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Synchronization of coupled rotators: Josephson junction ladders and the locally coupled
Kuramoto model
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We show that the resistively shunted juncti@®SJ) equations describing a ladder array of overdamped,
critical-current disordered Josephson junctions that are current biased along the rungs of the ladder can be
mapped onto a Kuramoto model witiearest neighbgrsinusoidal couplings. This result is obtained by an
averaging method, in which the fast dynamics of the RSJ equations are integrated out, leaving the dynamics
which describe the time scale over which neighboring junctions along the rungs of the ladder phase and
frequency synchronize. We quantify the degree of frequency synchronization of the rung junctions by calcu-
lating the standard deviation of their time-averaged voltaggs,and the phase synchronization is quantified
by calculating the time average of the modulus of the Kuramoto order pararfjeter,We test the results of
our averaging process by comparing the values pénd{|r|) for the original RSJ equations and our averaged
equations. We find excellent agreement for dc bias currentg gt .)=3, where(l.) is the average critical
current of the rung junctions, and critical current disorders of up to 10%. We also study the effects of thermal
noise on the synchronization properties of the overdamped ladder. Finally, we find that including the effects of
junction capacitance can lead to a discontinuous synchronization transition as the strength of the coupling
between neighboring junctions is smoothly varied.
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I. INTRODUCTION —oo limit there was a continuous dynamical phase transition
at a critical value of the coupling strength. and that for
Systems of coupled limit-cycle oscillators are ubiquitousa> o, phase and frequency synchronization appear in the
in nature, with many examples that have been studied iBystem[5,6]. Variations on the GKM are easy to imagine.
biology, chemistry, and physi¢d,2]. One area of interestin  For example, ifo; = @4 (., while the coupling function
such systems of oscillators is the synchronization of theifetains the formr'(gk_ gj')zsin(gk_ 6), we have the case
frequencies and phases, a topic which has piqued researcfjnere thejth oscillator is sinusoidally coupled only to its
ers’ interest for decades and continues to be a rewarding area 5 est neighbors in the array. Such a variation could be
of study in many disciplineg3]. In particular, phase models called the locally coupled Kuramoto mod@lKM). In the

of the Winfree typd 4] h"’?"e bgen extensively studied. Win- ase of the LKM, the lack of long range coupling means that
free proposed a model in which the rate of change of eacfhe system is unable to yield a finite value feg in the N

oscillator’'s phase in an array is dependent weakly on the » limit. a result that is true for anv number of tial
difference between that particular oscillator’s instantaneous , a resu at 1S frue for-any numboer ot spatia

phase and the phases of all the other oscillators. In one dglmensm_ns[?]. As a consequence, analytic progress in un-
mension, a generic version of this model foscillators is ~ dérstanding the conditions required for frequency and phase
synchronization in the LKM is difficult to make, and most
d6. N studjes for whicho = a6 x+, involve solving Eq.(1) nu-
d_tj =0+ > o (6 6)), (1)  merically [8—1Q|. _ .
k=1 Josephson junctiofl) arrays are widely regarded as an
excellent example of a physical system of coupled nonlinear
where ¢; is the phase of th¢th oscillator and can be envi- oscillators. Through modern fabrication techniques and care-
sioned as a point moving around the unit circle with angulafy| experimental methods, they offer a high degree of control
velocity d¢;/dt, €; is its angular velocity or frequency in over the parameters that drive the dynamics of the array, so
the absence of coupling to other oscillatdrg¢f,— 6;) isthe  that it is feasible to test specific aspects of an array’s behav-
coupling function, andr; , describes the range and nature jor [11]. Also, from an applied physics perspective, they are
(e.g., attractive or repulsiyeof the coupling. The special excellent candidates for submillimeter wave generators,
case in whichl’(6,— 6;) =sin(6,— ;) andoj = /N, where  which should be capable of transferring power at usable lev-
a is a constant, corresponds to the uniform, sinusoidal couels to a load12—14. Among the many different geometries
pling of each oscillator to the remaining—1 oscillators.  of JJ arrays that have been studied, ladder arisss Fig. 1
This mean-field system is historically known as thobally  deserve attention for several reasons. They exhibit rich dy-
coupled Kuramoto mode(GKM). Kuramoto was the firstto namical behavior, including but not limited to time-
show that for this particular form of coupling and in the  dependent, spatially localized states, i.e., discrete breathers
[15]. Their complexity is between that of better understood
serial arrays and full two-dimensiondRD) arrays (e.g.,
*Electronic address: brtrees@owu.edu square arrays In fact, a ladder can be considered as a sub-
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b1 some connection between arrays of coupled JJ's and the
3¢ Kuramoto models, which were proposed to study weakly
coupled limit-cycle oscillators. In the mid 1990s it was
shown that aserial array of zero-capacitance, i.e., over-
Yi1 X 1 damped, junctions coupled to a load could be mapped onto
’ ’ the GKM [17,18. The load in this case was essential to
provide the coupling between the junctions. This work was
based on an averaging process, in whiahleas} two dis-
tinct time scales of operation were identified: the “fast” time
. scale set by the overturning speed of the individual junctions,
: and a “slow” time scale over which junctions synchronize
their overturning rates. By integrating the resistively shunted
Ig $j-1 +y junction (RSJ) equations describing the dynamics of the
junctions over one cycle of the fast motion what remained
‘ was the slow dynamics, which described the synchronization
+zx

Ip

@2
Ig 3¢

behavior of the array.

It was shown in Ref[17] that a spread in the junction
critical currents in the serial array corresponded to a spread
d; in the bare frequencies);, of the oscillators in the GKM.

Ip . 3 Also, the oscillator coupling strength in the GKM was
found to depend on both the dc bias current driving the array
and on the impedance of the load. This coupling resulted in

\ Prj each oscillator’s time-averaged angular velooftyg; /dt),
being renormalized from the bare value it would have had in
the absence of coupling. Using well-known methods of ana-

Ebﬂ”rl lyzing the GKM, the authors of Reff17] were able to predict

N " the fraction of the junctions whose renormalized angular ve-

locities had locked to a common value as a function of the dc
bias current and the spread in the junction critical currents.
$N-1 (Such locked junctions will be described isquency syn-

Ip _, , chronizedthroughout this paperin part, this mapping be-

tween the serial JJ array and the GKM is significant, because

it brings to bear upon the problem of understanding the dy-
namics of the JJ array all that is known about the Kuramoto
models, which is substantial. For example, the authors of

Ref.[17] were able, based on the GKM, to predict the level

oOn of critical current disorder the array could tolerate before

Ip > frequency synchronization of aM junctions in the array

i .. would be lost.
oo oo ot o S o7 L is an nerestng queston whether any other 3 array
: g ’ geometries can be mapped onto Kuramoto-like models. Such
plaquettes. The bias currehy is inserted at the left node of each . . . - -
horizontal junction and extracted from the right node. A ladder witha connection CO[.Jld !ndeed prO\_/e valuable in shedding light
periodic boundary conditions and— 1 plaquettes would result by on the.synchronlzat'lon propgrtles of such an array. In fact,

connecting the two ends together. Then horizontal junctions IabeleH"e main resu'_t of t_hIS paper is to show thdadderarray of .

