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Synchronization of coupled rotators: Josephson junction ladders and the locally coupled
Kuramoto model

B. C. Daniels, S. T. M. Dissanayake, and B. R. Trees*
Department of Physics and Astronomy, Ohio Wesleyan University, Delaware, Ohio 43015

~Received 9 August 2002; revised manuscript received 27 November 2002; published 26 February 2003!

We show that the resistively shunted junction~RSJ! equations describing a ladder array of overdamped,
critical-current disordered Josephson junctions that are current biased along the rungs of the ladder can be
mapped onto a Kuramoto model withnearest neighbor, sinusoidal couplings. This result is obtained by an
averaging method, in which the fast dynamics of the RSJ equations are integrated out, leaving the dynamics
which describe the time scale over which neighboring junctions along the rungs of the ladder phase and
frequency synchronize. We quantify the degree of frequency synchronization of the rung junctions by calcu-
lating the standard deviation of their time-averaged voltages,sv , and the phase synchronization is quantified
by calculating the time average of the modulus of the Kuramoto order parameter,^ur u&. We test the results of
our averaging process by comparing the values ofsv and^ur u& for the original RSJ equations and our averaged
equations. We find excellent agreement for dc bias currents ofI B /^I c&*3, where^I c& is the average critical
current of the rung junctions, and critical current disorders of up to 10%. We also study the effects of thermal
noise on the synchronization properties of the overdamped ladder. Finally, we find that including the effects of
junction capacitance can lead to a discontinuous synchronization transition as the strength of the coupling
between neighboring junctions is smoothly varied.

DOI: 10.1103/PhysRevE.67.026216 PACS number~s!: 05.45.Xt, 05.40.2a, 74.50.1r, 74.40.1k
us

e
ar
a
s
-

ac
th
ou

d

-
la

re
l

o

ion

the
e.

s
be

hat

al
n-
ase
st

n
ear
re-

trol
, so
av-
re
rs,

lev-
s

dy-
-
hers
od

ub-
I. INTRODUCTION

Systems of coupled limit-cycle oscillators are ubiquito
in nature, with many examples that have been studied
biology, chemistry, and physics@1,2#. One area of interest in
such systems of oscillators is the synchronization of th
frequencies and phases, a topic which has piqued rese
ers’ interest for decades and continues to be a rewarding
of study in many disciplines@3#. In particular, phase model
of the Winfree type@4# have been extensively studied. Win
free proposed a model in which the rate of change of e
oscillator’s phase in an array is dependent weakly on
difference between that particular oscillator’s instantane
phase and the phases of all the other oscillators. In one
mension, a generic version of this model forN oscillators is

du j

dt
5V j1 (

k51

N

s j ,kG~uk2u j !, ~1!

whereu j is the phase of thej th oscillator and can be envi
sioned as a point moving around the unit circle with angu
velocity du j /dt, V j is its angular velocity or frequency in
the absence of coupling to other oscillators,G(uk2u j ) is the
coupling function, ands j ,k describes the range and natu
~e.g., attractive or repulsive! of the coupling. The specia
case in whichG(uk2u j )5sin(uk2uj) ands j ,k5a/N, where
a is a constant, corresponds to the uniform, sinusoidal c
pling of each oscillator to the remainingN21 oscillators.
This mean-field system is historically known as the~globally
coupled! Kuramoto model~GKM!. Kuramoto was the first to
show that for this particular form of coupling and in theN
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→` limit there was a continuous dynamical phase transit
at a critical value of the coupling strengthac and that for
a.ac phase and frequency synchronization appear in
system@5,6#. Variations on the GKM are easy to imagin
For example, ifs j ,k5ad j ,k61 while the coupling function
retains the formG(uk2u j )5sin(uk2uj), we have the case
where thej th oscillator is sinusoidally coupled only to it
nearest neighbors in the array. Such a variation could
called the locally coupled Kuramoto model~LKM !. In the
case of the LKM, the lack of long range coupling means t
the system is unable to yield a finite value forac in the N
→` limit, a result that is true for any number of spati
dimensions@7#. As a consequence, analytic progress in u
derstanding the conditions required for frequency and ph
synchronization in the LKM is difficult to make, and mo
studies for whichs j ,k5ad j ,k61 involve solving Eq.~1! nu-
merically @8–10#.

Josephson junction~JJ! arrays are widely regarded as a
excellent example of a physical system of coupled nonlin
oscillators. Through modern fabrication techniques and ca
ful experimental methods, they offer a high degree of con
over the parameters that drive the dynamics of the array
that it is feasible to test specific aspects of an array’s beh
ior @11#. Also, from an applied physics perspective, they a
excellent candidates for submillimeter wave generato
which should be capable of transferring power at usable
els to a load@12–14#. Among the many different geometrie
of JJ arrays that have been studied, ladder arrays~see Fig. 1!
deserve attention for several reasons. They exhibit rich
namical behavior, including but not limited to time
dependent, spatially localized states, i.e., discrete breat
@15#. Their complexity is between that of better understo
serial arrays and full two-dimensional~2D! arrays ~e.g.,
square arrays!. In fact, a ladder can be considered as a s
©2003 The American Physical Society16-1
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unit of a square or rectangular array, and so the study
ladders could throw some light on the behavior of commo
fabricated and studied 2D arrays. Also, linearly stable ph
locking of the horizontal junctions in a ladder~see Fig. 1!, in
the absence of a load, is observed over a wide range o
bias currents and junction parameters, such as junction
pacitance@16#, so that synchronization in this geometry a
pears to be robust.

When a Josephson junction is biased in the voltage s
with a bias current greater than the junction’s critical curre
the junction’s gauge-invariant phase difference ‘‘overturn
and the junction’s dynamical behavior is described by a li
cycle in phase space. It is reasonable, then, to ask if the

FIG. 1. A schematic of a ladder array of Josephson juncti
with open boundary conditions,N horizontal junctions, andN21
plaquettes. The bias currentI B is inserted at the left node of eac
horizontal junction and extracted from the right node. A ladder w
periodic boundary conditions andN21 plaquettes would result by
connecting the two ends together. Then horizontal junctions lab
‘‘1’’ and ‘‘ N’’ would actually be the same junction.
02621
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some connection between arrays of coupled JJ’s and
Kuramoto models, which were proposed to study wea
coupled limit-cycle oscillators. In the mid 1990s it wa
shown that aserial array of zero-capacitance, i.e., ove
damped, junctions coupled to a load could be mapped o
the GKM @17,18#. The load in this case was essential
provide the coupling between the junctions. This work w
based on an averaging process, in which~at least! two dis-
tinct time scales of operation were identified: the ‘‘fast’’ tim
scale set by the overturning speed of the individual junctio
and a ‘‘slow’’ time scale over which junctions synchroniz
their overturning rates. By integrating the resistively shun
junction ~RSJ! equations describing the dynamics of th
junctions over one cycle of the fast motion what remain
was the slow dynamics, which described the synchroniza
behavior of the array.

