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Wave-particle dualism of spiral waves dynamics
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We demonstrate and explaina wave-particle dualism of such classical macroscopic phenomena as spiral
waves in active media. That means although spiral wavesappearas nonlocal processes involving the whole
medium, theyrespondto small perturbations as effectively localized entities. The dualism appears as an
emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response
functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response
functions allowsquantitativelyaccurate prediction of the spiral wave drift due to small perturbations of any
nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.
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I. INTRODUCTION

Autowaves are nonlinear waves observed in spatially
tributed media of physical, chemical, and biological natu
when wave propagation is supported by a source of ene
stored in the medium. In a two-dimensional autowave m
dium there may exist autowave vortices appearing as rota
spiral waves and thus acting as a sources of periodic wa
Their existence is not due to singularities in the medium
is determined only by development from initial condition
In a slightly perturbed medium, e.g., spatially inhomog
neous, or subject to time-dependent external forcing, a sp
wave drifts, i.e., its core location and frequency change w
time.

The first direct experimental observation of spiral wav
in a chemical oscillatory medium, the Belousov-Zhabotins
reaction@1#, triggered a huge amount of interest and activ
in the area. Soon after that spiral waves were observed
rabbit ventricular tissue@2#, and later in a variety of othe
spatially distributed active systems: in chick retina@3#, colo-
nies of social ameba@4#, cytoplasm of single oo¨cytes@5#, in
the reaction of catalytic oxidation of carbon oxide@6#, rust-
ing of the steel surface in acid with the air@7#, in liquid
crystal@8#, and laser@9# systems. On a larger scale, there a
waves of infectious diseases traveling through biologi
populations@10,11#, and spiral galaxies@12,13#.

A common feature of all these phenomena is that they
be mathematically described, with various degrees of ac
racy, by ‘‘reaction-diffusion’’ partial differential equations,

] tu5f~u!1D¹2u1eh, u,f,hPR,, DPR,3,,,>2,
~1!
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where u(r,t) is a column-vector of the reagent concentr
tions, f(u) of the reaction rates,D is the matrix of diffusion
coefficients, eh(u,r,t) is some small perturbation andr
PR2 is the vector of coordinates on the plane. Since th
are essentially nonlinear partial differential equations, th
spiral wave solutions in general case are studied numeric
while experimental study, for obvious reasons, has b
mostly using the Belousov-Zhabotinsky reaction medium.
the established theory of spiral waves is mostly empiri
and gives neither quantitative predictions nor general und
standing on how to control the spiral waves dynamics, wh
is important for practical applications.

As a model self-organizing structure, spiral wave demo
strates a remarkable stability, just changing its rotational
quency and core location, i.e., drifting, in response to sm
perturbations of the medium. The asymptotical theory of
spiral wave drift, proposed in Ref.@14# and shortly described
below, is based on the idea of summation of elementary
sponses of the spiral wave core position and rotation phas
elementary perturbations of different modalities and at d
ferent times and places. This is mathematically e

i-

n,

FIG. 1. ~Color! The ‘‘Achilles’ heel’’ of the spiral wave. Spiral
wave, shown by vertical displacement of the surface, and its
sponse functions, shown by color, in the complex Ginzburg-Lan
equation~9! at a50.5,b50. Red, green, and blue components re
resent the temporal RF (W0) andi-real andi-imaginary parts of the
spatial RF (W1), the gray color outside the core is zero of a
components of the response functions.
©2003 The American Physical Society21-1
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pressed in terms of the spiral waveresponse functions~RFs!
so that the spiral wave is insensitive to small perturbation
the region where its RFs are equal to zero. As experime
data and computer simulations showed spiral waves inse
tivity to distant events, it was conjectured@15# that the RFs
must decay quickly with distance from the spiral wave co
In other words, spiral waveslook like essentially nonlocal-
ized objects butbehaveas effectively localized particle
~Fig. 1!. Such awave-particle dualismhas not been found in
other macroscopic dissipative structures. To stress
uniqueness of this feature of spiral waves, let us compa
with solitons. Solitons are localized traveling solutions
certain nonlinear wave equations, and as such are o
viewed as both particlelike objects, as they are localized,
wavelike objects, as they are solution of wave equatio
One obvious difference from spiral waves is that solitons
observed in conservative equations and do not preserve
identity under perturbations: a generic perturbation of a s
ton solution leads to a nonsoliton solutions. For the pres
context more important is that the solitons are, by definiti
solutions that are essentially localized in space at every g
moment of time. This is different from spiral waves, whic
occupy the whole space, like, e.g., photons of a fixed
quency in quantum mechanics. In these terms, solitons
look and behave as localized, particlelike objects, and
only wavelike feature is their origin from wave equations

