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Wave-particle dualism of spiral waves dynamics
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We demonstrate and explaia wave-particle dualism of such classical macroscopic phenomena as spiral
waves in active media. That means although spiral waygearas nonlocal processes involving the whole
medium, theyrespondto small perturbations as effectively localized entities. The dualism appears as an
emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response
functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response
functions allowsquantitativelyaccurate prediction of the spiral wave drift due to small perturbations of any
nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.
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[. INTRODUCTION where u(r,t) is a column-vector of the reagent concentra-

tions, f(u) of the reaction rated) is the matrix of diffusion

Autowaves are nonlinear waves observed in spatially diseoefficients, eh(u,r,t) is some small perturbation and
tributed media of physical, chemical, and biological nature,e R? is the vector of coordinates on the plane. Since these
when wave propagation is supported by a source of energyre essentially nonlinear partial differential equations, their
stored in the medium. In a two-dimensional autowave mespiral wave solutions in general case are studied numerically,
dium there may exist autowave vortices appearing as rotatingihjle experimental study, for obvious reasons, has been
spiral waves and thus acting as a sources of periodic wavegstly using the Belousov-Zhabotinsky reaction medium. So
Their existence is not due to singularities in the medium buje established theory of spiral waves is mostly empirical
is determined only by development from initial conditions. 54 gives neither quantitative predictions nor general under-

In a slightly perturbgd medium, e.g., spatially |.nhomogc_e- tanding on how to control the spiral waves dynamics, which
neous, or subject to time-dependent external forcing, a spir important for practical applications

wave drifts, i.e., its core location and frequency change with As a model self-organizing structure, spiral wave demon-

t'm%] first direct _ tal ob i ¢ spiral strates a remarkable stability, just changing its rotational fre-
€ first direct experimental observation ot spiral Waves, aney and core location, i.e., drifting, in response to small

in a chemical oscillatory medium, the Belousov—Zhabotinskyperturbations of the medium. The asymptotical theory of the

reaction[l], triggered a huge amount of interest and activi_tys iral wave drift, proposed in Rdf14] and shortly described
in the area. Soon after that spiral waves were observed in g0\ “is based on the idea of summation of elementary re-

rabbit ventricular tissu¢2], and later in a variety of other sponses of the spiral wave core position and rotation phase to

spatially dis_tributed active systems: in _chicklret[@ COI_O' elementary perturbations of different modalities and at dif-
nies of squal amebﬁﬂ]‘, cyt(_JpIa_sm of single aqt.es[S], N ferent times and places. This is mathematically ex-
the reaction of catalytic oxidation of carbon oxifi#, rust-

ing of the steel surface in acid with the 4dif], in liquid
crystal[8], and lasef9] systems. On a larger scale, there are
waves of infectious diseases traveling through biological
populationg 10,11], and spiral galaxief12,13].

A common feature of all these phenomena is that they can
be mathematically described, with various degrees of accu-
racy, by “reaction-diffusion” partial differential equations,

du=f(u)+DV2u+eh, u,f,heR’, DeR* ¢=2,
)

. ) ~ FIG. 1. (Color The “Achilles’ heel” of the spiral wave. Spiral
*Corresponding author: Department of Computer Science, Uniwave, shown by vertical displacement of the surface, and its re-
versity of Liverpool, Chadwick Building, Peach Street, Liverpool sponse functions, shown by color, in the complex Ginzburg-Landau
L69 7ZF, UK. equation(9) ata=0.5,=0. Red, green, and blue components rep-
TOn leave from Institute for Mathematical Problems in Biology, resent the temporal RRA(g) andi-real andi-imaginary parts of the
Russian Academy of Sciences, 142292 Pushchino, Moscow regiospatial RF {V;), the gray color outside the core is zero of all
Russia. components of the response functions.
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pressed in terms of the spiral wakesponse functiondRF9 _ o t+ 7o gdr ,

so that the spiral wave is insensitive to small perturbations in  Hy(t)=€'"" fﬁ Zf fzd r

the region where its RFs are equal to zero. As experimental t=mlo K

data and computer simulations showed spiral waves insensi- Xe—inun-(Wn(p(r_ R), (r—R)+ wr—®),h),

whereW,, called the spiral wave response functions; 0,
+1 are the critical eigenfunctions