It was shown in Ref.@17# that a spread in the junction
critical currents in the serial array corresponded to a spr
in the bare frequencies,V j , of the oscillators in the GKM.
Also, the oscillator coupling strengtha in the GKM was
found to depend on both the dc bias current driving the ar
and on the impedance of the load. This coupling resulted
each oscillator’s time-averaged angular velocity,^du j /dt& t ,
being renormalized from the bare value it would have had
the absence of coupling. Using well-known methods of a
lyzing the GKM, the authors of Ref.@17# were able to predict
the fraction of the junctions whose renormalized angular
locities had locked to a common value as a function of the
bias current and the spread in the junction critical curren
~Such locked junctions will be described asfrequency syn-
chronizedthroughout this paper.! In part, this mapping be-
tween the serial JJ array and the GKM is significant, beca
it brings to bear upon the problem of understanding the
namics of the JJ array all that is known about the Kuram
models, which is substantial. For example, the authors
Ref. @17# were able, based on the GKM, to predict the lev
of critical current disorder the array could tolerate befo
frequency synchronization of allN junctions in the array
would be lost.

It is an interesting question whether any other JJ ar
geometries can be mapped onto Kuramoto-like models. S
a connection could indeed prove valuable in shedding li
on the synchronization properties of such an array. In fa
the main result of this paper is to show that aladderarray of
overdamped junctions can be mapped, under approp
conditions, onto a Kuramoto model withnearest neighbor,
sinusoidal couplings. Specifically, we consider a ladder
junctions biased horizontally with dc bias currentsI B which
are greater than the critical currents of each of the horizo
junctions ~see Fig. 1!. The junctions are disordered, wit
individual critical currentsI ch, j and resistancesRh, j ~for the
horizontal junctions!, and with a spread of critical current
D5(I ch,max2^Ich&)/^Ich&, where^I ch& is the arithmetic mean
of the horizontal junction critical currents. Initially, we re
strict ourselves to the case of overdamped junctions, w
zero internal capacitance, but in the final section of this pa
we will present some preliminary results on synchronizat
in underdamped ladders. We consider both periodic and o
boundary conditions, and we study arrays withN>5. We
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SYNCHRONIZATION OF COUPLED ROTATORS: . . . PHYSICAL REVIEW E 67, 026216 ~2003!
find for sufficiently large bias currents,I B /^I ch&*3, and
critical current disorder up to about 10%,D&0.1, that the
averaged RSJ equations for the ladder reduce to the LK
As discussed previously, the LKM is not as well studied
the GKM; nevertheless, this result tells us that all our und
standing of the dynamical behavior of solutions to the LK
should apply to the ladder array of Josephson junctio
Some aspects of this behavior will be discussed in this pa

This paper is organized as follows. In Sec. II we discu
the RSJ equations describing the disordered ladder array
briefly about measuring the degree of frequency~FS! and
phase synchronization~PS! in the array, and discuss a set
assumptions that in turn allow us to perform the averag
process on the RSJ equations. In Sec. III we discuss
averaging procedure for the ladder that results in the LK
We also compare the levels of FS and PS of the two mod
namely, the RSJ model and the LKM, to verify the validi
of our averaging process. In Sec. IV we discuss some of
properties of the LKM itself. In Sec. V we look at the effec
of thermal noise on the synchronization behavior of the R
model and the LKM. In Sec. VI we present some prelimina
results on synchronization in the underdamped ladder
which we assume each junction has an internal capacita
Cj . Our results in Sec. VI are based on the resistively a
capacitively shunted junction model~RCSJ model!, and we
find that for sufficiently large junction capacitance, the fr
quency synchronization transition, which is a continuo
function of the coupling strengtha in the overdamped array
is discontinuous in the underdamped ladder. Such beha
has been observed in the PS of the underdamped GKM@19#.
Finally, in Sec. VII we conclude and discuss possible
enues for future work.

II. PRELUDE TO AVERAGING

A. RSJ equations

Consider the geometry of Fig. 1, which depicts op
boundary conditions,N horizontal junctions, and uniform
horizontal dc bias currents,I B . The Josephson phase diffe
ence across thej th horizontal junction is denoted byf j ,
while the phase difference across the left~right! vertical junc-
tion in the j th plaquette isc l , j (c r , j ). The critical current of
the j th horizontal junction isI ch, j , while the critical current
of the left~right! vertical junction in the j th plaquette is
I cl, j (I cr, j ). The junction’s resistance is denoted byRh, j ,
Rl , j , and Rr , j for the horizontal, left, and right junctions
respectively, in thej th plaquette. Conservation of charge a
plied to the superconducting node~nodes are denoted b
filled circles in Fig. 1! on the left and right side, respectivel
of the j th horizontal junction yields

I B2I ch, jsinf j2
\

2eRh, j

df j

dt
2I cl, jsinc l , j2

\

2eRl , j

dc l , j

dt

1I cl, j 21sinc l , j 211
\

2eRl , j 21

dc l , j 21

dt
50, ~2a!
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2I B1I ch, jsinf j1
\

2eRh, j

df j

dt
2I cr, jsinc r , j2

\

2eRr , j

dc r , j

dt

1I cr, j 21sinc r , j 211
\

2eRr , j 21

dc r , j 21

dt
50, ~2b!

where we used the voltage-phase relation for a Joseph
junction,V5(\/2e)df/dt. Note that Eq.~2! also applies to
the four nodes at the ends of the array, i.e.,j 51 andj 5N, if
we let c l ,0(c r ,0)50 andc l ,N(c r ,N)50.

We find it convenient to sort all junctions into one of tw
groups: horizontal and vertical junctions. We l
^I ch&(^I cv&) denote the arithmetic mean of the horizonta
~vertical! junction critical currents. We also assume that
particular junction’s critical current is proportional to th
junction area, while its resistance is inversely proportiona
its area such that the product of these quantities is the s
for all junctions@20#. So we have the following equality fo
the horizontal junctions:

I ch, jRh, j5^I ch&^Rh&5Xh , ~3!

for some constantXh , and wherê Rh& is the average resis
tance of the horizontal junctions. One can think of Eq.~3! as
defining the ratioRh, j /^Rh&5(I ch, j /^I ch&)

21, where the
value of I ch, j /^I ch& is generated by a suitable random num
ber generator. Likewise for the vertical junctions we have

I cl, jRl , j5I cr, jRr , j5^I cv&^Rv&5Xv . ~4!

In the dimensionless version of Eq.~2! @see Eq.~6! below#,
the ratioXh /Xv appears. This can be set as desired, includ
to a value of unity.