“1” and * N” would actually be the same junction. overqlgmped junctions can be mapp_ed, under appropriate

conditions, onto a Kuramoto model wittearest neighbgr
unit of a square or rectangular array, and so the study osinusoidal couplings. Specifically, we consider a ladder of
ladders could throw some light on the behavior of commonlyjunctions biased horizontally with dc bias currehgswhich
fabricated and studied 2D arrays. Also, linearly stable phas@re greater than the critical currents of each of the horizontal
locking of the horizontal junctions in a laddésee Fig. 1, in  junctions (see Fig. 1 The junctions are disordered, with
the absence of a load, is observed over a wide range of dadividual critical currentd ., ; and resistanceR,, ; (for the

bias currents and junction parameters, such as junction c&orizontal junctions and with a spread of critical currents

pacitance[16], so that synchronization in this geometry ap- A= (I ¢h max—{lcp))/{lcr), Where(lp) is the arithmetic mean

pears to be robust. of the horizontal junction critical currents. Initially, we re-

When a Josephson junction is biased in the voltage statsfrict ourselves to the case of overdamped junctions, with
with a bias current greater than the junction’s critical currentzero internal capacitance, but in the final section of this paper
the junction’s gauge-invariant phase difference “overturns,”we will present some preliminary results on synchronization
and the junction’s dynamical behavior is described by a limitin underdamped ladders. We consider both periodic and open
cycle in phase space. It is reasonable, then, to ask if there Boundary conditions, and we study arrays wNE5. We
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find for sufficiently large bias currentdg/(l.,)=3, and . b, ] ho di
critical current disorder up to about 1094,<0.1, that the ~ —lg*lcnSingj+ TRh_W_Icr,jsmd/r,j_ 2eR at
averaged RSJ equations for the ladder reduce to the LKM. ! .
As discussed previously, the LKM is not as well studied as . h difr -1

+lerj-aSing, j_ 1+ =0, (2b)

the GKM; nevertheless, this result tells us that all our under-
standing of the dynamical behavior of solutions to the LKM
should apply to the ladder array of Josephson junctionswhere we used the voltage-phase relation for a Josephson
Some aspects of this behavior will be discussed in this papejunction, V= (%/2e)d¢/dt. Note that Eq(2) also applies to
This paper is organized as follows. In Sec. Il we discusghe four nodes at the ends of the array, ije=1 andj =N, if
the RSJ equations describing the disordered ladder array, taWke let i o( 4, ) =0 and ¢ (¢ n) =0.
briefly about measuring the degree of frequeriE$) and We find it convenient to sort all junctions into one of two
phase synchronizatiofPS in the array, and discuss a set of groups: horizontal and vertical junctions. We let
assumptions that in turn allow us to perform the averaging!cn)({!c,)) denote the arithmetic mean of the horizontal-
process on the RSJ equations. In Sec. Ill we discuss thevertical) junction critical currents. We also assume that a
averaging procedure for the ladder that results in the LKMParticular junction’s critical current is proportional to the
We also compare the levels of FS and PS of the two mode|é_gnctlon area, while its resistance is mversely.proportlonal to
namely, the RSJ model and the LKM, to verify the validity its area su<_:h that the product of these quantities is f[he same
of our averaging process. In Sec. IV we discuss some of th rall jl:InCtIOHS[ZO]: So we have the following equality for
properties of the LKM itself. In Sec. V we look at the effects 1€ horizontal junctions:
of thermal noise on the synchronization behavior of the RSJ len Re = (L) (R =X 3
model and the LKM. In Sec. VI we present some preliminary chjTihj A Teh/A T/ T Ah

results on synchronization in the underdamped ladder, irflOr some constarX;,, and wherg(Ry) is the average resis-

which we assume each junction has an internal capacitanGgce of the horizontal junctions. One can think of E3).as
C;. Our results in Sec. VI are based on the resistively a”Qjefining the ratio Ry /(Ry)=(Icn,; 1)L, where the

capacitively shunted junction modéRCSJ model and we  y51ye of l¢nj /(I cn) is generated by a suitable random num-

find that for sufficiently large junction capacitance, the fre-per generator. Likewise for the vertical junctions we have
guency synchronization transition, which is a continuous

function of the coupling strength in the overdamped array, ler iR j=ler jRej=(IeoXR,) =X, . (4)
is discontinuous in the underdamped ladder. Such behavior
has been observed in the PS of the underdamped GVl In the dimensionless version of E() [see Eq.(6) below],
Finally, in Sec. VII we conclude and discuss possible av-the ratioX;,/X, appears. This can be set as desired, including
enues for future work. to a value of unity.
To write Eqg. (2) in dimensionless form, we divide by
(l¢n), define a dimensionless time

ZeRr'j,l dt

Il. PRELUDE TO AVERAGING
t

. . _ . (1261 cp)(Rp))”
Consider the geometry of Fig. 1, which depicts open

boundary conditionsN horizontal junctions, and uniform, and a dimensionless bias currépElg/{l¢). Note that we
horizontal dc bias currentsg. The Josephson phase differ- divide by the average critical current for therizontaljunc-
ence across th¢th horizontal junction is denoted by, tions, since these are the most important junctions for our
while the phase difference across the(lgght) vertical junc-  horizontal biasing scheme. We also define dimensionless
tion in the jth plaquette isy, ;(¢; ;). The critical current of ~ critical currents as  follows: icpj=lch;/(lcn), el
the jth horizontal junction id ., ;, while the critical current  =l¢;j/{lc,), andic j=I¢ ;/{lc,). Of particular importance
of the lefright) vertical junction in thejth plaquette is in our analysis is a dimensionless “coupling” constant
lcij(ler,j). The junction’s resistance is denoted By, ;,
R/;, andR,; for the horizontal, left, and right junctions, . (lew) :<Rh> Xy 5
respectively, in thgth plaquette. Conservation of charge ap- (Iery (Ry,) Xy’
plied to the superconducting nodeodes are denoted by
filled circles in Fig. 3 on the left and right side, respectively, where we used Eq$3) and(4) to obtain the second term on

A. RSJ equations T

of the jth horizontal junction yields the right side. Then Eq2) becomes
. dé; : hio diy dé; Xp di
. D —— D 7 =i sind —is — —qiisindg —al =i, —1
B Ch,JSIn¢j 26Rh'j dt c|,,S|n¢|,1 ZGRLJ- dt Ig ICh,JSIn¢] Ich,j dt a'cI,Jsmlr//I,J a X, lel,j dt
. i di g . . Xn). digj-1
+|C|’j,lsln(//|yl-,1+ —zeR‘jil d; =O, (Za) +a|c|'j,lsln(//|yj,1+a x_v ICL]-*]- d:: :O, (6@
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rithm, we solved Eqs(6) and (7) numerically for the phase