L W,=—ionW,, n=0,+1. (5)

: (6)

u=Uu(r)

A. The asymptotical theory of spiral waves dynamics of the linearized operatot,

A spiral wave solution to the systefil) has a form _

U=U(p(r—R),3(r—R)+ wt— d), ) u=u(r)

tivity to distant events, it was conjecturgtls] that the RFs
must decay quickly with distance from the spiral wave core. 4
In other words, spiral wavel®ok like essentially nonlocal-
ized objects butbehaveas effectively localized particles
(Fig. 1). Such awave-particle dualisnas not been found in
other macroscopic dissipative structures. To stress the
uniqueness of this feature of spiral waves, let us compare it
with solitons. Solitons are localized traveling solutions ofof the adjoint linearized operator
certain nonlinear wave equations, and as such are often
viewed as both particlelike objects, as they are localized, and _ gF\ T
wavelike objects, as they are solution of wave equations. LT=DV2+wd,+ %)
One obvious difference from spiral waves is that solitons are
observed in conservative equations and do not preserve theéhosen to be biorthogonal
identity under perturbations: a generic perturbation of a soli- '
ton solution leads to a nonsoliton solutions. For the present (W(2),Vi(@)= 8, 4, 7
context more important is that the solitons are, by definition,
solutions that are essentially localized in space at every givefy the Goldstone modes,
moment of time. This is different from spiral waves, which
occupy the whole space, like, e.g., photons of a fixed fre- Vo=—w 13,U(r,t)=—3asU(p(r),9(r))| ;0.
guency in quantum mechanics. In these terms, solitons both
look and behave as localized, particlelike objects, and the ot .
only wavelike feature is their origin from wave equations. Vir= =587 (010 U(rY)
To confirm the wave-particle dualism of the smooth dy-
namics of spiral waves the response functions must be found B i, — 1
explicitly and tried forquantitative prediction of the spiral =—5e7%(9,xip d9)U(p(r),9(N)l=0, (8
wave drift due to various small perturbations in some par-
ticular model medium. In this paper, we demonstrate thisvhich are the critical eigenfunctions,
using the complex Ginzburg-Landau equati¢@GLE),
which represents a typical self-oscillatory medium. LV,=iwnV,, n=0,*+1,
af)
Ju
. ) The additive “— wd,” appears due to passing to the rotatin
wherep, & are polar coordinates, vectdt=(X,Y)' defines g0 o retarence of tﬂg spiral wave,pso thagﬂ(r)ert is ’
the spiral wave core location, add is initial rotation phase. a polar angle in this frame of reference where the unper-
For rigidly rotating spiral in the unperturbed syste), at turbed spiral wave is stationary. Note that the RFs do not
€=0,R and¢>' are constants. S . depend on time, i.e., they are functions of the coordinates
A perturbationeh# 0 could be a slight inhomogeneity of only, in this frame of reference as well.
the medium or an explicit time-dependent external forcing. S'O the main point of the theory is the reduction of de-
Typical efiect of the perturbation iS. a slow ghange of preVi'scription of the smooth spiral waves dynamics from the sys-
ously'constant pgpametd?sandCD, €., Sp".’lt"'?ll and tempo' tem of nonlinear partial differential equatiofi® to the sys-
ral drift qf the spiral wavedthe temporal drift is the shift of tem of ordinary differential equation©DE) (3) describing
the rotational frequendy the movement of the core of the spiral and the shift of its
rotational frequency, if the spiral wave response functions
atq):EHo(R,wt_(D), atR: eHl(R,wt—(I)) (3) are known exp||c|t|y
The “particle” side of spiral wave dynamics, the possibil-
The last equation can also be written §&R=eH (R, wt ity of their description in terms of ODE instead of original
—®), whereR=(R),+i(R)y,H;=(Hy)x+i(Hj)y. partial differential equations, has an important related aspect.
The drift velocitieseHy and eH 1, in the first approxima- An ODE description is used in the theory of meander, i.e.,
tion, are linear functionals of the perturbation. Bty and  nonstationary rotation of spiral waves, which is possible in
H,, after sliding averaging over the spiral wave rotation pe-some reaction-diffusion systems even in the absence of any
riod, can be expressed as perturbationg16—18. The description of these complex mo-
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FIG. 2. (@=0.5,8=0): (&) Functionsa, ¢’ defining the spiral wav&J; component#\,B of the RFs temporal mod#&/y and components
C,D,E,F of the RFs spatial mod¢/,, as functions op. (b) Thel-real components of the spiral wavd,), of the temporal RF\(V), and
of i-real andi-imaginary parts of the spatial RFW\(;), shown as density plots. THeimaginary components are the same functions rotated
by /2. Spatial region on this and subsequent figuresxiy)(e[ — 20,20 X[ —20,20]. The homogeneous shades of the gray on the
peripheries ofW, ; correspond to zero, i.e., all the RFs are essentially localized near the rotation center.