To write Eq. ~2! in dimensionless form, we divide by
^I ch&, define a dimensionless time

t[
t

~\/2e^I ch&^Rh&!
,

and a dimensionless bias currenti B[I B /^I ch&. Note that we
divide by the average critical current for thehorizontaljunc-
tions, since these are the most important junctions for
horizontal biasing scheme. We also define dimension
critical currents as follows: i ch, j[I ch, j /^I ch&, i cl, j
[I cl, j /^I cv&, andi cr, j[I cr, j /^I cv&. Of particular importance
in our analysis is a dimensionless ‘‘coupling’’ constant

a[
^I cv&

^I ch&
5

^Rh&

^Rv&

Xv

Xh
, ~5!

where we used Eqs.~3! and~4! to obtain the second term o
the right side. Then Eq.~2! becomes

i B2 i ch, jsinf j2 i ch, j

df j

dt
2a i cl, jsinc l , j2aS Xh

Xv
D i cl, j

dc l , j

dt

1a i cl, j 21sinc l , j 211aS Xh

Xv
D i cl, j 21

dc l , j 21

dt
50, ~6a!
6-3
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DANIELS, DISSANAYAKE, AND TREES PHYSICAL REVIEW E67, 026216 ~2003!
2 i B1 i ch, jsinf j1 i ch, j

df j

dt
2a i cr, jsinc r , j

2aS Xh

Xv
D i cr, j

dc r , j

dt
1a i cr, j 21sinc r , j 21

1aS Xh

Xv
D i cr, j 21

dc r , j 21

dt
50. ~6b!

Equation~6! is supplemented with the constraint of fluxo
quantization in the absence of any external magnetic flux
induced flux due to currents in the plaquettes. For thej th
plaquette this additional constraint yields

f j1c r , j2f j 112c l , j50, 1< j <N21. ~7!

Equations~6! and ~7! allow us to solve numerically for the
3N22 phases:f j , c r , j , andc l , j @21#.

As mentioned in Sec. I, we have also considered perio
boundary conditions. In that case, we imagine the ends of
ladder shown in Fig. 1 connected together, resulting in
array with N21 ‘‘horizontal’’ junctions and N21
plaquettes. In Eqs.~6! and ~7! the index j then satisfies 1
< j <N21 and c l ,0(c r ,0)5c l ,N21(c r ,N21), while fN
5f1.

Also of importance is how the critical currents are a
signed. We consider two cases, a random and a nonran
method. In assigning the critical currents randomly, we g
erate values according to a parabolic probability distribut
function ~pdf! of the form

P~ i c!5
3

4D3
@D22~ i c21!2#, ~8!

where i c generically represents a dimensionless critical c
rent for either the horizontal or vertical junctions that is no
malized by the appropriate averagei c5I c /^I c& andD deter-
mines the spread of the critical currents. Equation 8 result
critical currents in the range 12D< i c<11D. Also note
that this choice~also used in Ref.@17#! for the pdf avoids
problems associated with more extreme critical currents
are occasionally generated with pdfs with tails. We gener
allow for up to 10% disorder, i.e., 0<D<0.1. In addition, a
nonrandommethod for assigning critical currents was a
plied only to the horizontal junctions and was based on
expression

i ch, j511D2
2D

~N21!2
@4 j 224~N11! j 1~N11!2#,

~9!

which results in the values ofi ch, j varying quadratically as a
function of position along the ladder, while 12D< i ch, j<1
1D.

B. Results for the RSJ equations

It is helpful to show some typical synchronization beha
ior in this system. Using a fourth-order Runge-Kutta alg
02621
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rithm, we solved Eqs.~6! and ~7! numerically for the phase
differencesf j , c l , j , andc r , j and the dimensionless voltage
~or, in the language of rotators, angular velocities! df j /dt,
dc l , j /dt, anddc r , j /dt. We used a time step ofDt50.01,
and we initialized the phases randomly between 0 and 2p.
We measured the degree of FS of thehorizontal junctions
~rotators! simply by calculating the standard deviation
their time-averaged voltages~angular velocities!. For sim-
plicity, let v j[^df j /dt&t ~where angular brackets with th
subscriptt denote time averaging!. Then the standard devia
tion is simply

sv5
A(

j 51

N

~v j2^v&!2

N21
, ~10!

where^v& is the arithmetic mean of the time-averaged a
gular velocities of the horizontal junctions, i.e.̂v&
5(( jv j )/N. To calculatev j numerically we ran our code
for 2.53105 time steps~of the order of 1000 rotator periods!
before averaging over an additional 2.53105 time steps. In
some sense, one can think ofsv as a type of inverse fre
quency synchronization order parameter, since full freque
synchronization of the horizontal junctions is signaled by
very small value ofsv , typically less than 1024 in our nu-
merical results, while a ‘‘large’’ value ofsv ~of order one!
means that on average the horizontal junctions’ angular
locities are not synchronized.

Typical behavior ofsv as a function ofa is shown in Fig.
2 for N58 with periodic boundary conditions. The horizon
tal junctions had randomly assigned critical currents with
spreadD50.05. Also, in Fig. 3 we show the time-average
angular velocities foreachof the eight horizontal junctions
in the periodic ladder. The array exhibits clustering, which
well known to occur in systems of locally coupled oscillato
@8–10#. That is, the averaged angular velocities of the in
vidual rotators adjust themselves as the value of the ‘‘c
pling constant’’a increases, and groups or clusters of ro
tors form which have identical averaged angular velociti
This continues until eventually only two clusters exist in t
array, and at a critical valueac , the two clusters merge an
full FS occurs. Fora>ac we find thatsv&1024. Note that
the behavior depicted in Fig. 3 is a smooth function ofa,
which we remind the reader is the ratio of the average crit
currents of the vertical to the horizontal junctions.

We measure the PS of the horizontal junctions by
famous Kuramoto order parameter@2#

r[
1

N (
j 51

N

eif j . ~11!

Sincer is complex and time dependent, we calculate^ur u&t ,
the time average of the modulus ofr. We are interested in the
behavior of̂ ur u&t as a function ofa. Full PS of the junctions
is denoted bŷ ur u&t→1, while ^ur u&t'0 means thef j are
basically distributed randomly between 0 and 2p. Figure
2~b! demonstrates a typical behavior of the^ur u&t . Note that
for a,ac , ^ur u&t varies in a complicated manner, and on
6-4
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for a.ac does ^ur u&t grow smoothly witha, with ^ur u&t

asymptotically approaching unity for sufficiently largea. It
is clear from Fig. 2 that full FS is much easier to obtain th
full PS in the sense that a smaller value ofa is required for
FS than PS. We find it useful to envision the motion of t
phases of these rotators as points moving around the
circle. Frequency synchronized motion means that the ph
points all move with same average angular velocity, bu
those points are distributed broadly around the unit circ
the degree of PS will be low. To obtain high degrees of b
frequencyand phase synchronization requires both that
phase points move with the same average angular velo
and that they remain clustered at roughly the same loca

FIG. 2. Frequency and phase synchronization in an 8-plaqu
overdamped ladder with periodic boundary conditions@see Eq.~6!#.
The bias current wasi B5I B /^I ch&55, and the critical currents o
the horizontal junctions were assigned randomly according to
~8! with a spread ofD50.05. The vertical junctions were not dis
ordered, and the value of the ratioXh /Xv in Eq. ~6! was set to one.
~a! Standard deviation of average angular velocities~or voltages in
our dimensionless units! of the horizontal junctions,sv , scaled by
its value at zero coupling.~b! Time-averaged modulus of the Kura
moto order parameter, which measures the degree of phase syn
nization of the junctions.̂ur u&t is a complicated function ofa for
a,ac and then grows smoothly asa is increased beyondac ,
asymptotically approaching one for very largea. Qualitatively
similar behavior is observed for arrays with open boundary con
tions.
02621
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on the unit circle as they move. We observe qualitatively
same behavior for ladders with open boundary condition

C. Some simplifying assumptions

To obtain the averaged version of Eqs.~6! and~7! we find
it useful to make three assumptions, which we describe
turn. In each case, we discuss the validity or appropriaten
of each assumption.