To confirm the wave-particle dualism of the smooth d
namics of spiral waves the response functions must be fo
explicitly and tried forquantitativeprediction of the spiral
wave drift due to various small perturbations in some p
ticular model medium. In this paper, we demonstrate t
using the complex Ginzburg-Landau equation~CGLE!,
which represents a typical self-oscillatory medium.

A. The asymptotical theory of spiral waves dynamics

A spiral wave solution to the system~1! has a form

Ũ5U„r~r2R!,q~r2R!1vt2F…, ~2!

wherer,q are polar coordinates, vectorR5(X,Y)† defines
the spiral wave core location, andF is initial rotation phase.
For rigidly rotating spiral in the unperturbed system~1!, at
e50, R andF are constants.

A perturbationehÞ0 could be a slight inhomogeneity o
the medium or an explicit time-dependent external forci
Typical effect of the perturbation is a slow change of pre
ously constant papametersR andF, i.e., spatial and tempo
ral drift of the spiral wave~the temporal drift is the shift of
the rotational frequency!,

] tF5eH0~R,vt2F!, ] tR5eH1~R,vt2F!. ~3!

The last equation can also be written as] tR5eH1(R,vt
2F), whereR[(R)x1 i (R)y ,H1[(H1)x1 i (H1)y .

The drift velocitieseH0 andeH1, in the first approxima-
tion, are linear functionals of the perturbation. BothH0 and
H1, after sliding averaging over the spiral wave rotation p
riod, can be expressed as
02622
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H̄n~ t !5einF R
t2p/v

t1p/vvdt

2p E E
R2

d2r

3e2 invt^Wn„r~r2R!,q~r2R!1vt2F…,h&,

~4!

whereWn called the spiral wave response functions,n50,
61 are the critical eigenfunctions

L̃1Wn52 ivnWn , n50,61. ~5!

of the adjoint linearized operator

L̃15D¹21v]u1S ]f

]uD 1U
u5U(r)

, ~6!

chosen to be biorthogonal,

^W j~a!,Vk~a!&5d j ,k , ~7!

to the Goldstone modes,

V052v21] tU~r,t !52]qU„r~r!,q~r!…u t50 ,

V6152
1

2
e7 ivt~]x7 i ]y!U~r,t !

52
1

2
e7 iq~]r7 ir21]q!U„r~r!,q~r!…u t50 , ~8!

which are the critical eigenfunctions,

L̃Vn5 ivnVn , n50,61,

of the linearized operatorL̃,

L̃5D¹22v]u1S ]f

]uD U
u5U(r)

.

The additive ‘‘2v]u’’ appears due to passing to the rotatin
frame of reference of the spiral wave, so thatu5q(r)1vt is
a polar angle in this frame of reference where the unp
turbed spiral wave is stationary. Note that the RFs do
depend on time, i.e., they are functions of the coordina
only, in this frame of reference as well.

So the main point of the theory is the reduction of d
scription of the smooth spiral waves dynamics from the s
tem of nonlinear partial differential equations~1! to the sys-
tem of ordinary differential equations~ODE! ~3! describing
the movement of the core of the spiral and the shift of
rotational frequency, if the spiral wave response functio
are known explicitly.

