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We examine the notion and properties of the non-Hermitian effective Hamiltonian of an unstable system
using as an example potential resonance scattering with a fixed angular momentum. We present a consistent
self-adjoint formulation of the problem of scattering on a finite-range potential, which is based on the separa-
tion of the configuration space into two segments, internal and external. The scattering amplitude is expressed
in terms of the resolvent of a non-Hermitian operatbrThe explicit form of this operator depends on both the
radius of separation and the boundary conditions at this place, which can be chosen in many different ways. We
discuss this freedom and show explicitly that the physical scattering amplitude is, nevertheless, unique, al-
though not all choices are equally adequate from the physical point of vienerfdrgy-dependemiperatorH
should not be confused with the non-Hermitian effective Hamiltorita which is usually exploited to
describe interference of overlapping resonances. We note that the simple Breit-Wigner approximation is as a
rule valid for any individual resonance in the case of few-channel scattering on a flat billiardlike cavity, leaving
no room for nontrivialHe¢ to appear. The physics is appreciably richer in the case of an open chain of
connected similar cavities whose spectrum has a band structure. For a fixed haodeofapping resonances,
the smooth energy dependencetéfcan be ignored so that the constark L submatrixH.; approximately
describes the time evolution of the chain in the energy domain of the band and the complex eigenvidlges of
define the energies and widths of the resonances. We apply the developed formalism to the problem of a chain
of L & barriers, whose solution is also found independently in a closed form. We conatggdor the two
commonly considered types of boundary conditiddeumann and Dirichlgffor the internal motion. Although
the final results are in perfect coincidence, somewhat different physical patterns arise of the trend of the system
with growing openness. Formation in the outer well of a short-lived doorway state shifted in energy is
explicitly demonstrated together with the appearance-efl long-lived states trapped in the inner part of the
chain.
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I. INTRODUCTION Hermitian part, originating from on-shell self-energy contri-
butions, is responsible for decays into open channels. The

To the best of our knowledge, the concept of the noncomplex eigenvalues of the effective Hamiltonian determine
Hermitian effective Hamiltonian appeared first in Feshbach’she energies and widths of the resonances. The method of the
papers[1,2] in connection with the general theory of reso- effective Hamiltonian proved to be a success for describing
nance nuclear reactioi8,4] and, independently, in Liigs ~ many important resonance phenomena, especially in the con-
study of open systeni®,6]. A typical atomic nucleus forms text of chaotic scatterinf8—14]. o
near an excitation energg above the threshold of nucleon |t must be stressed that, similar to the Breit-Wigner for-
emission a rich set of long-lived compound states with a venynula the notion of the effective Hamiltonianlscal in en-

dense energy spectrum. For relatively small excitation ene€'9Y although the general approactigs] work in much

gies, these states manifest themselves as narrow isolatg\ﬁder energy intervals where smooth variations become im-

resonances in collisions of nucleons and target nuclei. Thgortant and should already be taken into account. For the

sharp enerav dependence of the corresponding cross secti very concept of the effective Hamiltonian to be consistent,
P dy dep P g W& scales of resonant and smooth variations must be appre-

near a given resonance 1s descrlb_ed_ by the unlv_ersal Br?' “iably different. Otherwise the resonance behavior of scatter-
Wigner formula. Ar]y smoother variations cgn be ignored 'ning amplitudes will be distorted or even completely de-
the domain of an isolated resonance. At higigthe reso-  gyoved. The smooth dependence influences the background
hance states begin to overlap and strongly interfere. Nevegpases as well as the parameters of the resonances situated in
theless, one can still neglect the smooth energy dependenggferent energy domains. Such effects cannot be described
within a group of close interfering resonances. In this ap'by s|mp|y en|arging the dimension of the matrix of the ef-
proximation, the propagation of the unstable system createféctive Hamiltonian. Instead, a large energy-dependent ma-
in the intermediate stage of the collision is characterized byrix 7(E) emerges whose simple interpretation as a time-
the resolvent of an energy-independent non-Hermitian matrixhift operator is no longer valid. There is, generally, no one-
[7]. The latter describes in the time picture the irreversibleto-one correspondence between the complex energies of
evolution of the excited intermediate state and can thereforeesonance states on the one hand andEtdependent eigen-