Assumption 1. Only the horizontal junctions are diso
dered. That is, all vertical junctions have identical critica
currents and resistances,

I cl, j5I cr, j[I cv ,

Rl , j5Rr , j[Rv ,

where I cvRv5Xv . For simplicity, we assumeXh /Xv51 so
that

I ch, jRh, j5I cvRv 1< j <N.

This assumption makes the averaging process tractable.
haps more importantly, we have made some checks of
effects of this assumption as follows: we calculatedsv for
the averaged equations@see Eq.~26! below#, for the RSJ
equations withno vertical junction disorder~as based on
assumption 1!, and also for the fully disordered RSJ equ
tions, where both horizontal and vertical junctions are dis
dered. For the sake of space, those results are not sh
here, but we found no qualitative difference among all th
sets of results forN515, i B55, andD50.1. It would ap-
pear that, at least for moderate or small amounts of disor
i.e., D&0.1, the synchronization behavior of the array is n
strongly affected by this assumption.

Assumption 2. A special phase relationship between
tical junctions. We assume the phase differences across
two vertical junctions in thej th plaquette are related by

tte

q.

ro-

i-

FIG. 3. Clustering of the time-averaged angular velocities
the periodic ladder depicted in Fig. 2. The critical currents of
rung junctionsi ch, j result in bare angular frequenciesV j according
to Eq.~18!. The value ofac is easily seen to be slightly greater tha
0.1.
6-5
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DANIELS, DISSANAYAKE, AND TREES PHYSICAL REVIEW E67, 026216 ~2003!
c r , j52c l , j12pn, ~12!

for any integern. This relationship is known to be true in th
ladder in the absence of disorder@22#, but it is nota priori
obvious that it holds in the disordered ladder. To test
validity of Eq. 12 we have calculated (c r , j1c l , j )/2p as a
function of time based on Eqs.~6! and ~7! ~along with as-
sumption 1! for N55, looking at both periodic and ope
boundary conditions, and for various sets of critical curre
and initial phase differences. If Eq.~12! is satisfied, such a
plot should give the value of the integern. We do find com-
plicated behavior in the sense that the details of the temp
behavior of (c r , j1c l , j )/2p are dependent upon the partic
lar configuration of critical currents, initial phase difference
as well as the value ofa, but a general trend is observabl
For large bias currents,i B*3, we find Eq.~12! is satisfied
except for phase slips of very short duration. These s
occur only fora,ac , i.e., prior to the onset of full FS, an
are transient in that they disappear after a sufficiently lo
time t* , where we findt* &2500. For lower bias currents
however, such asi B51.5, and fora,ac , the phase slips do
not appear to be transient, or are at least transient with a
long decay time. Fora.ac andi B51.5, no such slips occur
as was also seen at higher bias currents. Thus, after ca
study of the temporal behavior of (c r , j1c l , j )/2p, we are led
to the conclusion that Eq.~12! is a reasonable approximatio
for sufficiently large bias currents,i B*3, as long as a suffi-
cient time intervalt8.t* is allowed for transients to die ou
before any temporal averages are calculated. We find a v
of t852500 to be reasonable.

Note that in the light of assumption 2 we can simplify E
~7! to

c l , j5
f j2f j 1112pn

2
.

Substituting this expression into Eq.~6a!, and taking as-
sumption 1 into account, leads to the expression

i ch, j

df j

dt
1

a

2 Fdf j 11

dt
22

df j

dt
1

df j 21

dt G
5 i B2 i ch, jsinf j1a sinS f j 112f j

2 D1a sinS f j 212f j

2 D ,

~13!

where we have takenXv /Xh51 for simplicity. Note that Eq.
~6b! can also be simplified in light of assumption 1. Th
result is an equation in terms of the phasesf j and c r , j .
Since we are primarily interested in the behavior of the ho
zontal junctions, Eq.~13! is the natural one to use.

Assumption 3. Ignore the discrete Laplacian. In Eq. ~13!
we drop the terms df j 11 /dt22df j /dt1df j 21 /dt
[¹2(df j /dt). We find, over a wide range of bias curren
that ¹2(df j /dt) oscillates with an amplitude that depen
on the value ofi B and a, but always with a time-average
value of approximately zero. Note that, meanwhile, the fi
term on the left side of Eq.~13! has a nonzero time averag
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Since^¹2(df j /dt)&t'0 and we are interested in the time
averaged behavior of Eq.~13! it seems reasonable to drop th
term.

As a result of all three assumptions we are left with t
following equation describing the dynamics of the phase d
ferences across the horizontal junctions:

df j

dt
5

i B

i ch, j
2sinf j1

a

i ch, j
(

d561
sinS f j 1d2f j

2 D . ~14!

It is now straightforward to see thata/ i ch, j plays the role of
the coupling strength between neighboring junctions. T
next step is to average Eq.~14!.

III. AVERAGING THE RSJ EQUATIONS

The work in this section is based on a technique u
previously to average the RSJ equations for a current-bia
serial array of overdamped JJ’s connected to a load@23#, but
we emphasize that no load is required for the horizon
junctions of the ladder array to synchronize. The first step
to transform the phase variablesf j , which move around the
unit circle with a nonzero angular acceleration, to a n
variableu j , which increases with time with a constant ang
lar velocity V j , in the uncoupled limit@3#. This transforma-
tion follows from Eq.~14! in the a50 limit,

u j5E df j

S df j

dt D
a50

5E df j

i B

i ch, j
2sinf j

5E df j

Ij2sinf j
,

~15!

where we defined the quantityIj[ i B / i ch, j for convenience.
The integral gives an expression for the new phase varia
u j in terms of the original phasesf j ,

u j5
2

AI j
221

tan21FAIj11

Ij21
tanS f j

2
1

p

4 D G , ~16!

which can be inverted to givef j in terms ofu j ,

f j52 tan21FAIj11

Ij21
tanS u j

2 D G2
p

2
. ~17!

At this point it is also useful to calculate the angular v
locity of each junction or rotator in the absence of couplin
V j . If Tj is the period of thej th rotator when uncoupled
then

Tj5
2p

V j
5E

0

Tj
dt5E

0

2p df j

S df j

dt D
a50

5E
0

2p df j

Ij2sinf j
,

which gives

V j5AI j
2215AS i B

i ch, j
D 2

21. ~18!

Note that for large bias currents,V j' i B / i ch, j .
6-6
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The next step is to express Eq.~14! in terms of the new
phase variablesu j . We write

du j

dt
5

du j

df j
•

df j

dt
,

wheredu j /df j follows from Eq.~16! anddf j /dt from Eq.
~14!. One must also remember thatf j is expressed in term
of u j via Eq. ~17!. We find

du j

df j
5

AI j
221

Ij2sinf~u j !
5

V j

Ij2sinf~u j !
,

du j

dt
5V jF11S a

i ch, j
D 1

Ij2sinf~u j !