The ‘‘particle’’ side of spiral wave dynamics, the possib
ity of their description in terms of ODE instead of origin
partial differential equations, has an important related asp
An ODE description is used in the theory of meander, i
nonstationary rotation of spiral waves, which is possible
some reaction-diffusion systems even in the absence of
perturbations@16–18#. The description of these complex mo
1-2
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FIG. 2. (a50.5, b50): ~a! Functionsa,c8 defining the spiral waveU; componentsA,B of the RFs temporal modeW0 and components
C,D,E,F of the RFs spatial modeW1, as functions ofr. ~b! The I -real components of the spiral wave (U1), of the temporal RF (W0), and
of i-real andi-imaginary parts of the spatial RF (W1), shown as density plots. TheI -imaginary components are the same functions rota
by p/2. Spatial region on this and subsequent figures is (x,y)P@220,20#3@220,20#. The homogeneous shades of the gray on
peripheries ofW0,1 correspond to zero, i.e., all the RFs are essentially localized near the rotation center.
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tions turned from pure phenomenology to theory after
discovery that the transition from stationary rotation to bip
riodic meander happens as if it was a Hopf bifurcati
@19,20#. A model ODE system describing the specifics of th
bifurcation@21# revealed the role of the Euclidean symme
of the unperturbed reaction-diffusion system in the pla
The explicit decomposition of the reaction-diffusion syste
by this symmetry group@22# to the motion of the tip of the
spiral, and evolution of its shape, confirmed the ODE
scription of the motion of the tip, but left aside the questi
of the origin of the low-dimensional behavior of the spir
shape. There were impressive attempts to build rigor
bifurcation-theoretic description of the shape dynam
@23–27#, where the low-dimensional behavior would be
natural consequence of the finite dimensionality of the ce
manifold of the corresponding bifurcation. However, it h
been soon realised that a cornerstone assumption of this
proach about the spectrum of the linearized operator is su
invalid @28#. Thus, for now the low-dimensional behavior
meandering spirals remains unexplained. Formal comb
tion of the low-dimensional description of meander and
the perturbative dynamics of spiral waves gives predicti
agreeing with direct numerical simulations@29#. This indi-
cates that the low-dimensional, particlelike behavior of s
rals due to their internal dynamics, i.e., meander, and du
external perturbations, i.e., drift, may have similar natu
and the localization of response functions may be the m
ing link required for successful completion of the theory
spiral wave meander.

II. SPIRAL WAVES AND RESPONSE FUNCTIONS
IN THE CGLE

The perturbed complex Ginzburg-Landau equation i
two-component reaction-diffusion system, which can
written in a vector form,
02622
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] tu5u2~12Ia!uuuu21~11Ib!¹2u1«h, ~9!

where u,hPR2, a,bPR, I5@1 0
0 21#, and nonlinear opera

tions defined accordingly@30#.
It is a universal equation that describes any reacti

diffusion system in the vicinity of the Andronov-Hopf bifur
cation of the reaction kinetics. The steadily rotating spi
wave solutions for the CGLE was studied by Hagan@31#,
and in the frame of reference rotating with the spiral wa
angular velocityv they have the form

U~r,u!5eIuP~r!. ~10!

Function P(r)5a(r)eIc(r)PR2 determining the shape o
the spiral, the spiral wave asymptotic wave numberk, and
rotational angular velocityv are solutions of the nonlinea
boundary and eigenvalue problem,

~11Ib!S P91
1

r
P82

1

r2
PD 1@12Iv2~12Ia!uPu2#P50,

~11!

P~r→0!;r, ~12!

P~r→`!'A12k2exp@ Ikr1o~r!#@11o~1!#, ~13!

v5a2ak22bk2. ~14!

Thus, the shape of the spiral is defined by the real functi
a(r) andc(r) found numerically and illustrated on the Fig
2~a!, for the model parametersa50.5, b50. The corre-
sponding spiral wave is illustrated on the Fig. 2~b! @as
U1(x,y)].

The spiral wave response functions in the CGLE, cons
ered in the spiral corotating frame of reference, depend
spatial coordinates in the following way:
1-3
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I. V. BIKTASHEVA AND V. N. BIKTASHEV PHYSICAL REVIEW E 67, 026221 ~2003!
Wn~r,u!5e(I2 i n)uQn~r!, n50,61, ~15!

where functionsQn(r) satisfy the linear boundary valu
problems,

~12Ib!H Qn91
1

r
Qn81

~ I2 in !2

r2
QnJ

1$11Iv2a2@2~11Ia!1~12Ia!e2IcĈ#%Qn50,

~16!

uQn~r→0!u,`, ~17!