—igtich Singj+icn d_t]_a'icr,jSin‘//r,j differencesg; , 4 ;, andy, ; and the dimensionless voltages
(or, in the language of rotators, angular velocitidg; /dr,
Xn\.  diy _ _ d¢y j/d7, anddy, ;/d7. We used a time step a&f7=0.01,
_“(X_v)'cr,iT“'“'cr,j—ls'”‘ﬂrvj—l and we initialized the phases randomly between 0 and 2
We measured the degree of FS of therizontal junctions
Xn) . difr -1 (rotatorg simply by calculating the standard deviation of
ta X_v 'cr,i—lT:O- 6D their time-averaged voltaggsngular velocities For sim-

plicity, let w;=(d¢;/d7), (where angular brackets with the
Equation(6) is supplemented with the constraint of fluxoid subscriptr denote time averagingThen the standard devia-
guantization in the absence of any external magnetic flux otion is simply
induced flux due to currents in the plaquettes. For jtthe
plaquette this additional constraint yields

N
> (0j—(w))?
=1

b+ j—djr1— =0, 1sjsN-L (7) T,= N=1 , (10)
Equations(6) and (7) allow us to solve numerically for the
3N—2 phasesa;, ¢, andy ; [21]. where{w) is the arithmetic mean of the time-averaged an-

As mentioned in Sec. I, we have also considered periodi@ular velocities of the horizontal junctions, i.&w)
boundary conditions. In that case, we imagine the ends of the (£jw;)/N. To calculatew; numerically we ran our code
ladder shown in Fig. 1 connected together, resulting in arfor 2.5x 10° time stepgof the order of 1000 rotator periods
array with N—1 “horizontal” junctions and N—1  before averaging over an additional .50 time steps. In
plaquettes. In Eqs(6) and (7) the indexj then satisfies 1 Some sense, one can think @f, as a type of inverse fre-
<j<N-1 and ¢ o o= N 1(rn_1), While ¢y quency synchronization order parameter, since full frequency
=,. synchronization of the horizontal junctions is signaled by a

Also of importance is how the critical currents are as-Very small value ofs,,, typically less than 10* in our nu-
signed. We consider two cases, a random and a nonrandoferical results, while a “large” value o, (of order ong
method. In assigning the critical currents randomly, we genmeans that on average the horizontal junctions’ angular ve-
erate values according to a parabolic probability distributioriocities are not synchronized.
function (pdf) of the form Typical behavior ofr,, as a function ok is shown in Fig.

2 for N=8 with periodic boundary conditions. The horizon-
3 tal junctions had randomly assigned critical currents with a
P(ic)=—[A%—(i.—1)?], (8)  spreadA=0.05. Also, in Fig. 3 we show the time-averaged
44 angular velocities foeachof the eight horizontal junctions

wherei. generically represents a dimensionless critical cur" the periodic ladder. The array exhibits clustering, which is

rent for either the horizontal or vertical junctions that is nor-We” known to occur in systems of locally coupled oscillators

malized by the appropriate average=1/(1) andA deter- [8-10Q]. That is, the averaged angular velocities of the indi-
Cc [ 7 H “ _
mines the spread of the critical currents. Equation 8 results iﬁ”dual rotators adjust themselves as the value of the *cou

critical currents in the range AA=i,<1+A. Also note pling constant”« increases, and groups or clusters of rota-

. . ; . tors form which have identical averaged angular velocities.
that this chowe(_also us_ed in Refl17]) for th_e pdf avoids '{his continues until eventually only two clusters exist in the
problems associated with more extreme critical currents tha

. . . ' array, and at a critical value., the two clusters merge and
are occasionally generated with pdfs with tails. We generall c )
allow for up to 10% disorder, i.e.,9A<0.1. In addition, a full FS occurs. Fom= a; we find thato,, <10 °. Note that

ronandommeiod for sssigning criealcurtets was ap-18 RN SPE T 018 £ oenn Loeienel
plied only to the horizontal junctions and was based on the . . . ) 9
expression currents of the vertical to the horizontal junctions.

P We measure the PS of the horizontal junctions by the
oA famous Kuramoto order paramef{e
ich'j=1+A—(N—l)2[4j2—4(N+1)j+(N+1)2], N

- 1 )
9) r=— > €%, (1)
N =1

which results in the values of;, ; varying quadratically as a Si . | d time d q |
function of position along the ladder, while-1A<i ;<1 Incer Is complex and time dependent, we ca Cu@@f’
LA ’ the time average of the modulusrofWe are interested in the

behavior of(|r|), as a function ofr. Full PS of the junctions
is denoted by(|r|),—1, while (|r[),~0 means thep; are
basically distributed randomly between 0 and.2Figure

It is helpful to show some typical synchronization behav-2(b) demonstrates a typical behavior of t{je|),. Note that
ior in this system. Using a fourth-order Runge-Kutta algo-for a<a., (|r|), varies in a complicated manner, and only

B. Results for the RSJ equations
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o
1.0 FIG. 3. Clustering of the time-averaged angular velocities for
(b) the periodic ladder depicted in Fig. 2. The critical currents of the
08t rung junctions ¢y, ; result in bare angular frequencifs according
to Eq.(18). The value ofe, is easily seen to be slightly greater than
0.1.
P
A 067
= .’\ & on the unit circle as they move. We observe qualitatively the
v 04} % ..' same behavior for ladders with open boundary conditions.
[ [ Y
(¥4 )
0.2} < C. Some simplifying assumptions
To obtain the averaged version of E¢®). and(7) we find

0.0 : : : : it useful to make three assumptions, which we describe in
0.0 01 0.2 o 03 0.4 0.5 turn. In each case, we discuss the validity or appropriateness
of each assumption.

FIG. 2. Frequency and phase synchronization in an 8-plaquette Assumption 1. Only the horizontal junctions are disor-
overdamped ladder with periodic boundary conditifgee Eq(6)]. dered That is, all vertical junctions have identical critical
The bias current was=15/{l.)=5, and the critical currents of currents and resistances,
the horizontal junctions were assigned randomly according to Eg.