3 (
d561

sinS f~u j 1d!2f~u j !

2 D G . ~19!

A shift of the phases is also convenient,

ũ j[u j2V jt. ~20!

Thusũ j measures by how much the phase variableu j differs
from the value it would have in the absence of couplin
Equation~19! then becomes

dũ j

dt
5S a

i ch, j
D V j

Ij2sinf~ũ j1V jt!

3 (
d561

sinFf~ũ j 1d1V j 1dt!2f~ũ j1V jt!

2
G .

~21!

The bare angular velocitiesV j have a percent variation
across the array of the order ofD ~see Fig. 3!. For moderate
to small amounts of disorder it is reasonable to make
following replacements in the arguments of the sine fu
tions in Eq.~21!:

f~ũ j1V jt!→f~ũ j1^V&t!,

where^V&5(( jV j )/N. Then it is also convenient to resca
the time variablet8[^V&t. Equation~21! becomes

dũ j

dt8
5S a

i ch, j
D V j

^V&

1

Ij2sinf~ũ j1t8!

3 (
d561

sinFf~ũ j 1d1t8!2f~ũ j1t8!

2
G . ~22!

The next key idea is to treatũ j , the ‘‘slow’’ variable, as
constant for the duration of one cycle of the ‘‘fast’’ variab
t8. We then average Eq.~22! over one cycle oft8.
02621
.

e
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K dũ j

dt8
L

fast

5S a

i ch, j
D V j

^V& (
d561

1

2pE0

2p 1

Ij2sinf~ũ j1t8!

3sinFf~ũ j 1d1t8!2f~ũ j1t8!

2
Gdt8,

where the angular brackets on the left side denote the re
of the averaging process. Next, letCd[ũ j 1d2 ũ j . Also,
since theũ j are treated as constants during the integrati
they can be absorbed into the definition oft8, i.e., t8→t8

1 ũ j to give

K dũ j

dt8
L

fast

5S a

i ch, j
D V j

^V& (
d561

1

2pE0

2p 1

Ij2sinf~t8!

3sinFf~Cd1t8!2f~t8!

2 Gdt8. ~23!

Making use of Eqs.~15! through~17!, and after some algebr
we obtain the two useful relations

Ij2sinf~t8!5
V j

2

Ij2cost8
,

sinFf~Cd1t8!2f~t8!

2 G

5

V jsinS Cd

2 D
A~Ij2cost8!~Ij2cos@Cd1t8# !

.

In light of these results, Eq.~23! can be written as

K dũ j

dt8
L

fast

5S a

i ch, j
D sinS Cd

2 D
^V& (

d561

1

2p

3E
0

2pA Ij2cost8

Ij2cos~Cd1t8!
dt8. ~24!

Since we are interested in the limit of large bias curren
we expand the integrand in powers of 1/Ij . ~Recall thatIj
[ i B / i ch, j .)

A Ij2cost8

Ij2cos~Cd1t8!
511

1

2Ij
@cos~Cd1t8!2cost8#

1
1

8I j
2 @3 cos2~Cd1t8!

22 cost8cos~Cd1t8!2cos2t8#

1OS 1

I j
3D .
6-7
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DANIELS, DISSANAYAKE, AND TREES PHYSICAL REVIEW E67, 026216 ~2003!
Substituting into Eq.~24! and integrating order by orde
gives, to order 1/I j

2 ,

K dũ j

dt8
L

fast

5
1

^V& S a

i ch, j
D (

d61
F sinS Cd

2 D1
1

4I j
2

sin3S Cd

2 D G ,

where the term ofO(1/Ij ) vanished upon integration ove
t8. Transferring back to the original time variablet and to
the phase variableu j5 ũ j1V jt, and making use of the ap
proximation Cd5 ũ j 1d2 ũ j'u j 1d2u j , where the last ap-
proximation should be valid for moderate to small amou
of disorder, we finally arrive at the averaged version of
RSJ equations, expressed toO(1/I j

2),

K du j

dt8
L

fast

5V j1S a

i ch, j
D (

d61
F sinS u j 1d2u j

2 D
1

1

4I j
2
sin3S u j 1d2u j

2 D G . ~25!

Equation~25! is the main result of this paper. However, f
large bias currents,I j

2@1, we can drop the term ofO(1/I j
2)

and reduce Eq.~25! to an expression that is ofO(1) in terms
of the Ij :

K du j

dt8
L

fast

5V j1S a

i ch, j
D (

d61
sinS u j 1d2u j

2 D . ~26!

Note that with a simple rescaling:u j→2u j , V j→2V j , and
a→2a, Eq. ~26! has the standard form of the LKM@9#,
namely,

du j

dt
5V j1K j (

d561
sin~u j 1d2u j !,

whereK j[a/ i ch, j .
As a test of the validity of Eq.~26! for describing the

synchronization behavior of the JJ ladder, we compare
values of the quantitiessv and^ur u&t calculated numerically
from Eq. ~26! as well as Eqs.~6! and ~7!. Figure 4 shows
such a comparison forN515 horizontal junctions and a bia
current ofi B55 for periodic boundary conditions. The crit
cal currents were assignednonrandomlywith a spread ofD
50.05. Each plot in Fig. 4 was obtained by averaging o
five sets of initial phases, and the error bars were sma
than the sizes of the symbols.~We see qualitatively similar
behavior for the case of open boundary conditions.! In Fig.
4~a! a well-defined critical couplingac for full FS can be
identified, and the LKM and the RSJ results forac are in
very good agreement just by visual inspection of the grap
Likewise, the degree of PS between the two models ar
excellent agreement. In particular the LKM, like the R
model, points to the much larger coupling strengths nee
for both full FS and PS compared to the coupling needed
FS alone. To be more specific, if we define full PS by t
condition ^ur u&t>0.99, and then also defineac8 to be the
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minimum value of the coupling for this condition to be sa
isfied, then both the LKM and the RSJ models tell us thatac8
is considerably larger thanac . We have also studied th
agreement between the LKM and the RSJ models for
case ofrandomly assigned critical currents and both op
and periodic boundary conditions. We find results quali
tively similar to those in Fig. 4.

We have considered other array sizes withNÞ15. In gen-
eral, we find that forN>5, i B*3, and both types of bound
ary conditions, the LKM and RSJ models exhibit a level
agreement similar to that depicted in Fig. 4 forN515.

As discussed in Sec. II we expect the two models to dif
more substantially for small bias currents. This behavior
demonstrated in Fig. 5, which comparessv for the LKM and
RSJ models forN515 and i B51.5. Also included are the
results for the LKM when the term of order of 1/i B

2 is in-
cluded from Eq.~25!. We note that at smaller bias current
the inclusion of the 1/i B

2 term improves the agreement wit
the RSJ model, but the existence of phase slips in the ver
junctions that violate Eq.~12! is likely the cause of the dif-
ference between the averaged and the RSJ equations
served in the figure. In looking at a range of array sizes a
at both periodic and open boundary conditions, we find t
typically the values ofac between the averaged and RS
equations are in agreement within a few percents fori B
*3.