tions turned from pure phenomenology to theory after the du=u—(1—la)u|ul>+(1+18)V?u+eh, 9)
discovery that the transition from stationary rotation to bipe-

riodic meander happens as if it was a Hopf bifurcationwhere u,he R?, «,BeR, I=[(1) _é], and nonlinear opera-
[19,20. A model ODE system describing the specifics of thistions defined accordinglj30].

bifurcation[21] revealed the role of the Euclidean symmetry It is a universal equation that describes any reaction-
of the unperturbed reaction-diffusion system in the planediffusion system in the vicinity of the Andronov-Hopf bifur-
The explicit decomposition of the reaction-diffusion systemcation of the reaction kinetics. The steadily rotating spiral
by this symmetry group22] to the motion of the tip of the wave solutions for the CGLE was studied by Hadad],
spiral, and evolution of its shape, confirmed the ODE de-and in the frame of reference rotating with the spiral wave
scription of the motion of the tip, but left aside the questionangular velocityw they have the form

of the origin of the low-dimensional behavior of the spiral

shape. There were impressive attempts to build rigorous U(p,0)=e'"P(p). (10)
bifurcation-theoretic description of the shape dynamic . -

[23-27, where the low-dimensional behavior would be aSFuncthn P(p):a(p)e'¢(P)eR2 determining the shape of
natural consequence of the finite dimensionality of the centetJ1e §p|ral, the spiral wave asymptot!c wave numb,ee_md
manifold of the corresponding bifurcation. However, it hasmt""t'on‘"II angulgr velocity» are solutions of the nonlinear
been soon realised that a cornerstone assumption of this aBgundary and eigenvalue problem,
proach about the spectrum of the linearized operator is surely
invalid [28]. Thus, for now the low-dimensional behavior of (1)
meandering spirals remains unexplained. Formal combina-

1 1
P'+—P'— —2P> +[1-lo—(1-la)|P|?]P=0,
p p

tion of the low-dimensional description of meander and of (11
the perturbative dynamics of spiral waves gives predictions
agreeing with direct numerical simulatiofi29]. This indi- P(p—0)~p, (12

cates that the low-dimensional, particlelike behavior of spi-
rals due to their internal dynamics, i.e., meander, and due to P(p—o)~y1-k%exdlkp+o(p)][1+0(1)], (13
external perturbations, i.e., drift, may have similar nature,
and the localization of response functions may be the miss-
ing link required for successful completion of the theory of
spiral wave meander.

w=a— ak?®— BK>. (14

Thus, the shape of the spiral is defined by the real functions
a(p) and¢(p) found numerically and illustrated on the Fig.
2(a), for the model parametera=0.5, 3=0. The corre-
sponding spiral wave is illustrated on the FigbR [as
Ui(x,y)].

The perturbed complex Ginzburg-Landau equation is a The spiral wave response functions in the CGLE, consid-
two-component reaction-diffusion system, which can beered in the spiral corotating frame of reference, depend on
written in a vector form, spatial coordinates in the following way:

II. SPIRAL WAVES AND RESPONSE FUNCTIONS
IN THE CGLE
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Wi(p,0)=e!"1V’Qy(p), n=0x1,  (19) R R R R RS e
e e o o e™a_s o & §ITT D=0
where functionsQ,(p) satisfy the linear boundary value 0sd :’“--3, s E“":ﬁ.ﬁ; L S Ie’;plored
problems, ’ . o~'"6~.~_:. e o o o “&—p [1 sclecied
1 (1-in)? B 01@ RS
(1-18)) Qi+ Q= —Q e Tt
e e o
N 05 |
H{1+lo—al2(1+1a)+(1—1a)e?"C]}Q, =0, o -
16 e,
0 02 04 06 08 1
|Qn(p—>0)|<00, (17 o
Q,(p—)—0. (18) FIG. 3. The explored region ofa(,8) plane. Filled circles: pa-

rameter values for which the RFs have been calculated. Squares:
parameter values analyzed in this chapter. Lirggs0, degenera-

tion of spiral;D=0, transition from monotonic to oscillating RFs;
p=0, the Eckhaus instability. Herp, g, andD are the coefficients
“and the discriminant of Eq20).

Here, i is the imaginary unitC=[3_%] is the operator of
conjugation[30].

The spiral wave response functions localized in the vicin
ity of the spiral core correspond to the soluti@y of the

system(16—18 exponentially decaying gi— oo, ll. THE RF DEPENDENCE ON THE MODEL
PARAMETERS
Qn(p)~er?, (19

where A = A («, B8,k(,8)) is the root of the cubic equation

As there is no general theorem guaranteeing the localiza-
tion property of the response functions, it is important to
understand how universal is it, and whether it will be ob-
A+ pA+g=0, (20) served typically, or only at special values of the model pa-
rametersa and B. Since the complex Ginzburg-Landau
equation is invariant on the transformatioa— — «,

B—— B, u—u, h—h, its parametric portrait is central sym-

201[3—1—0— k?(3+28%—ap)

1+p° metric in the @,B) plane, so we considered ondy=0 re-
gion without loss of generality.
(a+B)(1—Kk?) The explored region in thea(B) parameter plane is
- —4k1+—ﬂ2, (21 shown in Fig. 3, where the points mark the valuesxadind

B at which computations have been done and existence of

with the negative real part closest to zero. We shall call thidocalized RFs confirmed. In the vicinity of the line+ 3

root the principal A . =0, the principal rootA of the characte_rlstlc _equatldﬂO)
The vector functionW,, is called the response functions Feﬁomrtre]s”viiry SerallAv\O/chi_ (har: 'ng()k' t\r']"h'lerlr(] |stet>i<pr<l)nen-

temporal mode and has two real components determining thee Y sma (@t h), ch makes the computations espe-

. . . . ially difficult. This is why there are not so many explored
d_rlft of the spiral wave rotation phase due to perturbation Ofgoints nearby the line. Calculations at largernd g were
either of two components of the vector The vector func-

. . led th ial mod dh | not made, as at these parameter sets the spiral waves are not
tion W, is called the RFs spatial mode and has two complex;iae[31,32, and their slow dynamics does not make sense.
components describing the reaction of the spiral wave core pgint (0.5,0), illustrated above on Figs. 1 and 2, belongs

location to perturbations, and this reaction can be in tWqq the region between the lings=0 andD=0 and corre-
directions x andy. Thus, corresponding functiog,(p) can  sponds to the stable spiral wave with monotonically decay-

be represented as ing response functions.
Qo=(A+I1B)exp(l )1, (22 A. Change of the winding of spirals
Q,=(C+ID+IE+iIF)exp(l )1, (23) The sign of the spiral wave asymptotical wave numker

changes crossing the liret+ 8=0. This is why the winding

of the spiral on the Fig. @) is opposite to that on the other
four Figs. 2b) and 4b)—4(d), while the localization property

of the response functions does not depend on the direction of
the apparent rotation of the spiral.

where A,B,C,D,E,F are real functions of one variabje
and1=[3] is the unit vector.

