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Information capacity and pattern formation in a tent map network featuring statistical periodicity
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We provide quantitative support to the observation that lattices of coupled maps are “efficient” information
coding devices. It has been suggested recently that lattices of coupled maps may provide a model of informa-
tion coding in the nervous system because of their ability to create structured and stimulus-dependent activity
patterns which have the potential to be used for storing information. In this paper, we give an upper bound to
the effective number of patterns that can be used to store information in the lattice by evaluating numerically
its information capacity or information rate as a function of the coupling strength between the maps. We also
estimate the time taken by the lattice to establish a limiting activity pattern.
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Coupled map lattice€CMLs) have been recently elevated strength of the interaction which couples the different maps
to the status of paradigm models for studying spatially ex-of a CML together, butb) increasing the coupling strength
tended systems composed of interacting units or agents suépo much is likely to reduce the overall activity and variabil-
as populations of biological specigk 2] and plasma physics ity of the CML, and thereby reduce its information capacity.
[3] (for a review see Refl4]). From the point of view of Understanding how the coupling between the maps of a
neural computation, CMLs also provide an interesting alterCML influences both of the above competing phenomena
native to standard neural networks since they are capable §fapid convergence and high capagity an important step
reproducing three important dynamical features of experifoward establishing whether or not CMLs constitute a plau-
mentally observed populations of neurors: a rapid re- sible m_odel of neural mformgmon copllng_ and storage. _
sponse to stimuli(ii) a highly irregular or “chaotic” behav- In this paper, we study this technical issue by comparing
ior of single neurons or small ensembles of locally coupledWO quantities which respectively measure the importance of
neurons, andii ) a temporal cycling of the statistical activity ©ach of the two competing phenomena. The first quantity is
of the entire population of neuroristatistical periodicity. t_he |nf<_)rmat|on capacityor information ratg which is de_- _

In a recent pap€2], Milton and Mackey have argued that fined, in the case of a CML, as the entropy of the joint
these three properties of CMLs may provide a basis for hyprobap|lly density describing the steady—state_ activity of_the
pothesizing neural information encoded in the spatiotempoCML divided by the number of maps composing the lattice.
ral states of ensembles of neurons or in the overall distripu] h€ information capacity, as we will see, is a direct correlate
tion of activity of these neuronénsemble coding rather ~ Of the number of steady-state patterns which can be reached
than in the temporal dynamics of individual neurdtempo- by any initial states of the CML. The other quantity of inter-
ral coding. Many aspects of biological neurons remain to be€St iS the locking time of the network of maps, which is
studied in order to prove or disprove this conjecture. How-SImply the time taken by the CML to reach a limiting activity
ever, CMLs provide on their own a tractable model with Pattern averaged over many initial configurations of the
which many ideas and observations about neural informatioffML- . . i
processing can be considered. In addition, it is suggestive to [N the following, we evaluate both quantities numerically
think that the chaotic behavior of individual neurons, mod-for & specific CML consisting afi<n tent maps arranged on
eled in CMLs at the level of the individual chaotic maps, is Square lattice. The temporal evolution of each map in time
responsible for the high variability of activity patterns ob- iS given by the equation
served experimentally in ensembles of neurons, and for the
high information capacity of these neuronal systems. Intu- e - B o
itively, however, there seems to be a trade-off involved, X't’if(l—f)S(X{’JHZ[S(Xl_l'J)JFS(X't’J_l)JFS(X{H’J)
namely, (a) the ability of an ensemble of chaotic maps to
converge rapidly to a steady state is proportional to the +S(Xit,j+1)], 1)
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FIG. 1. Dynamics generated by an isolated tent map for a pa-
rametera= 2. (a) Time series andb) corresponding histogram

representation obtained from a simulation with 40 000 steps. FIG. 2. Bifurcation diagram of the tent map showing the banded

structure changing with varying parameteiFora= /2, two bands
merge to a continuum with an underlying structure not visible in

ax O<x<£ this plot.
T2
S(x)= 1 (2) [2,6,7,9. Specifically, for 2270 4 < 212" the densities
a(l-x), Z=x=<L of the tent map have periodicity with peridd=(n+1) for
n=1,2,....Here, we always taka= 2 for our numerical

o . . simulations and computations.
The indicesi,j above denote the position of a specific map  the advantage of examining the density evolution of an
or pixelin the lattice (3=i,j=n), while t denotes the time.  gnsemple instead of the temporal behavior of a single trajec-
The coupling parameteee[0,1] sets the interaction be- (o of an element originates in the different convergence
tween the different pixels which, we assume, interact onlyimes of these two processes. Typically the rate of conver-
with nearest neighbor@eriodic boundary conditions are im- gence of densities is many orders of magnitude larger than
posed. Finally, ac[0,2] is a parameter that controls the ¢5, 4 single trajectory2].