FIG. 4. A comparison of frequency and phase synchroniza
in the LKM and the RSJ models for the overdamped ladder
periodic boundary conditions. Array consists ofN515 horizontal
junctions, or rotators, withi B55, andnonrandomlyassigned criti-
cal currents with D50.05. ~a! The scaled standard deviatio
sv(a)/sv(0). ~b! The time-averaged Kuramoto order parame
^ur u&t . Note the different scales on the horizontal axes of the t
graphs.
6-8



w
th
o
on

.

in
a

s

wn

s

th

a

fine

is-

l

ias

he
el
6

he

e
e
d

gr
sli
r i

df of

SYNCHRONIZATION OF COUPLED ROTATORS: . . . PHYSICAL REVIEW E 67, 026216 ~2003!
IV. BEHAVIOR OF THE LKM

One of the main points of this paper is that, if the slo
dynamics of the overdamped ladder are well described by
LKM, then all that is already known about the dynamics
the LKM ought to be applicable to the ladder. In this secti
we discuss some properties of solutions to the LKM.

Phase slips and voltage bursts near synchronizationIt
has been demonstrated for the LKM@9# that as the coupling
strengtha approachesac from below, voltage bursts~or an-
gular velocity bursts! and corresponding phase slips occur
the rotators with a time interval between slips that grows
a→ac

2 according totslip}1/Aac2a. We have observed thi
phenomenon of phase slips for the LKM@Eq. ~26!#; in par-
ticular, we have observed that asa→ac

2 , the time between
the phase slips grows, demonstrating critical slowing do
Such slipping is thus also expected in the RSJ model.

Analytic determination ofac . It is possible to derive an
expression forac based on a fixed point analysis of the sy
tem of equations formed by taking the difference of Eq.~26!
for neighboring rotators. We present here our results for
case of open boundary conditions. The key idea@24# is to
consider the quantityh j[(u j 112u j )/2. We find that Eq.
~26! leads to the set of equations

dh j

dt
5D j1

a

^ i ch&
@sin~h j 11!22 sin~h j !1sin~h j 21!#,

1< j <N21, ~27!

where h050, hN50, and D j[(V j 112V j )/2. Also, we
have replacedi ch, j with ^ i ch&, the arithmetic mean of the
critical currents, in the denominator of the coupling term,
approximation which should be reasonable for moderate
small levels of disorder. Remembering that Eq.~26! already

FIG. 5. A comparison of the frequency synchronization in t
LKM and the RSJ models for the overdamped ladder withN515
and open boundary conditions,nonrandomcritical currents with
D50.05, and a bias current ofi B51.5. The results based on th
O(1) LKM are shown, as well as the LKM with the inclusion of th
term of O(1/i B

2). Including the correction term in the average
equations helps the agreement with the RSJ model. The disa
ment with the RSJ model is expected and is likely due to phase
in the vertical junctions of a plaquette, which is not accounted fo
the LKM.
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has the ‘‘fast’’ temporal dependence integrated out, we de
synchronization of oscillatorsj and j 11 as whendh j /dt
50. Thus we need to solve for the fixed points of Eq.~27!:

05D j1
a

^ i ch&
@uj 1122uj1uj 21# 1< j <N21, ~28!

whereuj[sin(hj). We find the solution to Eq.~28! that can
be written as

uj5
2^ i ch&

a~N11! (
k5 j

N F jD k1H (
n51

j 21

nDnJ dk, j G ~N2k11!.

~29!

A fully frequency synchronized state is denoted by the ex
tence of solutionsuj which fall within the physical range
21<uj<1 for 1< j <N21. In fact, the value of the critica
couplingac is the maximum value ofa for which one of the
uj , say uk , is just outside of this range while theuj ( j
Þk) are still within this range. So to findac we set the
magnitude of each of theuj equal to unity in Eq.~29! and
find a corresponding value forac, j . The physical value of
the critical coupling is the maximum of the set$ac, j%, i.e.,

ac5
2^ i ch&
N11 U(

k5 j

N F jD k1H (
n51

j 21

nDnJ dk, j G ~N2k11!U
max

.

~30!

For a given set of critical currents and a value of the b
current we determine the set$D j% and thenac from Eq.~30!.
Indeed this gives a much more rapid way of finding t
critical coupling than solving either the LKM or RSJ mod
numerically! As a test of the validity of this result, Fig.
compares the value ofac calculated from Eq.~30! with the
behavior ofsv from a numerical solution of the LKM@Eq.

ee-
ps
n

FIG. 6. Frequency synchronization of the LKM, Eq.~26!, with
aeff[a/^ i ch&, with open boundary conditions,N550, and a com-
parison with the value ofac as calculated from Eq.~30!. Bare
frequencies were assigned randomly according to a parabolic p
the structure of Eq.~8! with mean^V&55 and spreadDV50.5.
Note the agreement between the analytic results forac and what
one would identify from the graph ofsv .
6-9
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DANIELS, DISSANAYAKE, AND TREES PHYSICAL REVIEW E67, 026216 ~2003!
~26! with i ch, j replaced by^ i ch&], where we defineaeff

[a/^ i ch&. The array consisted of 50 rotators and a rand
distribution of bare angular frequenciesV j @see Eq.~8!# with
averagê V&55 and spreadDV50.5. ~Note that assigning
the bare oscillator frequenciesV j in the LKM is tantamount
to assigning junction critical currents in the RSJ model.! We
have also calculatedac via Eq. ~30! for the case of a Gauss
ian pdf with the same average^V&55 and standard devia
tion, sV50.5. The tails of the Gaussian pdf result in a larg
spread in bare frequencies than with the parabolic pdf, wh
in turn results in a considerably larger value ofac . For both
cases, however, the value ofac calculated from Eq.~30!
agrees well with the numerical solutions of the LKM, at lea
for N550 and based on a visual inspection ofsv versusa.

With Eq. ~30! it is easy to determine the scaling relatio
ship betweenac and array sizeN for largeN and for various
distributions of bare frequencies. That is, we wish to find
value of the exponentd in the expressionac}Nd. Figure 7,
which is a log-log plot ofac versusN for N>50, shows
values ofd for four different methods of assigning the ba
frequencies: nonrandomly, while following either a parabo
or linear function of position; and randomly, according
either a parabolic or Gaussian pdf. For both types ofnonran-
domly assigned frequencies we findd51; the critical cou-
pling grows linearly with array size. For therandomly as-
signed frequencies we findd50.5860.02 for the parabolic
case andd50.5460.01 for the Gaussian case. Note that
both types of random frequencies, the values forac are an
average over 100 different realizations of frequencies. T
error bars onac represent the standard deviation of t

FIG. 7. Log-log plot ofac @as determined from Eq.~30!# for the
LKM as a function of array sizeN for open boundary conditions
and four different methods for assigning the bare frequencies: n
randomly, according to either a parabolic or linear function of p
sition; and randomly, according to either a parabolic~mean ^V&
55, spreadD51) or Gaussian~mean^V&55, standard deviation
sV51) pdf. The scaling exponent for both nonrandom case
clearly 1, but for the random cases it is between 0.5 and 0.6.
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mean. We note that the two randomly distributed syste
exhibit exponents that are approximately equal to 0.5, so
ac grows lessrapidly with array size for randomly assigne
bare frequencies than for either of the nonrandomly assig
cases. In fact, inspection of Fig. 7 shows that the case
assigning frequencies according to a linear function of po
tion results in the largest value ofac for a givenN of all four
cases considered.