The functionsA,B,C,D,E,F have been found numeri-
cally and, for the model parametexs=0.5,83=0, are shown
in Fig. 2(a). It can be seen that the components of both tem-
poral and spatial modes of the RFs do decay quickly, being
essentially nonzero only in the vicinity of the spiral wave
core. The reconstructed shape of the RFs in thg)(plane Near the linea+ B=0 the spiral wave asymptotic wave-
is shown in Fig. 2b). length grows to infinity, and, at an intermedigtethe spiral

B. Delocalization of the response functions
for long asymptotic wavelengths
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is logarithmic rather than Archimede481]. This is indeed the RFs have the opposite sign. It allows us to predict quali-
seen on the Fig. #). Following the terminology offered in tative changes in the spiral waves behavior near the contrast
Ref.[33], the CGLE becomes a quasigradient system in thénhomogeneities or due to the localized external perturba-
vicinity of the line a+ =0, henceZ’*ocZ and so here we tions on the different sides of the lif2=0 in the parameter
may expect the RF#/,, to become similar to the Goldstone Plane. For example, there may occur a specific entrapment of
modesV,,. In this limit, in the region &p<k~! the ampli- the spiral waves near inhomogeneities of a special type. In

tude of W, remains approximately constant as well as that of-ase of a S”.‘OOth. perturbation the difference in the spiral
. ) y . : waves behavior will not be seen.
U, while W, decays asp™ *. This is consistent with the

behavior ofW, seen on Fig. ®d).
n g. ) D. The Eckhaus instability line

C. Transition from monotonic to oscillating response functions The next special line in the parameter plane £) is the
) . , . Eckhaus instability linep(a,8,k(a,8))=0, where the as-

The line, where the discriminant 3of the t2:ub|c equat'onymptotically plane waves emanated by the spiral become
(20) becomes equal to zer@=(p/3)°+(a/2)°=0, sepa-  exponentially unstable with respect to the long-wave longi-
rates on the ¢, 8) plane spirals with monotonically and 0s- tydinal modulations. Precisely speaking, after that line spiral
cillatory decaying response functions. Figurés)dilustrates  waves in an infinite medium must be unstable as well. How-
what is happening in the region with the oscillatory decreasever, as seen in Fig.(d), the response functions continue to
ing RFs. The qualitative change in the behavior of the RFs ipreserve the localized character in that region, though their
strengthened by their slower decreasing, so the responspatial extension grows further.
functions in Fig. 4c) extend over the spiral first winding

while localization of the monotonicly decaying RFs in Figs. IV. DRIFT OF SPIRAL WAVES
2(b) and 4a) was almost entirely within the very tip of the ) )
spiral. A. Resonant drift of spiral waves

Another new feature is the “halo” especially well seenin  The spiral wave resonant drift was predicted for the first
Fig. 4(d), i.e., the region around the innermost core wheretime in Ref.[34], then demonstrated in an experiment with
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light-sensitive modification of the Belousov-Zhabotinsky re- As the resonant drift of spiral waves is due to small but
action [35] and recently reported in a thin layer of liquid nonlocalized perturbation of the medium, it was crucial to try
crystal under rotating magnetic fief@6]. The phenomenon the RFs for the quantitative prediction of the drift velocity.
consists of the following: if parameters of the medium \We consider time periodic external perturbation of the
change periodically in time with the period close to the spiralform

wave rotation period, then the spiral wave drifts along a

circle of a large radius or, if the two periods coincide, along h(t)=coqwt)1, (24)

a straight line. This has a very simple “physical” interpreta-

tion: if external perturbations occur at the same phase of the

spiral wave, they cause its shifts in the same direction, nextvhere w is the own frequency of the unperturbed spiral
shift parallel to the previous. Thus, the resonant drift is awave.

consequence of the symmetry and is universal for all spiral Substitution of the perturbatiof24) and the expressions
waves. The spiral wave resonant drift in the CGLE is illus-(15) and (23) for the RFs in to Eq.4) together with the
trated on Fig. 5. biorthogonality conditior{7) gives the resonant drift velocity

:[(C—F)COSI/I—(D+E)Sin Y]—i[(C—=F)sinyg+(D+E)cosy]pdp
|R=€|H,|=¢ = . (25)
2f [aF—p(a’C+ay’'D)+i[aD+p(a’E+ay’F)]]dp
0

Thus, for known Hagan spiral wave solutiany and com-  tional to the perturbation amplitude In fact, this propor-
ponents of the spatial response functio/D,E,F, formula tionality is obeyed quite well even far=0.05, while at this
(25) gives theoretical prediction for the resonant drift veloc-amplitude the drifting spiral wave is considerably deformed,
ity. At «=0.5 andB=0 it gives the normalized drift velocity see Fig. 5, and due to the deformation the perturbation theory
|0R|/e=|H4|~2.8423. should not be valid. This is because the deformation is due to