properties of the tent map. o If an ensemble of noninteracting elements is considered, a
__To properly understand the significance of the two quanpjstogram can be used to display the time evolution of the
tities that we intend to calculaténformation capacity and peqwork activity. We do this by taking a large number of tent
locking time), and understand how these two quantities cannaps with different initial conditions. For each time step, we
compete with each other, it is instructive to review the prop-se the large number of state values to plot the normalized
erties of the isolated tent m&(x), and, by a simple gener- pistogram and follow thigcollapsed density as a function of
alization, of the CML withe=0 (more information can be {ime (Fig. 3). The resulting density shows a cycle with period
found in Ref.[5-7]). More specifically, we have that the 2 |5 spite of the chaotic behavior within the bands, the
dynamics of the tent map alone is characterized by &anded structure shows a support of the system densities as

Lyapunov exponent equal todnThus, for 0<a<1, all or-  they jump from one band to the other from one time step to
bits of the map converge to the unique fixed poifit=0  he next.

independent of the value of the initial conditions, while for | response to a given initial condition, the netwdEq.

a=1, all initial points of the map are fixed points. When 1 (1)] relaxes into a structurally ordered stable activity pattern

<as2, the dynamics of the tent map switches abruptly to gFig. 4). Depending on the coupling strength, a stable activ-
chaotic regimgsee Fig. 1 characterized by a banded bifur-

cation diagram(Fig. 2) and a unique unstable fixed point

located atx*(a)=al/(a+1). It is useful to note that the
invariant density of the tent map, i.e., the density function of
the invariant measure, is supported on subsets of the interval m
=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

[a(1—a/2),a/2] for a<y2, and has nonvanishing support
on[a(l—a/2),a/2] for a= 2 [8].

Behind the chaotic behavior of the temporal trajectory, the  FIG. 3. The collapsed density prepared by iteratihy
underlying regularity of the dynamics apparent in the banded- 100 000 maps and calculating the density of states at each time
structure of the bifurcation diagram is the signature of astep. The interva]0.2,0.9 is indicated by the horizontal line. The
property called statistical periodicity, which can be observednitial values were uniformly distributed on the intery@.3,0.7
in the density distribution of an ensemble of tent mapsand the densities are normalized. Parameters/2.
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FIG. 4. Dynamic behavior of the tent map network in responseanq size of the clustedower ploy. The temporal spread of a tight
to different inputs, Eq(1). After a small number of steps, the net- gensity distribution of initial conditions for one network element is
work locks into a stable activity patter(a) initial pattern randomly  |,sed to calculate the Lyapunov expongt]. The cluster size and
chosen from the intervdl0,1], (b) another random initial pattern, number of clusters is calculated using a Hoshen-Kopelman algo-
(c) same as ir(b) but with an additional stripe of initial value 0.5, jthm [11]. Coarse grained network activity and 10 000 simulations
(d) same as irtb) but with an additional cross of value 0.5. The plot yith different seeds for the random number generator for each cou-

represents system states=[0,1] for the initial patterns ank  pjing strength are used. For the cluster detection algorithm, we take
el[a(1—-a/2),a/2] for the simulated network patterns as indicated jnig account open boundary conditions.

by the bars below in the figures. Parameters:0.2, a= 2.
coarse grained state, increases with increasing coupling
strengthe (Fig. 5 lower ploj. In the case of coupling