(8) with a spread ofA =0.05. The vertical junctions were not dis- lej=lerj=leos
ordered, and the value of the ratg /X, in Eq. (6) was set to one.
(a) Standard deviation of average angular velocifmsvoltages in R =R =R,

our dimensionless unitf the horizontal junctionsy,,, scaled by
its value at zero couplingb) Time-averaged modulus of the Kura- \yhere| R, =X, . For simplicity, we assum;/X,=1 so
moto order parameter, which measures the degree of phase synchgp
nization of the junctions({|r|), is a complicated function of for
a<a. and then grows smoothly ag is increased beyond,
asymptotically approaching one for very large Qualitatively

similar behavior is observed for arrays with open boundary condi-_ . .
tions. This assumption makes the averaging process tractable. Per-

haps more importantly, we have made some checks of the
) ) effects of this assumption as follows: we calculateg for

for a>a; does(|r|), grow smoothly witha, with ([r]),  the averaged equatioisee Eq.(26) below], for the RSJ
asymptotically approaching unity for sufficiently large It equations withno vertical junction disorderas based on
is clear from Fig. 2 that full FS is much easier to obtain thanassumption J, and also for the fully disordered RSJ equa-
full PS in the sense that a smaller valuecofs required for  tions, where both horizontal and vertical junctions are disor-
FS than PS. We find it useful to envision the motion of thedered. For the sake of space, those results are not shown
phases of these rotators as points moving around the uriitere, but we found no qualitative difference among all three
circle. Frequency synchronized motion means that the phasets of results foN=15, ig=5, andA=0.1. It would ap-
points all move with same average angular velocity, but ifpear that, at least for moderate or small amounts of disorder,
those points are distributed broadly around the unit circlej.e., A<0.1, the synchronization behavior of the array is not
the degree of PS will be low. To obtain high degrees of botrstrongly affected by this assumption.
frequencyand phase synchronization requires both that the Assumption 2. A special phase relationship between ver-
phase points move with the same average angular velocitycal junctions We assume the phase differences across the
and that they remain clustered at roughly the same locatiotwo vertical junctions in thgth plaquette are related by

ICh,th,jZICURU 1$]$N
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g j= =+ 2mn, (12) Since(Vz(dd;j /d7)),~0 and we are interested in the time-
averaged behavior of E¢L3) it seems reasonable to drop the

for any integem. This relationship is known to be true in the term.
ladder in the absence of disord@?2], but it is nota priori As a result of all three assumptions we are left with the
obvious that it holds in the disordered ladder. To test thdollowing equation describing the dynamics of the phase dif-
validity of Eq. 12 we have calculatedy( ;+ ¢, ))/2m as a ferences across the horizontal junctions:
function of time based on Eq$6) and (7) (along with as- .
sumption ) for N=5, looking at both periodic and open %: 's —sing; + o E sin( ¢J+z;_ 4’1‘). (14)

boundary conditions, and for various sets of critical currents dr  ichj lehj 6=5%1
and initial phase differences. If EqL2) is satisfied, such a ) )
plot should give the value of the integerWe do find com- It is now straightforward to see thaficp; plays the role of
plicated behavior in the sense that the details of the temporale coupling strength between neighboring junctions. The
behavior of 4, j+ i )/2m are dependent upon the particu- NeXt step is to average E(L4).

lar configuration of critical currents, initial phase differences,

as well as the value af, but a general trend is observable. ll. AVERAGING THE RSJ EQUATIONS

For large bias currentsy=3, we find Eq.(19) is satisfied : The work in this section is based on a technique used

?)reviously to average the RSJ equations for a current-biased
serial array of overdamped JJ’s connected to a Ig2®], but

e emphasize that no load is required for the horizontal
junctions of the ladder array to synchronize. The first step is
; . ! to transform the phase variableg, which move around the
not appear to be transient, or are at least transient with avelit circle with a nonzero angular acceleration, to a new

long decay time. Fow> ac andig= 1.5, no such slips occur, variable ¢; , which increases with time with a constant angu-
as was also seen at higher bias currents. Thus, after caref]

study of the temporal behavior off{ . + ¢, .)/27, we are led Ilér velocity @, in the unc.oupled I|_m|f3]..Th|s fransforma-
. : g s .~ tion follows from Eq.(14) in the =0 limit,
to the conclusion that Eq12) is a reasonable approximation

occur only fora<a,, i.e., prior to the onset of full FS, and
are transient in that they disappear after a sufficiently lon
time 7*, where we findr* <2500. For lower bias currents,
however, such aigs=1.5, and fore<«., the phase slips do

for sufficiently large bias currentsz=3, as long as a suffi- de; de; de;
cient time intervalr’ > 7* is allowed for transients to die out 0,-=f =f : :f p ,
: dg; is I;—sing;
before any temporal averages are calculated. We find a value - — —sing;
of 7'=2500 to be reasonable. dr |, _, lch,j
Note that in the light of assumption 2 we can simplify Eq. (19
(D to where we defined the quantifj=ig/i.y; for convenience.
b —dbiiit2mn The integral gives an expression for the new phase variable
¢|’j:+_ 0; in terms of the original phases;,
Substituting  thi ion into E¢6a), and taki 0 2 et A e B T (16)
ubstituting this expression into , and taking as- |=—=—=tan ——tan 5+ ||,
sumption 1 into account, leads to the expression VIj—1 L1 2 4
which can be inverted to giveb; in terms ofé, ,
dgy afddy dgy ddy ave; i
hidr T 2| dr dr dr - |Z;+1 6 T L
(ﬁj- tan Ijjta > 5 (17

=ig—icniSiN¢g;+ asin M + a sin M ,
B ch,j j 2 2 . e
At this point it is also useful to calculate the angular ve-

(13) locity of each junction or rotator in the absence of coupling,

Q;. If T; is the period of theth rotator when uncoupled,

where we have takeX, /X;,= 1 for simplicity. Note that Eq.  then
(6b) can also be simplified in light of assumption 1. The

result is an equation in terms of the phasgsand ¢, ;. T_ZZ_W:JTJdT: fzw dé; :Jh d(éj ,
Since we are primarily interested in the behavior of the hori- ' €;  Jo o [d¢j o Zj—sing
zontal junctions, Eq(13) is the natural one to use. dr /), _,

Assumption 3. Ignore the discrete Laplacidn Eq. (13
we drop the termsde;, /d7—2d¢;/dr+d¢;_,/d7  which gives
Evz(g¢j /d7). We find, over a wide range of bias currents, —
that V<(d¢; /d ) oscillates with an amplitude that depends — /[ ig
on the valde ofig and «, but always with a time-averaged Q=VIj-1= (ichj) -1 (18)
value of approximately zero. Note that, meanwhile, the first '
term on the left side of E¢(13) has a nonzero time average. Note that for large bias current®;~ig/icp ;.
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The next step is to express Ed4) in terms of the new d~6,— a9 1 (on 1
phase variables; . We write — ) = — —j =
dr’ ichj/ (Q) 521270 T.—sing(6;+ 1)
fast J J
do; _ do; dg = N (T
dT_d(f)j. dr’ X sin ¢(0j+5+7)2_¢(0j+7) d7’,

whered6; /d¢; follows from Eq.(16) andd¢; /d from Eq.