To compare the prediction with drift velocities obtained the relative motior(*autowave Doppler effect[38]), which
from computer simulations, direct computer experimentsaffects the periphery of the spiral, whereas the velocity of the
were made using the CGL[@) with the perturbatiorf24) of ~ drift is determined by the events in the core, where the re-
the amplitudee up to 0.1. The particular details of the ex- sponse functions are nonzero and the spiral wave deforma-
periment can be found in Rdf37]. In an agreement with the tion due to the Doppler effect is not significant yet at this
theory, the resonant drift velocity was approximately propor-perturbation amplitude.

The normalized “experimental” drift velocity obtained
from the direct computer simulations at=0.01 was
|0;R|/e~2.9635, i.e., just=4% difference from the theoret-
ical prediction. The crucial parameter limiting the conver-
gence of the experimental drift velocity to the theoretical
prediction was the spatial discretization step of the numerical
simulations, as its reducing leads to a necessity of significant
computational resources. We showed in H&f7], that the
prediction of the asymptotical theory agrees with the results
of the direct numerical simulations, up to the precision
achievable by these simulations.

B. Inhomogeneity-induced drift of spiral waves

If the perturbation does not depend on time explicitly and
explicitly depends on the spatial coordinates, i.e., there is a
system with spatially inhomogeneous properties

h(u,r,t)=h(u,r), (26)

FIG. 5. Resonant drift of the spiral wave in the CGLE. _ ) _
=0.5, =0, medium size 108100, perturbation amplitude then spiral waves drift as well. The dependence on the spatial

=0.05. The thin “cycloidal” line—trajectory of the spiral tip coordinates in the laboratory frame of reference leads to a
=(0.9,0)', the thick line — trajectory of the center=(0,0)". periodical dependence on time in the frame of reference ro-
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tating with the spiral wave. As the perturbation is synchro- h=Ixu. (28)
nous with the rotation, the resonance conditions are fulfilled

automatically. o o Without any restriction of generality, it is enough to con-
Spiral wave drift due to media inhomogeneities is well siger the cases, when the spiral wave rotation center has the
known: it was studied in numerical simulatiof9] and then  ¢4ordinatex=0; otherwise, it is sufficient just to move the

in the experiments with the heart tiss[#0,41] and in the  frame of reference and to consider the problem with the cor-
Belousov-Zhabotinsky reactida2]. Attempts to explain or respondingly changed parameter

predict the direction and velocity of the drift have been made Formally speaking, in infinite media, the asymptotical

[39,43—45, but they were based on various phenomenologiTheory was developed for, both perturbatid@3) and (28)
cal arguments applicable to narrow classes of autowave Mgya not small, as for big enougrand any small parameter

dia with special properties, while the response functiongpe producteh will be finite and arbitrarily large. But due to
method allows to predict the spiral wave drift velocity due 10 gfeciive localization of the response functions, just pertur-
weak media inhomogeneities without any restrictions on thgyation in some finite vicinity of the spiral core is essential.

type of inhomogeneity. , , Following the perturbation theory, in the first order en
Below, we consider drift of the spiral waves in the CGLE 4 functionu(r,t) in Egs.(27) and(28) is changed onto the

caused by two different types of inhomogeneity of the mOdehnperturbed spiral wave of Eq. (10), so both perturbations
parameters. The first inhomogeneity is defined by perturba(27) and(28) may be written in the form:
tion '

h=1x|ul|?u (27) h=p cog 6— wt+®)le'l7*¥P)an(p), (29)

corresponding to the gradient of the coefficient of nonlineaiyheren=3 for Eq. (27) andn=1 for Eq. (28).