Qn~r→`!→0. ~18!

Here, i is the imaginary unit,Ĉ5@0
1

21
0 # is the operator ofI

conjugation@30#.
The spiral wave response functions localized in the vic

ity of the spiral core correspond to the solutionQn of the
system~16–18! exponentially decaying atr→`,

Qn~r!;eLr, ~19!

whereL5L„a,b,k(a,b)… is the root of the cubic equatio

L31pL1q50, ~20!

p52
ab211k2~312b22ab!

11b2
,

q524k
~a1b!~12k2!

11b2
, ~21!

with the negative real part closest to zero. We shall call t
root the principalL.

The vector functionW0 is called the response function
temporal mode and has two real components determining
drift of the spiral wave rotation phase due to perturbation
either of two components of the vectoru. The vector func-
tion W1 is called the RFs spatial mode and has two comp
components describing the reaction of the spiral wave c
location to perturbations, and this reaction can be in t
directions,x andy. Thus, corresponding functionsQn(r) can
be represented as

Q05~A1IB!exp~ Ic!1, ~22!

Q15~C1ID1 iE1 i IF !exp~ Ic!1, ~23!

whereA,B,C,D,E,F are real functions of one variabler,
and15@0

1# is the unit vector.
The functionsA,B,C,D,E,F have been found numeri

cally and, for the model parametersa50.5,b50, are shown
in Fig. 2~a!. It can be seen that the components of both te
poral and spatial modes of the RFs do decay quickly, be
essentially nonzero only in the vicinity of the spiral wa
core. The reconstructed shape of the RFs in the (x,y) plane
is shown in Fig. 2~b!.
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III. THE RF DEPENDENCE ON THE MODEL
PARAMETERS

As there is no general theorem guaranteeing the local
tion property of the response functions, it is important
understand how universal is it, and whether it will be o
served typically, or only at special values of the model p
rametersa and b. Since the complex Ginzburg-Landa
equation is invariant on the transformationa°2a,
b°2b, u°ū, h°h̄, its parametric portrait is central sym
metric in the (a,b) plane, so we considered onlya>0 re-
gion without loss of generality.

The explored region in the (a,b) parameter plane is
shown in Fig. 3, where the points mark the values ofa and
b at which computations have been done and existenc
localized RFs confirmed. In the vicinity of the linea1b
50, the principal rootL of the characteristic equation~20!
becomes very small,L}2(a1b)k, while k is exponen-
tially small in (a1b), which makes the computations esp
cially difficult. This is why there are not so many explore
points nearby the line. Calculations at largera and b were
not made, as at these parameter sets the spiral waves ar
stable@31,32#, and their slow dynamics does not make sen

Point (0.5,0), illustrated above on Figs. 1 and 2, belon
to the region between the linesq50 andD50 and corre-
sponds to the stable spiral wave with monotonically dec
ing response functions.

A. Change of the winding of spirals

The sign of the spiral wave asymptotical wave numbek
changes crossing the linea1b50. This is why the winding
of the spiral on the Fig. 4~a! is opposite to that on the othe
four Figs. 2~b! and 4~b!–4~d!, while the localization property
of the response functions does not depend on the directio
the apparent rotation of the spiral.

B. Delocalization of the response functions
for long asymptotic wavelengths

Near the linea1b50 the spiral wave asymptotic wave
length grows to infinity, and, at an intermediater, the spiral

FIG. 3. The explored region of (a,b) plane. Filled circles: pa-
rameter values for which the RFs have been calculated. Squ
parameter values analyzed in this chapter. Lines:q50, degenera-
tion of spiral;D50, transition from monotonic to oscillating RFs
p50, the Eckhaus instability. Here,p, q, andD are the coefficients
and the discriminant of Eq.~20!.
1-4
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FIG. 4. The spiral wave and RFs at~a! a
50.1, b520.9; change of the winding of the
spiral, ~b! a50.1, b50.1; degeneration of the
spiral with corresponding delocalization of its re
sponse functions,~c! a50.5, b50.5; oscillating
response functions,~d! a51, b51; spiral wave
and its response functions featuring the ‘‘halo
after the Eckhaus instability line.
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is logarithmic rather than Archimedean@31#. This is indeed
seen on the Fig. 4~b!. Following the terminology offered in
Ref. @33#, the CGLE becomes a quasigradient system in

vicinity of the line a1b50, henceL̃1} L̃̄, and so here we
may expect the RFsWn to become similar to the Goldston
modesVn . In this limit, in the region 1!r!k21 the ampli-
tude ofW0 remains approximately constant as well as tha
U, while W1 decays asr21. This is consistent with the
behavior ofWn seen on Fig. 4~b!.