(14). One must also remember thaf is expressed in terms where the angular brackets on the left side denote the result

of 6, via Eq. (17). We find of the averaging process. Next, ldt =0, ,— ;. Also,
since thed; are treated as constants during the integration,
do; ~/Ij2—1 ~ Q, thgy can_ be absorbed into the definitionf i.e., 7’ — 7’
de; Z,—sing(6,) Z,—sing(6)’ +0; to give
I} 2
an_ T[] 1 <d_0> s L 1
dr icng) Zj—sing(6)) dr'[ g Veni/ () 552127 J0 - Ti—sing(+)
6; 4 5)— P 6; AVt )—p(7)]
> Sin(M”_ 19 X sin ; dr'. 23)
5==*1

Making use of Eqs(15) through(17), and after some algebra

A shift of the phases is also convenient, we obtain the two useful relations

0;=0,— Q. (20 02

I—sing(r')= ———,

~ . . Z;—cosT’

Thus 6; measures by how much the phase variahldiffers J

from the value it would have in the absence of coupling. r{¢(q,5+ )= ()
Si

Equation(19) then becomes

2
[ £l isin ——
dr \ich, Z;—sing(0;+Q;7) B ! 2
~ ~ Z;—cos7')(Zj—co§ W s+ 7'])
x 3 sin ¢<6j+5+ﬂj+5r>—¢<0j+ﬂjr>} V(T ~eost)(Z; ~cod ¥+ ']
s=+1 2 ' In light of these results, Eq23) can be written as
(21 R
" ot do; SN2 1
The bare angular velocitieS); have a percent variation Y :(_ ) i
across the array of the order Af(see Fig. 3 For moderate dr'/ . \len Q) 127

to small amounts of disorder it is reasonable to make the e

following replacements in the arguments of the sine func- 2m Z;— cosr’

tions in Eq.(21): Xf — d7’. (24
0 I;—cogVs+1')

$(0;+Q7)— p(0;+(Q)7), Since we are interested in the limit of large bias currents,

o ) we expand the integrand in powers off1/ (Recall thatZ;
where(Q)=(Z;€;)/N. Then it is also convenient to rescale =iglicn;-)

the time variabler’=(Q) 7. Equation(21) becomes

5 | Z,—cosr’ 1+ 1 [Cog W o 7) 1
) ) e —— ~—|CO 7 )—COST

a6 _ @ )& 1~ Z;—cogV s+ 7') 21 °

dr' \lenj/ (Q) Z—sing(4;+7')

+ ! [3cod(Vs+7")
— co T
(22 877 ’

—2 cosr'cog WV 5+ 7') —cog7' ]

Pl 2

‘S Sir{¢(~aj+,s+r'>—¢<79,-+r'> |

The next key idea is to treaﬁj, the “slow” variable, as
constant for the duration of one cycle of the “fast” variable +0
7'. We then average E@22) over one cycle ofr’.

1
73
j
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Substituting into Eq.(24) and integrating order by order 1.0
gives, to order 772, e RSJEqns.
- 08} & Averaged Egn. O(1)
dé, 1 [ a v 1 W <
— =—(. )2 sin(—‘s)Jr—zsinB(—(S) , o 06f
dr'[ (Q) \ienj) 551 2] 4z 2 =
g 0.4} .Af
where the term of0(1/Z;) vanished upon integration over o <
7'. Transferring back to the original time variabteand to 021 (a) ‘ﬁA
the phase variabl€j=~0j+(ljr, and making use of the ap-

o
o©
o
o
o
o
F =N
o
o
o
)
-
o

proximation \If5=~0j+5— 0;~0;, s~ 0;, where the last ap-
proximation should be valid for moderate to small amounts o
of disorder, we finally arrive at the averaged version of the
RSJ equations, expressed(IlQl/Ijz),

do. 0.5 0:
2% :Qj+(.“ )E Sin(&)
dr’ leh,j/ 6x1 2

fast

1 (05— 0J->
+ 4Ij23|n3( ] . (25)

<|rl >,

2

Equation(25) is the main result of this paper. However, for
large bias currents;?>1, we can drop the term @p(1/Z?)
and reduce Eg25) to an expression that is @?(1) in terms
of the Z;

h— :Qj"l' .
dr’ fast ICh’j

Note that with a simple rescaling;—26;, ;—2(;, and

a—2a, EQq. (26) has the standard form of the LKN®],

namely, minimum value of the coupling for this condition to be sat-
isfied, then both the LKM and the RSJ models tell us tat

FIG. 4. A comparison of frequency and phase synchronization
in the LKM and the RSJ models for the overdamped ladder and
periodic boundary conditions. Array consists léf= 15 horizontal
E sin( 0+ 5~ 9j) (26) junctions, or rotators, witlig=5, andnonrandomlyassigned criti-

2 ' cal currents withA=0.05. (a) The scaled standard deviation
o,(a)la,(0). (b) The time-averaged Kuramoto order parameter
(|r]),. Note the different scales on the horizontal axes of the two
graphs.

o*+1

do, —Q. 4K g . —0 is considerably larger thaa.. We have also studied the
dr T TigAy SInC6;+ 5= 6;), agreement between the LKM and the RSJ models for the
case ofrandomly assigned critical currents and both open
whereK;=alicpj - and periodic boundary conditions. We find results qualita-

As a test of the validity of Eq(26) for describing the tively similar to those in Fig. 4.
synchronization behavior of the JJ ladder, we compare the We have considered other array sizes vit# 15. In gen-
values of the quantities,, and({|r|), calculated numerically ~eral, we find that foN=5, iz=3, and both types of bound-
from Eq. (26) as well as Eqs(6) and (7). Figure 4 shows ary conditions, the LKM and RSJ models exhibit a level of
such a comparison fdd= 15 horizontal junctions and a bias agreement similar to that depicted in Fig. 4 foe=15.
current ofig=>5 for periodic boundary conditions. The criti- ~ As discussed in Sec. Il we expect the two models to differ
cal currents were assignednrandomlywith a spread oA ~ more substantially for small bias currents. This behavior is
=0.05. Each plot in Fig. 4 was obtained by averaging oveldemonstrated in Fig. 5, which compakeg for the LKM and
five sets of initial phases, and the error bars were smalleRSJ models foN=15 andig=1.5. Also included are the
than the sizes of the symboldNe see qualitatively similar results for the LKM when the term of order ofi}/is in-
behavior for the case of open boundary conditiphs.Fig.  cluded from Eq(25). We note that at smaller bias currents,
4(a) a well-defined critical couplingy. for full FS can be the inclusion of the 1@ term improves the agreement with
identified, and the LKM and the RSJ results feg are in  the RSJ model, but the existence of phase slips in the vertical
very good agreement just by visual inspection of the graphgunctions that violate Eq(12) is likely the cause of the dif-
Likewise, the degree of PS between the two models are iference between the averaged and the RSJ equations ob-
excellent agreement. In particular the LKM, like the RSJserved in the figure. In looking at a range of array sizes and
model, points to the much larger coupling strengths neededt both periodic and open boundary conditions, we find that
for both full FS and PS compared to the coupling needed fotypically the values ofe, between the averaged and RSJ
FS alone. To be more specific, if we define full PS by theequations are in agreement within a few percentsifor
condition {|r|),=0.99, and then also define, to be the =3.
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1.0 0.16
12 A& Averaged Equation O(1)
08 & 8 DO Averaged Equation O(1/iBZ) 0.14 3
or o 4 ® Full RSJ Equations °
012
S o6 * 3 °, o = 2.087
e o # A 010F (analytical result)
= 0a
3 . 3 *
N L o N
= 0.4 o a u 0.08 .
oa ®
0.06 | i
L L
0.2 o o A ..
0.04 | ....
0.0 . e85 90000aa0a008 ®o0e
0.0 0.1 0.2 0.3 0.4 0.02 had LTV
ooo......
o 0.00 ! ! ! hd. 2%