dispersiona, a(r)=a+ ex. Substitution of the perturbatiof29) and the expressions
The second inhomogeneity is due to the gradient of thdor the response functiond5) and Eq.(23) into Eq. (4),

frequency of synchronous oscillations of the medium definedaking into account normalization E¢), gives the drift ve-

by the perturbation locity

ej [D—iF]a"p%dp
0

_ , (30
f [aF—p(a’C+ay'D)+i(aD+p(a’E+ay’F))]dp
0

where convergence of the integrals over the whole plane, D. Drift due to the gradient of the linear frequency

despite of the growing factop?, is provided by the expo-  The inhomogeneity28) was chosen to compare predic-
nential decay of the spatial RFs compone@t®,E, andF.  tions given by Eq(30) with the results obtained by another
method essentially using linearity of the perturbation and the
special properties of the CGLE5].
C. Drift due to gradient of the coefficient of nonlinear We calculated functiona, ¢ determining spiral wave and
dispersion components of the spatial RKS,D,E,F, for parameter in
For the stable spiral wave with the monotonically decay-E]:kw;igv?r![s;alt)’iﬁ]tyariI:ée;ﬂﬁj _01"1 Tshcl)stlr?;fri}[/saltggiii?r?;i]se
ing response functions, at=0.1,8=0.6, prediction(30), . o - ?
9 P 8 P (30 before the line and corresponds to a stable spiral, while the

n=3, gives components of the normalized drift velocity . ; )
equal todX/ e~ —1.958, 9,Y/ e~ — 29.137. ggl(:alls quite beyond the line and corresponds to an unstable

To check the prediction, the CGLE) was num_(zrlcally On the interval 8 @<0.8, the drift velocities calculated
solved with the perturbatiof27) of amplitudee=10"". The using Eq.(30), n=1, are indistinguishable Ref46] from
details of the numerical simulations are fully described inthe results of45]. For 0.8<a<1 there were no experimen-
Ref. [46]. The components of the normalized drift velocity (5| results published, as it is difficult to make numerical
measured in the direct numerical simulations wés/e  sjmulations in this particular region of parameters due to
~—1.923, 9;Y/e~—29.09, so the difference from the the- Eckhaus instability of the spiral, while from predicti¢80),
oretical values was less than 2%. Thus, for the spiral wavg =1, follows thatd,X changes the sign ai~ —0.87. This
drift caused by this type of inhomogeneity of the medium theexample shows the qualitative advantage of using the re-
asymptotic theory prediction is in a very good quantitativesponse functions to predict the spiral wave drift velocity over
agreement with the results of direct numerical simulations. numerical simulations.
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V. CONCLUSION approaching to the special regions in the parameter plane,
such as the region of absolutely unstable spirals or the quasi-

oraanization that potentially involves the whole medium gradient line, is accompanied by characteristic changes in the
9 ) P yIr X ‘shape of the RFs. This correlation may be used to predict and
The medium affected by a spiral wave splits roughly onto

. : xplain new qualitative features in the smooth dynamics of
two unequal parts, the core of the spiral and the periphery. 'gpiral waves. Of the most importance is the response func-

2?;:'()2;{?3?;“&2 gfe:]r::rcoc:‘rtehgin i?glegnt(;]?nfrg:ﬁ;[:t?oﬂ gggﬁgons universal ability to make quantitative predictions of the
piral, iral wave drift due to small perturbations of any nature,

tef:/a;n'tsu;ﬁbslgggsr;gytﬁéogﬁi%aitﬁdstr:;gg%r;otﬁtetwhggd";rt?e?n hich makes the RFs as fundamental characteristics for spi-
y P P tal waves as mass is for the condensed matter.

however, large the medium can be. In contrast, small pertur- . “ . .
owever, large the medium can be. In contrast, small pertu Thus, the spiral waves “wave-particle” dualism explains

Zzggpsagﬁzdeageo\fg;ji dc daenn %nl);ihz;\éles If? gill ﬁlr;dcfgp_?ﬁlweir drift due to weak perturbations of the medium, provides
' y ; y SI9 e key for understanding more complicated motions of spiral
result of that separation of functions between the differen aves, and gives new ideas on how to control the process

pg::izlgfdfjhaelisrpnec\j/\l/wgn Itshéhse i?;?ﬁ;i‘%‘gﬁ;%? r\;v:;ﬁj-m 4 Ihe latter is vitally important for practical applications of the
p , P eory of spiral waves.

a delocalized, wavelike entity, and is affected by any applie
forcing as a localized, particlelike object. Mathematically,
th|§ is expressed by a pequhar localization property of the ACKNOWLEDGMENTS

spiral wave response functions.
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