C. Transition from monotonic to oscillating response functions

The line, where the discriminant of the cubic equati
~20! becomes equal to zero,D[(p/3)31(q/2)250, sepa-
rates on the (a,b) plane spirals with monotonically and os
cillatory decaying response functions. Figures 4~c! illustrates
what is happening in the region with the oscillatory decre
ing RFs. The qualitative change in the behavior of the RF
strengthened by their slower decreasing, so the resp
functions in Fig. 4~c! extend over the spiral first winding
while localization of the monotonicly decaying RFs in Fig
2~b! and 4~a! was almost entirely within the very tip of th
spiral.

Another new feature is the ‘‘halo’’ especially well seen
Fig. 4~d!, i.e., the region around the innermost core wh
02622
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the RFs have the opposite sign. It allows us to predict qu
tative changes in the spiral waves behavior near the con
inhomogeneities or due to the localized external pertur
tions on the different sides of the lineD50 in the parameter
plane. For example, there may occur a specific entrapmen
the spiral waves near inhomogeneities of a special type
case of a smooth perturbation the difference in the sp
waves behavior will not be seen.

D. The Eckhaus instability line

The next special line in the parameter plane (a,b) is the
Eckhaus instability line,p„a,b,k(a,b)…50, where the as-
ymptotically plane waves emanated by the spiral beco
exponentially unstable with respect to the long-wave lon
tudinal modulations. Precisely speaking, after that line sp
waves in an infinite medium must be unstable as well. Ho
ever, as seen in Fig. 4~d!, the response functions continue
preserve the localized character in that region, though t
spatial extension grows further.

IV. DRIFT OF SPIRAL WAVES

A. Resonant drift of spiral waves

The spiral wave resonant drift was predicted for the fi
time in Ref. @34#, then demonstrated in an experiment wi
1-5
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light-sensitive modification of the Belousov-Zhabotinsky r
action @35# and recently reported in a thin layer of liqui
crystal under rotating magnetic field@36#. The phenomenon
consists of the following: if parameters of the mediu
change periodically in time with the period close to the sp
wave rotation period, then the spiral wave drifts along
circle of a large radius or, if the two periods coincide, alo
a straight line. This has a very simple ‘‘physical’’ interpret
tion: if external perturbations occur at the same phase of
spiral wave, they cause its shifts in the same direction, n
shift parallel to the previous. Thus, the resonant drift is
consequence of the symmetry and is universal for all sp
waves. The spiral wave resonant drift in the CGLE is illu
trated on Fig. 5.
c
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As the resonant drift of spiral waves is due to small b
nonlocalized perturbation of the medium, it was crucial to
the RFs for the quantitative prediction of the drift velocity

We consider time periodic external perturbation of t
form

h~ t !5cos~vt !1, ~24!

where v is the own frequency of the unperturbed spir
wave.

Substitution of the perturbation~24! and the expression
~15! and ~23! for the RFs in to Eq.~4! together with the
biorthogonality condition~7! gives the resonant drift velocity
u] tRu5euH1u5eU E0

`

@~C2F !cosc2~D1E!sinc#2 i @~C2F !sinc1~D1E!cosc#rdr

2E
0

`

†aF2r~a8C1ac8D !1 i @aD1r~a8E1ac8F !#‡dr
U . ~25!
d,
ory
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Thus, for known Hagan spiral wave solutiona,c and com-
ponents of the spatial response functionC,D,E,F, formula
~25! gives theoretical prediction for the resonant drift velo
ity. At a50.5 andb50 it gives the normalized drift velocity
u] tRu/e5uH1u'2.8423.

