interval where the controand may increase the control performance. Such a phenom-
signal displays a finite jump at the lower boundary. Thus, theenon resembles synchronization mechanisms, although no
corresponding bifurcation is subcritical. Beyond the instabil-phase locking has been found.
ity, the solution locks to a period-two statehich then un- We have illustrated the increase of control performance
dergoes a period doubling sequence on loweknturther. by stabilizing spatiotemporal patterns in a nonlinear reaction-
For 6=0, the control boundary coincides with the results ofdiffusion system. We observed an enhancement in control
the linear stability analysigcf. Fig. 7). For initial condition  efficiency by several orders of magnitude. In addition, we
with phase shifto6=0.04r, we obtain essentially the same have been able to explain the basic features in analytical
control interval. Thus, in the control region where the phaseterms. In particular, our approach predicts a superexponential
shifted orbit is linearly unstable, the phase of the initial con-increase in the control intervétf. Ref.[26] and the Appen-
dition drifts during the control process and locks to the statedix).
5=0 which is linearly stable. We have already found such a Our analytical approach indicates that several features are
feature in the simulations of the reaction-diffusion mo@él  independent of the particular choice of the coupling and the
Fig. 6). If we choose initial conditions with even larger phasefilter function. For instance, all properties of the in-phase
shifts, 5=0.08r, we enter a regime where the linearly stableorbit, i.e., control without phase shift, are independent of the
control interval covers control amplitudes where the in-phasdilter w(t) provided that the coupling of the force to the
orbit is unstable. Thus, control extends beyond the thresholthternal degrees of freedom is mediated by the unstable Flo-
of diagonal control. These states are not accessible from aguet eigenmode. Our analysis is, in fact, symmetric between
initial condition without phase shifiy=0, since they cannot the eigenmode and its adjoint. Therefore, the control perfor-
be reached continuously through a sequence of linearlynance of in-phase orbits does not depend on coupling to the
stable orbits(cf. Fig. 8. Whenever the orbit becomes lin- internal degrees of freedom, provided we generate a signal
early unstable and no nearby stable orbit exists, the trajectors(t) through the adjoint eigenmode. Thus, our results do not
locks to the period-two state which is not a proper orbit ofdepend on all the details of the eigenmodes, and an experi-
the uncontrolled system. Thus, Fig. 8 gives us a hint whichmental implementation of our control idea seems to be fea-
state is accessible during the control process from a certaigible. In fact, we have observed in our simulations that the
initial condition. increase of the control performance persists if we change the
filter functions used in Sec. II.

There remains the general problem of how to adjust the
measured signal and the coupling to the internal degrees of
Time-delayed feedback methods are very useful for confreedom in order to optimize the control performance of
trolling unstable time periodic states. Since the originaltime-delayed feedback control. Our scheme just gives a par-

tial answer to this question. The free phase may adjust during

the control process to give a better adaptation of the filter and

ISince the controlled system is nonautonomous, the period of théhe coupling functions. Of course, our analysis is constrained

period-two state is given by® Thus,x(t)—x(t—7)=—[x(t+7)  to the linear regime. Global features such as basins of attrac-
—x(t)] ande(t) =|x(t) —x(t— 7| =|Ix(t+ 7) —x(t) | = e (t+ 7). tion are still out of reach, and would in any case be difficult

4/7=0.04

6/1=0.08

V. CONCLUSION
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to visualize in high-dimensional phase spaces that are relatq

d . . :
with the dynamics of differential-difference equations. ntegration over one period yields E@1).

One may calculate the derivativeslb?)[x] with respect
ACKNOWLEDGMENTS to 5'and k by §t§1ndqrd methods of 'Ilnear algebra. If we
consider the adjoint eigenvalue equation
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_p(O)t o p() st
APPENDIX: ANALYTICAL PROPERTIES OF FLOQUET =P57(DIED)) — x(P5 (D] u (t= 9))wi(t—4),
PROBLEMS
In order to determind ;[ «], we consider Eq(18) for PU (1) =P (t+ 1), (A5)

6=0. Multiplication with an adjoint eigenmodea ,(t)

yields, taking Eqs(13) and (14) into account,

take the derivative of Eq18) with respect tos, and multi-
ply with P{")(t), we obtain

I (0 (1) + ()
(4L k10, (0] QE(1)+ (0, (0] Qo(1)

=M ADIQUZ(D) = 8y, k(WD QD). 2 §ILI(PEI IR (D) + 5o P (D]2,257(1)
(A1) |
= k(PS(D]U. (t=8))(w(t=5)|Q57(1)

If we considerv# +, then we obtain . ) N
+(PSO(Dus (= 9))w(t—8)|Q5V (D). (AB)

d
(T ] =N (D] QYD)+ 5 (0, (D) =0 Opbserving the periodicity and normalization of the eigenvec-
(A2)  tors, we end up with

Since the inner product is by definition periodic in time, Eq. «
(A2) tells us that either the inner product or the bracket on 9 T 1= _fT PO UL (t— )W w(t— o) OCH)(t
the left-hand side vanishes. Hence, we obtain [26), and oo L T o< o (O]us( 2A Q1)

all exponents but one are determined. Choosiag+, Eq. +) ) +)
(A1) yields +(P5(D)|ui (1= )N (w(t—3)|Qs (1)) dt.