FIG. 5. A comparison of the frequency synchronization in the
LKM and the RSJ models for the overdamped ladder Wth 15 Olgst
and open boundary conditionepnrandomcritical currents with
A=0.05, and a bias current ®=1.5. The results based on the  FIG. 6. Frequency synchronization of the LKM, H@6), with
O(1) LKM are shown, as well as the LKM with the inclusion of the @ef=/{icn), With open boundary condition$y=50, and a com-
term of O(1/i3). Including the correction term in the averaged parison with the value ofx. as calculated from Eq(30). Bare
equations helps the agreement with the RSJ model. The disagreequencies were assigned randomly according to a parabolic pdf of
ment with the RSJ model is expected and is likely due to phase slipiie structure of Eq(8) with mean(Q)=5 and spread(}=0.5.
in the vertical junctions of a plaquette, which is not accounted for inNote the agreement between the analytic resultsefoand what
the LKM. one would identify from the graph aof , .

IV. BEHAVIOR OF THE LKM has the “fast” temporal dependence integrated out, we define
synchronization of oscillatorg and j+1 as whend»;/dr
One of the main points of this paper is that, if the slow =0. Thus we need to solve for the fixed points of E2j7):
dynamics of the overdamped ladder are well described by the
LKM, then all that is already known about the dynamics of D+ .L[U<+1—2u-+u»_1] 1<j<N-1, (28
the LKM ought to be applicable to the ladder. In this section Poien ! b
we discuss some properties of solutions to the LKM. ) . .
Phase slips and voltage bursts near synchronization. Whereu;=sin(z). We find the solution to Eq28) that can
has been demonstrated for the LM that as the coupling P€ Written as
strengtha approachesy; from below, voltage burst&r an-

. N -1
gular velocity burstsand corresponding phase slips occur in U:M 2 iD+ 2 nD,{ & }(N—k+ 1).
the rotators with a time interval between slips that grows as *  @(N+1) & e T I

a— a, according torg;, 1/J/a,— a. We have observed this (29

phenomenon of phase slips for the LK¥q. (26)]; in par-
ticular, we have observed that as- «. , the time between
the phase slips grows, demonstrating critical slowing down
Such slipping is thus also expected in the RSJ model.
Analytic determination ofx.. It is possible to derive an
expression for, based on a fixed point analysis of the sys-
tem of equations formed by taking the difference of E2f)
for neighboring rotators. We present here our results for th
case of open boundary conditions. The key ifi2d] is to
consider the quantityy;=(6;.,—6;)/2. We find that Eq.

A fully frequency synchronized state is denoted by the exis-
tence of solutionss; which fall within the physical range
—1sujs1for 1sj<N-1. Infact, the value of the critical
couplinga, is the maximum value of for which one of the
Uj, say Uy, is just outside of this range while the (]

#k) are still within this range. So to find, we set the
magnitude of each of the; equal to unity in Eq(29) and
find a corresponding value fat. ;. The physical value of
the critical coupling is the maximum of the set. ;}, i.e.,

(26) leads to the set of equations 2igr) N -1
o= 1D+ { D, nDyf 8 |(N—k+1)
d?]j _D.+ a . 5 i N+1|Z n=1 ’ max
1<j<N-1, (27 For a given set of critical currents and a value of the bias

current we determine the sgid;} and thenx, from Eq.(30).
where 7,=0, 7y=0, and D;=(;;,—Q;)/2. Also, we Indeed this gives a much more rapid way of finding the
have replaced,; with (icp), the arithmetic mean of the critical coupling than solving either the LKM or RSJ model
critical currents, in the denominator of the coupling term, annumerically! As a test of the validity of this result, Fig. 6
approximation which should be reasonable for moderate teompares the value af. calculated from Eq(30) with the
small levels of disorder. Remembering that E2p) already  behavior ofo,, from a numerical solution of the LKMEQ.
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mean. We note that the two randomly distributed systems
exhibit exponents that are approximately equal to 0.5, so that
a. growslessrapidly with array size for randomly assigned
bare frequencies than for either of the nonrandomly assigned
cases. In fact, inspection of Fig. 7 shows that the case of
assigning frequencies according to a linear function of posi-
slope = 0.9962 +/- 0.0008 tion results in the largest value af. for a givenN of all four
. . . 0 cases considered.
10 2;“ s 10 2;° 50 Previous work by Liu and co-workef§] based on a nu-
merical solution of Eq.(26) led to a value of the scaling

exponent ofd=2 for the case of random Gaussian bare fre-
quencies. We suspect the difference with our resué find
d=0.54) is due to the technique in determiniag. If the
authors of Ref[8] used a threshold test to determing,
then they would find the smallest value effor which o,
< Cinreshole Where Ciyresnoid IS arbitrary but small. We have
found that for increasingl, numerical solutions foo-,, from
. . . . ‘ the LKM develop long tails ina so that the value ofx
100 200 500 100 200 500 necessary to satisfy, < CineshoigC@n be a sensitive function

N N of the choice ofCyesnoi INdeed, we have found from nu-

FIG. 7. Log-log plot ofa, [as determined from Eq30)] for the merical experiments with the RSJ moc{alslng double pre-
LKM as a function of array siz&\ for open boundary conditions CiSion varlable}sthat if Cinreshoia= 102, thend~0.5, while
and four different methods for assigning the bare frequencies: norif Cinresnoid= 10, thend~2. This pomts to the fact that the
randomly, according to either a parabolic or linear function of po-scaling behaVlOf ofr, with N in the LKM is dependent on
sition; and randomly, according to either a parabgfiean(Q)  the method of analysis. It is interesting, then, that the ana-
=5, spreadAd=1) or Gaussiaifmean{Q)=5, standard deviation lytic solution for «, obtained from Eq(30) for the case of
oq=1) pdf. The scaling exponent for both nonrandom cases iGaussian random frequencies, yields an exponent that is
clearly 1, but for the random cases it is between 0.5 and 0.6.  much closer to 1/2 than it is to 25].

o _ _ Linear Stability analysis of frequency-synchronized state

(26) with ich; replaced by(icp)], where we defineaer  \We can calculate the degree of stability of the fully
=al(icp). The array consisted of 50 rotators and a randonfrequency-synchronized state of the LKM, fat>a., via a
distribution of bare angular frequenci@s [see Eq(8)] with  Floquet analysis. Analytic values of the Floquet exponents,
average(2)=>5 and spreadd1=0.5. (Note that assigning X, for the solutions of Eq(26) are obtainable for both peri-
the bare oscillator frequenciéy; in the LKM is tantamount  odic and open boundary conditions. Loosely speaking, we
to assigning junction critical currents in the RSJ modéle  can think of the values ok as characterizing the rate at
have also calculated, via Eq.(30) for the case of a Gauss- which perturbations to a frequency synchronized state decay.
ian pdf with the same averagé))=5 and standard devia- Negative values ok denote stable synchronization. We find,
tion, 0 =0.5. The tails of the Gaussian pdf result in a largerfor periodic and open boundary conditions, respectively,
spread in bare frequencies than with the parabolic pdf, which
in turn results in a considerably larger valuef. For both odi
cases, however, the value ef, calculated from EQq(30) Re()‘gﬂemdlctc): (i Ch>sm2( ) O=m<N-1,
agrees well with the numerical solutions of the LKM, at least (31
for N=50 and based on a visual inspectionoqf versusa.