Previous work by Liu and co-workers@8# based on a nu-
merical solution of Eq.~26! led to a value of the scaling
exponent ofd52 for the case of random Gaussian bare f
quencies. We suspect the difference with our result~we find
d50.54) is due to the technique in determiningac . If the
authors of Ref.@8# used a threshold test to determineac ,
then they would find the smallest value ofa for which sv

,Cthreshold, whereCthreshold is arbitrary but small. We have
found that for increasingN, numerical solutions forsv from
the LKM develop long tails ina so that the value ofa
necessary to satisfysv,Cthresholdcan be a sensitive function
of the choice ofCthreshold. Indeed, we have found from nu
merical experiments with the RSJ model~using double pre-
cision variables! that if Cthreshold51023, thend'0.5, while
if Cthreshold51024, thend'2. This points to the fact that the
scaling behavior ofac with N in the LKM is dependent on
the method of analysis. It is interesting, then, that the a
lytic solution for ac , obtained from Eq.~30! for the case of
Gaussian random frequencies, yields an exponent tha
much closer to 1/2 than it is to 2@25#.

Linear Stability analysis of frequency-synchronized sta.
We can calculate the degree of stability of the fu
frequency-synchronized state of the LKM, fora.ac , via a
Floquet analysis. Analytic values of the Floquet exponen
l, for the solutions of Eq.~26! are obtainable for both peri
odic and open boundary conditions. Loosely speaking,
can think of the values ofl as characterizing the rate a
which perturbations to a frequency synchronized state de
Negative values ofl denote stable synchronization. We fin
for periodic and open boundary conditions, respectively,

Re~lm
periodictc!52

2a

^ i ch&
sin2S pm

N D 0<m<N21,

~31!

Re~lm
opentc!52

2a

^ i ch&
sin2S pm

2N D 0<m<N21, ~32!

where tc[\/(2e^I ch&^Rh&) is the characteristic time scale
Note that aboveac the Floquet exponents grow proportion
to a, i.e., the frequency-synchronized state becomes m
stable as the couplinga is increased.

V. THERMAL EFFECTS ON SYNCHRONIZATION

In this section we include the effects of an additional th
mal noise current in the RSJ model and look specifically
this new current’s effect on FS and PS. Keeping with t
spirit of previous sections of this paper, we also investig
the synchronization behavior of the LKM with an addition
random noise term and compare the dependence ofsv on a
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SYNCHRONIZATION OF COUPLED ROTATORS: . . . PHYSICAL REVIEW E 67, 026216 ~2003!
for the two models. We find quantitative agreement betw
the two models over a limited range of temperatures
qualitative agreement over an ever wider range of temp
tures.

To include the effects of thermal noise in the junction
resistance, we add a white noise termI N, j (t) to the j th junc-
tion in the RSJ model. Note thateveryjunction in the ladder
experiences such a term. The stochastic currents have
following statistical properties@26#:

^I N, j~ t !&50

and

^I N, j~ t !I N,k~ t1Dt !&5
2kBT

Rj
d j ,kd~Dt !,

where the angular brackets about stochastic quantities de
an ensemble average,kB is Boltzmann’s constant,T is the
absolute temperature, andRj is the resistance of thej th junc-
tion. For simplicity, we will replaceRj by ^Rh&, the average
resistance of the horizontal junctions. This should be reas
able for moderate to small amounts of disorder. Expresse
our system of dimensionless units, these relationships
the form

^ i N, j~t!&50 and ^ i N, j~t!i N,k~t1Dt!&54T* d j ,kd~Dt!,
~33!

wherei N, j[I N, j /^I ch& and the dimensionless temperature
T* [ekBT/\^I ch&. We also remind the reader thatt
[t/(\/2e^I ch&^Rh&).

We generate thei N, j (t) for each junction at each time ste
according to a Gaussian pdf of mean zero and variancesT

2

54T* /Dt, whereDt50.01 is the size of the time step i
our fourth-order Runge-Kutta algorithm@27#. It is then pos-
sible to varyT* and observe the effect uponsv(a) and
^ur (a)u&t . For example, Fig. 8 shows that forN55 and
open boundary conditions increasing temperature in the
model~solid symbols in the figure! has an adverse effect o
frequency synchronization, in thatac is an increasing func-
tion of T* . We should note that all the results shown in F
8 represent an ensemble average over ten independent
Error bars, when visible, represent the standard deviatio
the mean of the ten runs. Note thatsv develops a long tail as
T* is increased, a fact which makes determining a value
ac subtle~see Sec. IV!. Figure 8 also shows our results fo
sv for the LKM in the presence of a noise term. Specifica
we modify Eq.~26! to include a white-noise term,

du j

dt
5V j1S a

i ch, j
D (

d561
sinS u j 1d2u j

2 D1DNj j~t!,

~34!

wherej j (t) has the same statistical properties as thei N, j (t)
@see Eq.~33!#. The value for the parameterDN is chosen as
follows. Using a threshold test, we defineac as the minimum
value of the coupling for whichsv,Cthreshold, where we
chooseCthreshold51023. We then pick a single temperatur
and adjust the value ofDN such that the resultingac’s from
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Eq. ~34! and the RSJ equations agree to within some sp
fied precision. The value ofDN was thenheld fixedfor all
other values ofT* anda that were sampled. For example,
Fig. 8 we setDN51.57 in order to obtain agreement in th
values ofac from the LKM and RSJ models at a temperatu
of T* 50.025. ~This temperature was chosen because
typically found it to be roughly in the middle of the range
temperatures we sampled.! The value ofDN was then held
fixed in Eq. ~34! for the two other sets of temperature
shown in the figure. We note that the general agreement
tween the RSJ model and the LKM is good, demonstrat
again the ability of the LKM to describe the synchronizati
properties of the overdamped ladder. Not surprisingly, as
temperature is increased sufficiently, the two models sho
larger disagreement~see the results forT* 50.1 in Fig. 8!.
Presumably this is due to the increased thermal current
the vertical junctions of the ladder, which are not fully a
counted for in the LKM. Note, however, that even at t
‘‘higher’’ temperature of T* 50.1 the two models show
qualitative agreement.

In concluding this section, we mention that it would b
interesting to look for evidence of stochastic resonance~SR!
in the disordered ladder. SR has already been observe
simulations of the fully frustrated ladder (f 51/2) in the
presence of a sinusoidal ac bias current@28#. But recently, it
has been argued that SR should occur in overdamped
tems of coupled oscillators with a constant driving force a
white noise@29#, conditions that suit nicely our ladder in th
presence of thermal noise. Investigation in this area
planned.