(A7)

d
(TSI k1= M) (0, (D] Q525(1)) + = (v, ()| Q55 (1)
s=olk] A 1Qs=o(®) dt< 1Qs=o(V) In a similar fashion, the derivative with respect#acan be

= — k(W()| Q5 (1)). (a3) evaluated,

Since we have already shown that the eigenm@iié(t) is “ 107 4

orthogonal tov (t), »+#+, we haveQ\P,(t) = a(t)u. (t) 3,y [K]=—;JO<P,5 (D]us(t=19))

with a periodic modulation facto#(t)= «(t+ 7). Then Eq.

(A3) simplifies to X (w(t—8)|Q5"(t))dt. (A8)
Ffsi)o["] o+ B ) us (). (A4) Taking the derivative of Eq24) with respect tas, we obtain

a(t) Eq. (25), where

JOT<PE;><t>|u+<t—5>><w<t—a)lQEﬁ(t»+<P<;><t>|u+<t—5>><v'v<t—a)lQE;)(t»dt
A(8)=~ - : (A9)
f0<PE;><t>|u+<t— SN w(t— )| Q7 (1)dt
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Here,QE;)(t) denotes the solution of the eigenvalue problemthe normalization14) yields

(18) andPS")(t) is the solution of the corresponding adjoint

problem (A5) for «=2Ky(6) and F(;)[K]: im7/7T. The A(8)=0(9). (A10)
evaluation of Eq.(A9) becomes quite tedious, even in the

limit of small &. If, however, we confine attention to the Thus, for the special choiog(t) =v . (t), the dependence of
special choicew(t)=v,(t), then Eq.(A5) tells us that Kg(8) on the phase shift is according to E&6) of second
PLI () =v ., (1). SinceQ| ) (t)=u, (t) holds[cf. Eq.(18)],  order in§ in the exponent.

[1] R. Bellmann,Introduction to the Mathematical Theory of Con- Phys. Rev. Lett81, 562(1998.

trol ProcessegAcademic Press, New York, 1971 [18] A.V. Mamaev and M. Saffman, Phys. Rev. Le80, 3499
[2] H. Nijmeijer and A. SchaftNonlinear Dynamical Control Sys- (1998.

tems(Springer, New York, 1996 [19] R. Bellmann, Differential-Difference EquationgAcademic
[3] K. Ogata, Modern Control EngineeringPrentice-Hall, New Press, New York, 1963

York, 1997. [20] W. Just, E. Reibold, H. Benner, K. Kacperski, F. Fronczak, and
[4] E. Ott, C. Grebogi, and Y.A. Yorke, Phys. Rev. Leit, 1196 J. Holyst, Phys. Lett. 254, 158(1999.

(1990. [21] W. Just, E. Reibold, K. Kacperski, P. Fronczak, J. Holyst, and
[5] T. Shinbrot, Adv. Phys44, 73 (1995 H. Benner, Phys. Rev. B1, 5045(2000.

[6] Handbook of Chaos Controkdited by H.G. Schustdiviley- [22] A. Wacker and E. Schip Z. Phys. B: Condens. Matt&3, 431

. (1994).
[7] \}écg)’/rggglsn’;:fsglett A70, 421 (1992 [23] E. Schdl, Nonlinear Spatio-Temporal Dynamics and Chaos in

[8] S. Bielawski, D. Derozier, and P. Glorieux, Phys. RevE Semiconductors(Cambridge University Press, Cambridge,

200).
R97_1(1994)‘ ) [24] O. I;)eck, A. Amann, E. Schip J.E.S. Socolar, and W. Just,
[9] T. Pierre, G. Bonhomme, and A. Atipo, Phys. Rev. L&8, Phys. Rev. EB6, 016213(2002.
2290(1996. [25] G. Franceschini, S. Bose, and E. Sithehys. Rev. 60, 5426
[10] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner, (1999.
Phys. Rev. Lett78, 203 (1997. [26] N. Baba, A. Amann, E. Schipand W. Just, Phys. Rev. Lett.
[11] H. Nakajima, Phys. Lett. 232 207 (1997). 89, 074101(2002.
[12] J.E.S. Socolar, D.W. Sukow, and D.J. Gauthier, Phys. Rev. E27] H.G. Schuster and M.B. Stemmler, Phys. Rev56 6410
50, 3245(1994. (1997.
[13] W. Just, D. Reckwerth, E. Reibold, and H. Benner, Phys. Rev[28] W. Just, Physica [142, 153 (2000.
E 59, 2826(1999. [29] S. Bielawski, D. Derozier, and P. Glorieux, Phys. ReWA
[14] L. Collatz, ZAMM 2527, 60 (1947). R2492(1993.
[15] A. Kittel, J. Parisi, and K. Pyragas, Phys. Lett.188 433 [30] J.K. Hale and S.M. Verduyn Lunéiptroduction to Functional
(1995. Differential EquationgSpringer, New York, 1993
[16] H. Nakajima, H. Ito, and Y. Ueda, IEICE Trans. Fundamentals[31] G. Benettin, L. Galgani, A. Giorgilli, and J. Strelcyn, Mec-
EB0A, 1554(1997. canical5, 9&21 (1980.

[17] W. Just, J. Mokel, D. Reckwerth, E. Reibold, and H. Benner, [32] M.E. Bleich and J.E.S. Socolar, Phys. Rev6& R17(1996.

026222-10