ity structure is rapidly established and different initial pat- > 0-4, the network tends to form one large cluster, while for
terns converge to different distinguishable limiting activity COupling e<0.1 the activity pattern consists of up to 100
patterns. The period-2 oscillation observed def /2 in the clusters with a mean cluster size of 8—11 elements per clus-
collapsed density of the ensemble of uncoupled tent map@r- ) ) o
causes, in the coupled case, a switching from the activity USing the binary activity pattern, we are also able to cal-
pattern to its inverse pattern within one sigiig. 4). culate the probability of finding one element of the network
Anumerical calculation of the Lyapunov coefficient of the in &n up or down state if the neighboring elements are in a
single network element dynamics shows that even when theértain state configuration. This is the conditional probability
network is locked to a periodic activity pattern, the singledistributionp(x|xqy), wheir_ex indicates the state of a certain
element dynamics are still chaoiiig. 5. For the calcula- €lement of the network™ andx,, the states of the next
tion of the Lyapunov exponent, the evolution of the trajec-neighborsx'™=J,x" ™=, x! =5 x"I= % The conditional prob-
tory of one network element as a function of time is inves_abmty distribution can be calculated by eVaIUat|ng the five-
tigated. The evolution is displayed using a histogram on thé@oint joint probability distributionp(x,x,,) and the four-
interval[ 0,1] which is divided into 1000 bins. Starting with neighbors —joint  probability  distribution  p(x,n)
a tight density distribution of initial conditiongwithin one = =xP(X,Xan). Hence, we obtaifi12]
bin) for one element of the network, the temporal spread of

this density distribution is quantified by the Lyapunov expo- P(X|Xnn) = p(X_X““) (3)
nent. A total of 20000 simulations are used to obtain the P(Xnn)

histogram of state evolution for one network element as a

function of time[10]. Note that the theoretical value of the a

Lyapunov exponent in the uncoupled case ia#0.347. r RN

A coarse graining approach allows us to separate the .
structure of the network activity, the fingerprint of statistical ©riginal Sl i
periodicity, from the chaotic activity of the network elements Pa"e™ AL
and represent it in a binary activity pattern. To do so, we F P
must choose an appropriate threshold for the coarse graining
The unstable fixed point* =a/(a+ 1), fora=+2 where the ~ binay kB ia
two bands merge, seems to be a promising choice as P¥™ 't'-l;
threshold for the coarse graining. Figure 6 shows the result-
ing binary pattern that is used to calculate the cluster size of FIG. 6. Coarse grained network activity pattern. The threshold
the network. The mean size of the clusters, which is thealue used for the extraction of the binary pattern is the value of the
mean number of connected network elements with the samenstable fixed poink*.
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instance by gzipto the files containing the binary activity

0.7
{012 patterns. This method of calculating the entropy is asymp-
06 totically equivalent to the statistical method of evaluating
osh 1Pz entropy when applied to infinitely long streams of data. The
ol § resulting compression ratio scaled in natural units validates
~‘§'o.4 0082 our previous result$Fig. 7 dotted ling. Furthermore, these
3 o.osg results show that restricting the computation of probabilities
§°’3 E to the next nearest neighbors is justified. These calculations
® ozt 0.04 8 are of use only if the structure of the network activity is
A stable and if the network activity rapidly relaxes onto the
0.1 0.02 stimulus-dependent final state.
ol To investigate the time evolution of the activity pattern,
10 we studied the correlation between the temporal coarse

0 o1 Oﬁoupﬁngg‘a 04 03 grained activity pattern and the limiting binary activity pat-
tern (in our case after 20 000 simulation stgpé/e used the
FIG. 7. Entropy per unit in natural unit®pen circle, full ling correlation function
and the inverse of the locking timeross, full ling as a function of
the coupling strengtle. For the entropy calculation we evaluated
the limiting pattern(after 20 000 simulation stepsf 20 000 simu-
lations with different random initial conditions for each coupling

strength. Ten remote elements of the network are used to calcuIaB h istical iodici ith iod 2 wh
the conditional probability distribution. The dotted line indicates the ue to the statistical periodicity with perio when

entropy estimation obtained by using compression algorithms. For- V2, the correlation oscillates with a period 2 and if the

the locking time we evaluated the dynamics of 500 simulations withn€twork locks to its limiting pattern, the correlatio(t) os-
different initial conditions. cillates between the two values 0 and 1. To define the lock-