VI. UNDERDAMPED LADDERS

In this section we report some preliminary results bas
on including the effects of junction capacitance on synch
nization at zero temperature. We assume the ratio of the ju

FIG. 8. A comparison of frequency synchronization behavior
the LKM @Eq. ~34!# and RSJ model@Eq. ~6!# including the effects
of thermal noise for three different temperaturesT* 50.0025,
0.025, and 0.1. The array size wasN55 with open boundary con-
ditions andi B55. We considered one set of random critical cu
rents@Eq. ~8!# with a spread ofD50.1. The values ofsv represent
an ensemble average over ten independent runs to account fo
random thermal noise. Note that the agreement between the mo
is good, except for largera at higher temperature.
6-11
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tion critical current to its capacitance is uniform througho
the array and that only the horizontal junctions are dis
dered. This means that

I ch, j

Ch, j
5

^I ch&

^Ch&
5

I cv

Cv
,

whereCh, j is the capacitance of thej th horizontal junction,
and^Ch& is the arithmetic mean capacitance.I cv andCv are
the critical current and capacitance, respectively, of the v
tical junctions. With the coupling parametera still defined as
in Eq. ~5!, we arrive at the following set of dimensionles
RCSJ equations for left and right nodes, respectively:

i B2 i ch, jsinf j2 i ch, j

df j

dt
2 i ch, jbc

d2f j

dt2
2a sinc l , j

2a
dc l , j

dt
2abc

d2c l , j

dt2
1a sinc l , j 211a

dc l , j 21

dt

1abc

d2c l , j 21

dt2
50, 1< j <N, ~35a!

2 i B1 i ch, jsinf j1 i ch, j

df j

dt
1 i ch, jbc

d2f j

dt2
2a sinc r , j

2a
dc r , j

dt
2abc

d2c r , j

dt2
1a sinc r , j 211a

dc r , j 21

dt

1abc

d2c r , j 21

dt2
50, 1< j <N, ~35b!

where

bc[
2e^Rh&

2^I h&^Ch&
\

~36!

is a measure of the average junction capacitance in the a
All other quantities in Eq.~35! are defined the same as in E
~6!.

Equation~35! is combined with Eq.~7! and solved nu-
merically forsv as a function ofa for various values ofbc .
Figure 9 shows our results forN515, i B55, and periodic
boundary conditions. The critical currents of the horizon
junctions were assigned nonrandomly with a spread oD
50.05. The most interesting behavior appears forbc*10, in
which we observe a discontinuity insv at the critical cou-
pling ac . Recall that for the overdamped ladder the synch
nization phase transition was a continuous function ofa.
Remnants of thebc→0 behavior are also observed in Fig.
since only for sufficiently large capacitance does the tra
tion become discontinuous. In the language of cluster
such as depicted in Fig. 3 for theoverdampedladder, this
means that the sufficiently underdamped array jumps disc
tinuously from a single cluster with a common average vo
age for a just aboveac , to two clusters characterized b
distinct average voltages fora just belowac .
02621
t
r-
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ay.

l

-

i-
,

n-
-

To use the mechanical analogy of an underdamped, dr
set of coupled pendula, the effect we are describing co
sponds to all the pendula whirling with the same avera
angular velocitŷ v& for a.ac . As the coupling strength is
slowly lowered, the array suddenly splits into two sets
pendula, where the elements of a particular set rotate w
the same average angular velocity, but the velocities of
two sets themselves have not smoothly evolved from
value^v&. This effect does not appear unless the inertia o
pendulum is sufficiently large compared to the visco
damping it experiences.

A first order, or discontinuous, transition has been o
served in studies of the underdamped,globally coupled
Kuramoto model@30,31#. In that study the authors focuse
on the phase synchronization order parameter^ur u& and using
the all-to-all nature of the coupling showed analytically th
one would expect a discontinuous transition for sufficie
underdamping. We conjecture that our ladder array, upon
eraging, would be described by an underdampedlocally
coupled Kuramoto model

bc

d2u j

dt2
1

du j

dt
5V j1

a

i ch, j
(

d561
sinS u j 1d2u j

2 D , ~37!

but it is not cleara priori what analytical progress can b
made in studying the nature of any discontinuous transit
which may be described by Eq.~37! for sufficiently large
bc . Numerical work in comparing the synchronization b
havior of Eq.~37! to that of the RCSJ model for the ladde
could, however, prove informative. Further work is nece
sary first to show that Eq.~37! does indeed represent th
slow-time dynamics of Eqs.~35!.

VII. CONCLUSION

The main result of this paper has been the mapping fr
the RSJ model for the overdamped Josephson ladder to

FIG. 9. Frequency synchronization in the underdamped lad
as described by the RCSJ model, Eqs.~35!, with N515, i B55, and
periodic boundary conditions. The critical currents of the horizon
junctions were assigned nonrandomly with a spread ofD50.05.
Note that forbc*10 the frequency synchronization transition
discontinuous. This behavior is clearly a result of the junction
pacitance, for the transition becomes continuous again asbc is re-
duced.
6-12
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locally coupled Kuramoto model@Eq. ~26!#. We argued that
if one is interested in the frequency and phase synchron
tion behavior of a ladder array with critical current and r
sistive disorder among the horizontal junctions, then o
need mainly be concerned with the slow time-scale dyna
ics, as opposed to the fast time-scale dynamics, of the ju
tions. When the fast dynamics, set by the time scale at wh
the junction voltages oscillate, is integrated out of the R
equations the result is the locally coupled Kuramoto mo
~LKM !. As a check that the LKM does indeed describe
synchronization behavior of the RSJ model, we compa
the spread of average voltages along the ladder,sv , which
gives information about the degree of frequency synchro
zation of the junctions, and the Kuramoto order parame
^ur u&, which measures the degree of phase synchroniza
for the two models over a broad range of array sizes, b
currents, critical currents, and for both periodic and op
boundary conditions. We found that for sufficiently high bi
currents,i B*3, and for critical current disorders of up t
10% the two benchmark quantitiessv and^ur u& agree quite
well for the two models. We also argued that the restrict
to high bias currents was required to prevent phase slip
the vertical junctions of a plaquette that would not be
counted for in the LKM. Inclusion of junction capacitanc
ce

al

o

. B

ch

02621
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bcÞ0, is a nontrivial modification to the system. Prelim
nary results for such an underdamped ladder show thatsv

exhibits a discontinuous transition as a function of the ju
tion coupling strengtha when the junction capacitance
sufficiently large~i.e., bc.bc* where bc* is a function of
array size, bias current, etc.!. For a small but finite amount o
capacitance, 0,bc<bc* , the frequency synchronizatio
transition is a continuous function ofa.

Future work on synchronization studies in disordered
sephson ladders could include looking for stochastic re
nance in the dc-driven overdamped array when the bias
rent is less than the junction critical currents, as well
looking for noise-induced resonance effects in the und
damped ladder when biased in the voltage state@32#. Finally,
considerable work remains in understanding the connec
between the RCSJ equations for the underdamped ladde
the underdamped LKM@Eq. ~37!#.
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