With Eq. (30) it is easy to determine the scaling relation- ope
ship betweeny, and array sizé\ for largeN and for various Re(\?te) = — (i h>s'”2 O=m=N-1, (32
distributions of bare frequencies. That is, we wish to find the ¢
value of the exponerd in the expressiomr,=N°. Figure 7,  wheret.=%/(2¢e(1,)(Ry)) is the characteristic time scale.
which is a log-log plot ofa. versusN for N=50, shows Note that abover, the Floquet exponents grow proportional

values ofd for four different methods of assigning the bare to «, i.e., the frequency-synchronized state becomes more
frequencies: nonrandomly, while following either a parabolicstable as the coupling is increased.
or linear function of position; and randomly, according to

100} nonrandom, parabolic nonrandom, linear

200
100

50

slope = 0.9924 +/- 0.0016

random, parabolic 30 random, Gaussian

20 |

slope = 0.5812 +/- 0.0195 slope = 0.5396 +/- 0.0142

either a pa_lrabolic or Gaugsian pdf. For both typ_e_acnfran— V. THERMAL EEEECTS ON SYNCHRONIZATION
domly assigned frequencies we fir=1; the critical cou-
pling grows linearly with array size. For thendomly as- In this section we include the effects of an additional ther-

signed frequencies we find=0.58+0.02 for the parabolic mal noise current in the RSJ model and look specifically at
case anal=0.54=0.01 for the Gaussian case. Note that forthis new current's effect on FS and PS. Keeping with the
both types of random frequencies, the valuesdgrare an  spirit of previous sections of this paper, we also investigate
average over 100 different realizations of frequencies. Théhe synchronization behavior of the LKM with an additional
error bars ona, represent the standard deviation of therandom noise term and compare the dependenee,an o
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for the two models. We find quantitative agreement between 0.20 o T - 00025 RSJ
the two models over a limited range of temperatures and o o T*=0.0025 Averaged O(1)
qualitative agreement over an ever wider range of tempera- %B.%. v T'=0025RSJ
015 o5 ¥ QEI- v T*=0.025 Averaged O(1)
tures. . o ' ' Xy, e = T*=0.1RSJ
To include the effects of thermal noise in the junction’s oI ".b. o T*=0.1 Averaged O(1)
resistance, we add a white noise tely(t) to thejth junc- ¢ 0.10 Oy @p
tion in the RSJ model. Note thaveryjunction in the ladder "},
experiences such a term. The stochastic currents have the ’:’v',
following statistical propertief26: 0.05 1 ° =
[ 3
(]
(Inj(1)=0
and
o
kT FIG. 8. A comparison of frequency synchronization behavior for

2
(Inj (DI (tHAL)) = R 8 kO(At),

! the LKM [Eq. (34)] and RSJ mod€dlEq. (6)] including the effects

of thermal noise for three different temperatur€$=0.0025,
where the angular brackets about stochastic quantities dende25, and 0.1. The array size wids=5 with open boundary con-
an ensemble averagkg is Boltzmann’s constanfT is the  ditions andig=5. We considered one set of random critical cur-
absolute temperature, aRj is the resistance of thigh junc-  rents[Eq. (8)] with a spread oA =0.1. The values of,, represent
tion. For simplicity, we will rep|aCQj by (Ry), the average an ensemble average over ten independent runs to account for the
resistance of the horizontal junctions. This should be reasorfandom thermal noise. Note that the agreement between the models
able for moderate to small amounts of disorder. Expressed if§ 900d. except for larges at higher temperature.
our system of dimensionless units, these relationships take

the form Eq. (34) and the RSJ equations agree to within some speci-
fied precision. The value dDy was thenheld fixedfor all
(in,j(7))=0 and (inj(nink(T+AT))=4T* & 5(AT), other values off* and« that were sampled. For example, in

(33 Fig. 8 we setDy=1.57 in order to obtain agreement in the
_ ) ) _ values ofa from the LKM and RSJ models at a temperature
whereiy ;=1 ;/(lcn) and the dimensionless temperature isof T+ —0.025. (This temperature was chosen because we
T*=eksT/fi(lcn). We also remind the reader that  (ypically found it to be roughly in the middle of the range of
=t/(f1/2e{1 cn)(Rn))- o _ temperatures we sampledhe value ofDy was then held
We generate thi, ;(7) for each junction at each time step fixed in Eq. (34) for the two other sets of temperatures
according to a Gaussian pdf of mean zero and variarfice  shown in the figure. We note that the general agreement be-
=4T*/A7, whereA7=0.01 is the size of the time step in tween the RSJ model and the LKM is good, demonstrating
our fourth-order Runge-Kutta algorithf27]. It is then pos-  again the ability of the LKM to describe the synchronization
sible to varyT* and observe the effect upam,(a) and  properties of the overdamped ladder. Not surprisingly, as the
(Ir(a)[),. For example, Fig. 8 shows that fdi=5 and temperature is increased sufficiently, the two models show a
open boundary conditions increasing temperature in the RSdrger disagreemer(see the results fof*=0.1 in Fig. 9.
model(solid symbols in the figudehas an adverse effect on presumably this is due to the increased thermal currents in
frequency synchronization, in thaf, is an increasing func- the vertical junctions of the ladder, which are not fully ac-
tion of T*. We should note that all the results shown in Fig.counted for in the LKM. Note, however, that even at the
8 represent an ensemble average over ten independent runigher” temperature of T*=0.1 the two models show
Error bars, when visible, represent the standard deviation ajualitative agreement.
the mean of the ten runs. Note thgj develops along tailas  In concluding this section, we mention that it would be
T* is increased, a fact which makes determining a value ofnteresting to look for evidence of stochastic resonais®
a, subtle(see Sec. Y. Figure 8 also shows our results for in the disordered ladder. SR has already been observed in
o, for the LKM in the presence of a noise term. Specifically, simulations of the fully frustrated ladderf €£1/2) in the
we modify Eqg.(26) to include a white-noise term, presence of a sinusoidal ac bias curifg8]. But recently, it
has been argued that SR should occur in overdamped sys-
%: _ ( @ Z sin tems of coupled oscillators with a constant driving force and
dr =11 white nois€g[29], conditions that suit nicely our ladder in the
(34  presence of thermal noise. Investigation in this area is
planned.