ing time, we detected the first time step at which the corre-
lation r(t) was found to be smaller than a threshold value
The nearest neighbor approximation is valid since only near0.01). This value can be interpreted as the reaction speed of
est neighbor coupling is considered. The conditional probthe network in arbitrary units. In Fig. 7, it can be seen that
ability distribution allows us to calculate the entropy per net-the locking time increases with increasing coupling strength,
work element, and the formation of larger clusters in the strongly coupled
regime takes several hundred simulation steps. The fastest
network response is found in the weak coupling domain
E 2 P(X[Xan)In P(xX|Xir)- “) where the cllzster size is small. Even in the unrc):ougpled case,
fast locking is observed which is induced by the effect of
The entropy of a single network element calculated as destatistical periodicity.
scribed above gives a value for the uncertainty of the state of In conclusion, we have shown that if the collapsed density
the element with respect to the states of the neighboring elisplays statistical periodicity, then the information process-
ements(Fig. 7). When we investigate binary states, we ob-ing task is supported by two advantageous properties: the
tain a maximal uncertainty, or entropy, of In2 if the prob- collapsed density converges rapidly towards a structurally
abilities of finding the network element in the two states areordered stable state and the information capacity of a net-
equal. The higher the value for the uncertainty the higher thevork showing statistical periodicity is extremely high. The
information that can be obtained by knowing the state of thawo quantities, information capacity and locking time, do
network element. Hence, the entropy per network element ithndeed compete with each other, and there is an optimal
proportional to the information capacity of the network. value of the interaction parameter for which the lattice of
As can be seen on Fig. 7, the entropy per network unitoupled tent maps is capable of rapid convergence and si-
decreases here with increasing coupling strengsiiarting  multaneously possesses a high information capacity.
with a maximal entropy of about In 2 in the uncoupled case. Our investigations of a tent map network have also shown
For weak coupling, the complexity of the local behavior isthat despite the existence of chaotic temporal behavior in the
preserved, which results in a high entropy value, while forsingle elements, the network shows several interesting be-
stronger network coupling, the binary states of the networkaviors. In response to an applied stimulus pattern the net-
units follow even more closely the corresponding states ofvork relaxes onto an activity pattern, which shows a unique
the neighboring network elements. and stimulus-dependent limiting structure, while the dynam-
In terms of information capacity, this means that for aics of the single elements are still characterized by a positive
certain coupling strength, say=0.1, we obtain an entropy Lyapunov exponenFig. 5. The analytic investigation of the
per unit ofH=0.6465. Hence, the 4040 network we have dynamics of an isolated tent mdg] provides a way to
studied is able to realize!®/n2~21500 gifferent patterns coarse grain the activity pattern of the network into a binary
in response to different initial patterns. We can also obtain apattern through the choice of a threshold value. The resulting
upper bound for the information that a pattern can store byinary pattern was studied in terms of its information capac-
applying the compression algorithm LZT7Z3,14] (used for ity. The entropy of the single elements embedded in the net-

2} [Xiihiting— X" (D)2 (5)

Z|H

Xnn
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work decreases with increasing coupliagFig. 7). The un-  an activity pattern? What reads the code? Delayed systems
derlying reason for this behavior is a variation in the mearhave a special ability to detect periodicity. Due to this, we
cluster size, which increases with increasing couplingspeculate that neuronal networks involving time delays are a
strength until fore=0.5 only one large cluster is left. The promising candidate for a decoding device. How can experi-
evolution of the network activity is also characterized by thements be designed to answer these questions and to investi-
locking time, the number of steps required for the network togate the relevance of the tent map network results in a more
reach the limiting activity patterfwithin a certain approxi-  realistic neural network model? Experimental techniques
mation. By comparing this locking time with the informa-  ith high spatiotemporal resolution are necessary to investi-
tion capacity of the network, we have found that the besbate these questions.
performance of the network was in the weak coupling do-" pespite many open questions, networks utilizing density
main e=0.05. Indeed, in this domain the network has a highcoding and featuring statistical periodicity seem to be a
information capacity due to the high single element entropypromising candidate for answering questions about informa-
the cluster size is small and a high number of clusters guakion coding and storage in the nervous system since systems
antees a large number of possible limiting activity pattemsyith the properties we have examined have high information
Moreover, within 5-10 steps, the network obtains the limit-capacity and rapid convergence to limiting activity patterns.
ing unique activity pattern and oscillates between the pattern
and its inverse. This work was supported by MITACSCanadg the
These network characteristics, though advantageous forMatural Sciences and Engineering Research Council
coding mechanism, leave many questions unanswered abotNSERC Grant No. OGP-0036920, Canpdhe Alexander
the possibility that statistical periodicity be a viable mecha-von Humboldt Stiftung, Le Fonds pour la Formation de
nism for information storage in the nervous system. For in-Chercheurs et I'Aide da Recherche(FCAR Grant No.
stance, which part of the nervous system could detect sucB8ER1057, Quiged, and the Leverhulme TrugtK).
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