To compare the prediction with drift velocities obtaine
from computer simulations, direct computer experime
were made using the CGLE~9! with the perturbation~24! of
the amplitudee up to 0.1. The particular details of the e
periment can be found in Ref.@37#. In an agreement with the
theory, the resonant drift velocity was approximately prop

FIG. 5. Resonant drift of the spiral wave in the CGLE.a
50.5, b50, medium size 1003100, perturbation amplitudee
50.05. The thin ‘‘cycloidal’’ line—trajectory of the spiral tipu
5(0.9,0)T, the thick line — trajectory of the centeru5(0,0)T.
-

s

-

tional to the perturbation amplitudee. In fact, this propor-
tionality is obeyed quite well even fore50.05, while at this
amplitude the drifting spiral wave is considerably deforme
see Fig. 5, and due to the deformation the perturbation the
should not be valid. This is because the deformation is du
the relative motion~‘‘autowave Doppler effect’’@38#!, which
affects the periphery of the spiral, whereas the velocity of
drift is determined by the events in the core, where the
sponse functions are nonzero and the spiral wave defor
tion due to the Doppler effect is not significant yet at th
perturbation amplitude.

The normalized ‘‘experimental’’ drift velocity obtained
from the direct computer simulations ate50.01 was
u] tRu/e'2.9635, i.e., just'4% difference from the theoret
ical prediction. The crucial parameter limiting the conve
gence of the experimental drift velocity to the theoretic
prediction was the spatial discretization step of the numer
simulations, as its reducing leads to a necessity of signific
computational resources. We showed in Ref.@37#, that the
prediction of the asymptotical theory agrees with the res
of the direct numerical simulations, up to the precisi
achievable by these simulations.

B. Inhomogeneity-induced drift of spiral waves

If the perturbation does not depend on time explicitly a
explicitly depends on the spatial coordinates, i.e., there
system with spatially inhomogeneous properties

h~u,r,t !5h~u,r!, ~26!

then spiral waves drift as well. The dependence on the sp
coordinates in the laboratory frame of reference leads t
periodical dependence on time in the frame of reference
1-6
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tating with the spiral wave. As the perturbation is synch
nous with the rotation, the resonance conditions are fulfil
automatically.

Spiral wave drift due to media inhomogeneities is w
known: it was studied in numerical simulations@39# and then
in the experiments with the heart tissue@40,41# and in the
Belousov-Zhabotinsky reaction@42#. Attempts to explain or
predict the direction and velocity of the drift have been ma
@39,43–45#, but they were based on various phenomenolo
cal arguments applicable to narrow classes of autowave
dia with special properties, while the response functio
method allows to predict the spiral wave drift velocity due
weak media inhomogeneities without any restrictions on
type of inhomogeneity.

Below, we consider drift of the spiral waves in the CGL
caused by two different types of inhomogeneity of the mo
parameters. The first inhomogeneity is defined by pertur
tion

h5Ixuuu2u ~27!

corresponding to the gradient of the coefficient of nonlin
dispersiona, ã(r)5a1ex.

The second inhomogeneity is due to the gradient of
frequency of synchronous oscillations of the medium defin
by the perturbation
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h5Ixu. ~28!

Without any restriction of generality, it is enough to co
sider the cases, when the spiral wave rotation center has
coordinateX50; otherwise, it is sufficient just to move th
frame of reference and to consider the problem with the c
respondingly changed parametera.

Formally speaking, in infinite media, the asymptotic
theory was developed for, both perturbations~27! and ~28!
are not small, as for big enoughx and any small parametere
the producteh will be finite and arbitrarily large. But due to
effective localization of the response functions, just pert
bation in some finite vicinity of the spiral core is essentia

Following the perturbation theory, in the first order one
the functionu(r,t) in Eqs.~27! and~28! is changed onto the
unperturbed spiral waveU of Eq. ~10!, so both perturbations
~27! and ~28! may be written in the form:

h5r cos~u2vt1F!IeI [u1c(r)]an~r!, ~29!

wheren53 for Eq. ~27! andn51 for Eq. ~28!.
Substitution of the perturbation~29! and the expression

for the response functions~15! and Eq.~23! into Eq. ~4!,
taking into account normalization Eq.~7!, gives the drift ve-
locity
] tR5] t~X1 iY!5

eE
0

`

@D2 iF #anr2dr

E
0

`

@aF2r~a8C1ac8D !1 i „aD1r~a8E1ac8F !…#dr

, ~30!
c-
r
the

the
able

-
al
to

re-
er
where convergence of the integrals over the whole pla
despite of the growing factorr2, is provided by the expo-
nential decay of the spatial RFs componentsC,D,E, andF.