Oi+5— 0
2

- +Dnéj(7),
ch,j

where¢;(7) has the same statistical properties asithg 7)

[see Eq(33)]. The value for the parametéry is chosen as
follows. Using a threshold test, we defing as the minimum
value of the coupling for whichr,<Cipresnoie Where we In this section we report some preliminary results based
cho0seCyreshoi= 107 3. We then pick a single temperature on including the effects of junction capacitance on synchro-
and adjust the value dd such that the resulting.'s from  nization at zero temperature. We assume the ratio of the junc-

VI. UNDERDAMPED LADDERS
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tion critical current to its capacitance is uniform throughout
the array and that only the horizontal junctions are disor-

dered. This means that

Ichj _ (Ien) _ lew
Chj (Cny C°

whereCy, ; is the capacitance of thgh horizontal junction,
and(C,) is the arithmetic mean capacitantg, andC, are

the critical current and capacitance, respectively, of the ver-

tical junctions. With the coupling parameterstill defined as

in Eq. (5), we arrive at the following set of dimensionless

RCSJ equations for left and right nodes, respectively:

S . d¢; d?¢, .
|B_|ch,jsm¢j_|ch,jF_%h,jﬂcﬁ_asmdﬂ,j
din d?yy . diyj-1
—a —afc 4.2 +aSIn¢|’j_1+aT
d?y i
+aﬁcﬂ:o, 1<j<N, (358
dr?
S . dey d?¢, .
_|B+|ch'jsm¢j+|ch,jFﬂch,jﬁcﬁ—asmzﬁ,'j
d‘ﬁr,j dz(ﬂr,j . d‘pr,j—l
_av—aﬂc 0.2 +aS|m//ryj,1+a—dT
d?y, i
+af, wr;l_o, 1<j=<N, (35b)
dr
where
2e(Ry)(1,)(C
_ 2e(R)(1n)(Cr) .

¢ fi

is a measure of the average junction capacitance in the arr
All other quantities in Eq(35) are defined the same as in Eq.
(6).

Equation(35) is combined with Eq(7) and solved nu-
merically for o, as a function ofx for various values of..
Figure 9 shows our results fod=15, iz=>5, and periodic

boundary conditions. The critical currents of the horizontal

junctions were assigned nonrandomly with a spread\of
=0.05. The most interesting behavior appearsdige 10, in
which we observe a discontinuity i, at the critical cou-

pling a.. Recall that for the overdamped ladder the synchro

nization phase transition was a continuous functionaof

Remnants of thgg.— 0 behavior are also observed in Fig. 9,
since only for sufficiently large capacitance does the trans
tion become discontinuous. In the language of clustering

such as depicted in Fig. 3 for theverdampedadder, this

means that the sufficiently underdamped array jumps discon-
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FIG. 9. Frequency synchronization in the underdamped ladder
as described by the RCSJ model, E@S), with N=15,iz=5, and
periodic boundary conditions. The critical currents of the horizontal
junctions were assigned nonrandomly with a spread\ ef0.05.
Note that for 3.=10 the frequency synchronization transition is
discontinuous. This behavior is clearly a result of the junction ca-
pacitance, for the transition becomes continuous agajé.ds re-
duced.

To use the mechanical analogy of an underdamped, driven
set of coupled pendula, the effect we are describing corre-
sponds to all the pendula whirling with the same average
angular velocity ) for a>a,. As the coupling strength is
slowly lowered, the array suddenly splits into two sets of
pendula, where the elements of a particular set rotate with
the same average angular velocity, but the velocities of the
two sets themselves have not smoothly evolved from the
value{w). This effect does not appear unless the inertia of a
pendulum is sufficiently large compared to the viscous
damping it experiences.

A first order, or discontinuous, transition has been ob-
served in studies of the underdampeglpbally coupled
Kuramoto model[30,31. In that study the authors focused
on the phase synchronization order paramgte} and using
the all-to-all nature of the coupling showed analytically that
one would expect a discontinuous transition for sufficient

aléfnderdamping. We conjecture that our ladder array, upon av-

eraging, would be described by an underdampazhlly
coupled Kuramoto model

dZGJ d(gj _ a

0+ 5~ 0;
T

Q; 5

I

+— sin(

lchj 6=+1

B ) (37

but it is not cleara priori what analytical progress can be
made in studying the nature of any discontinuous transition
which may be described by E@37) for sufficiently large

‘Be. Numerical work in comparing the synchronization be-

havior of Eq.(37) to that of the RCSJ model for the ladder

icould, however, prove informative. Further work is neces-

sary first to show that Eq37) does indeed represent the
slow-time dynamics of Eq¥35).

VII. CONCLUSION

tinuously from a single cluster with a common average volt-

age fora just abovea,, to two clusters characterized by
distinct average voltages far just belowa.

The main result of this paper has been the mapping from
the RSJ model for the overdamped Josephson ladder to the
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locally coupled Kuramoto mod¢Eq. (26)]. We argued that B.#0, is a nontrivial modification to the system. Prelimi-

if one is interested in the frequency and phase synchronizazary results for such an underdamped ladder show dhat
tion behavior of a ladder array with critical current and re-exhibits a discontinuous transition as a function of the junc-
sistive disorder among the horizontal junctions, then onegion coupling strength when the junction capacitance is
need mainly be concerned with the slow time-scale dynamsufficiently large(i.e., 8.> 8% where 8 is a function of

ics, as opposed to the fast time-scale dynamics, of the juncgrray size, bias current, etcFor a small but finite amount of
tions. When the fast dynamics, set by the time scale at whicRapacitance, @B.<B%, the frequency synchronization
the junction voltages oscillate, is integrated out of the RSJ,ansition is a continuous function of.

equations the result is the locally coupled Kuramoto model  Fytyre work on synchronization studies in disordered Jo-
(LKM). As a check that the LKM does indeed describe thesephson ladders could include looking for stochastic reso-
synchronization behavior of the RSJ model, we compareghance in the dc-driven overdamped array when the bias cur-
the spread of average voltages along the laddgr, which  rent is less than the junction critical currents, as well as
gives information about the degree of frequency synchronitooking for noise-induced resonance effects in the under-
zation of the junctions, and the Kuramoto order parametefamped ladder when biased in the voltage a2 Finally,
(Ir[), which measures the degree of phase synchronizatiogonsiderable work remains in understanding the connection
for the two models over a broad range of array sizes, biagetween the RCSJ equations for the underdamped ladder and
currents, critical currents, and for both periodic and openne underdamped LKNIEg. (37)].

boundary conditions. We found that for sufficiently high bias

currents,ig=3, and for critical current disorders of up to

10% the two benchmark quantities, and(|r|) agree quite ACKNOWLEDGMENTS

well for the two models. We also argued that the restriction

to high bias currents was required to prevent phase slips in This project was supported by the Ohio Wesleyan Univer-
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