C. Drift due to gradient of the coefficient of nonlinear
dispersion

For the stable spiral wave with the monotonically deca
ing response functions, ata50.1,b50.6, prediction~30!,
n53, gives components of the normalized drift veloc
equal to] tX/e'21.958,] tY/e'229.137.

To check the prediction, the CGLE~9! was numerically
solved with the perturbation~27! of amplitudee51024. The
details of the numerical simulations are fully described
Ref. @46#. The components of the normalized drift veloci
measured in the direct numerical simulations were] tX/e
'21.923, ] tY/e'229.09, so the difference from the the
oretical values was less than 2%. Thus, for the spiral w
drift caused by this type of inhomogeneity of the medium
asymptotic theory prediction is in a very good quantitat
agreement with the results of direct numerical simulation
e,

-

e
e

D. Drift due to the gradient of the linear frequency

The inhomogeneity~28! was chosen to compare predi
tions given by Eq.~30! with the results obtained by anothe
method essentially using linearity of the perturbation and
special properties of the CGLE@45#.

We calculated functionsa,c determining spiral wave and
components of the spatial RFs,C,D,E,F, for parametera in
the interval@21,0# at fixedb521. This interval crosses the
Eckhaus instability line ata'20.4, so that its beginning is
before the line and corresponds to a stable spiral, while
end is quite beyond the line and corresponds to an unst
spiral.

On the interval 0<a<0.8, the drift velocities calculated
using Eq.~30!, n51, are indistinguishable Ref.@46# from
the results of@45#. For 0.8<a<1 there were no experimen
tal results published, as it is difficult to make numeric
simulations in this particular region of parameters due
Eckhaus instability of the spiral, while from prediction~30!,
n51, follows that] tX changes the sign ata'20.87. This
example shows the qualitative advantage of using the
sponse functions to predict the spiral wave drift velocity ov
numerical simulations.
1-7
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V. CONCLUSION

A spiral wave is a macroscopic process of se
organization that potentially involves the whole mediu
The medium affected by a spiral wave splits roughly on
two unequal parts, the core of the spiral and the peripher
small perturbation of the core can affect the rotational ph
and location of the center of the spiral, and information ab
that is subsequently propagated throughout the medium
eventually leads to the shift in space of the whole patte
however, large the medium can be. In contrast, small per
bations outside the core can only have local and temp
effect, as they are over-ridden by signals from the core.
result of that separation of functions between the differ
parts of the medium is the classical~nonquantum! wave-
particle dualism, when the spiral wave affects the medium
a delocalized, wavelike entity, and is affected by any app
forcing as a localized, particlelike object. Mathematica
this is expressed by a peculiar localization property of
spiral wave response functions.

For the model oscillatory medium described by the co
plex Ginzburg-Landau equation, we have demonstrated
the spiral wave response functions essentially differ fr
zero only in the very vicinity of the spiral wave core for a
sets of the model parameters stable spiral waves exist
The analysis of the response functions can identify the qu
tative changes in the particlelike behavior of the spirals.
nc

n

m

p

c.
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approaching to the special regions in the parameter pla
such as the region of absolutely unstable spirals or the qu
gradient line, is accompanied by characteristic changes in
shape of the RFs. This correlation may be used to predict
explain new qualitative features in the smooth dynamics
spiral waves. Of the most importance is the response fu
tions universal ability to make quantitative predictions of t
spiral wave drift due to small perturbations of any natu
which makes the RFs as fundamental characteristics for
ral waves as mass is for the condensed matter.

Thus, the spiral waves ‘‘wave-particle’’ dualism explain
their drift due to weak perturbations of the medium, provid
a key for understanding more complicated motions of sp
waves, and gives new ideas on how to control the proc
The latter is vitally important for practical applications of th
theory of spiral waves.
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