be interpreted as the effective Hamiltoniafy; whose anti-  values of this large matrix on the other.
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The current intensive studies, theoretical as well as exsistent self-adjoint formulation of the problem of scattering
perimental, of chaotic scattering of a particle by an operon a finite-size potential in terms of the internal and external
two-dimensional cavity (see, e.g.,[15] and references subproblems is presented in Sec. Il. Tbae-dimensionalS
therein renewed interest in the Hamiltonian approach to thematrix is expressed in terms of a non-Hermitian energy-
resonance scattering theory and, in particular, to the concegiependent operatt whose form, together with the form of
and properties of the effective non-Hermitian Hamiltonianthe associate® function (Sec. ll)), depends on the BC and
[16-18. Although the scattering processes considered arfe radiusa of separation in the configuration space. Differ-
purely potential, the theory is formulated in close analogyent BCs define dlfferer_1t representations of the mternal and
with the formalism developed ii—4] for nuclear collisions. external parts Qf thél_mlque scattering wave funct_|on_ The
The configuration space is divided into two parts, internal,m'e of th_e fictitious direct reflection at the separation paint
and external. The Feshbach projection technique is employdd /S0 discussed. _
to express the scattering matrix in the specific form that ex- " Sec. IV the exactly solvable open Kronig-Penney
plicitly reveals the sharp resonant energy dependence whil@0de! is considered as an example of potential scattering

all smoother variations show up only indirectly via changesWith interfering resonances. Closed expressions are found for

of the matrix elements. Related is the problem of electroPOth scatteringS(k) and staying-waveK(k) functions as
magnetic field quantization in open optical cavitjas. yvell as Wigner's functionR(k). Their analytical propertles_

While the probability amplitudes of the physical pro- N the complexk and energy planes are anz_alyzed in deta_ul.
cesses are fixed unambiguously, the projection procedure e!,(-|_ereafter we compare the;e egact result.s with those ob_talned
ploited is not unique. There exists a rather wide freedom " the framework of the projection formalism of the previous
choosing the surface of separation as well as the boundaggctions. We analyze two typical choices of the BCs for the
conditions(BCs) on this surface. Therefore, the amplitudes'”temal motion: the cases of Neumann and Dirichlet BCs. In
of interest are expressed in terms of quantities that depend ¢he sécond case, the internal problem corresponds to a closed
the details of the formalism. The independence of the finafounterpart of the system under consideration which allows
results of the calculations is not, as a rule, directly seen®n€ to follow the changes of the motion due to the interfer-
Therefore a certain caution is necessary to avoid incorre"c€ of resonances when the openness grows. The latter is in
assertions. An unexpected dependence on (theiliary) line with numerous a_ppllcatlorjs cpn5|dered in the literature.
boundary condition at the cavity-lead interface was foundNOn-Hermitian effective Hamiltonians for a fixed band of
for example, iff17]. Moreover, poor agreement with numeri- "ésonance stgtes are built up in both cases. We summarize
cally calculated exact poles of timatrix was revealed for ©OUr main findings in the concluding Sec. V.
poles distant from the real axis. These points, partly attrib-
uted by the authors to numerical limitations, require further Il. SEPARATION OF THE HILBERT SPACE
clarification. Additional physical arguments should some-
times be involved to reasonably restrict the freedom.

It is important to recognize that the density of levels in
billiardlike cavities is much lower than that of the many-
body nuclear systems. Actually, strong overlap and interfer-
ence of different resonance states are not, as a rule, possible d?
in the single two-dimensional cavities ordinarily considered B ﬁ+u(r)
[17]. The simple Breit-Wigner approximation is usually suf-
ficient in this case for any individual resonansee, e.g.,
[20,21)). Noticeable interference can occur only in the rarep Jiow the specific method which, basically, goes back to
event of accidental near degeneracy of resonances. Expe ' ’

mental observation of such an interference of few resonance loch's paper{26] (see alsq27)). However, we present a
Serivation which leads to interrelated boundary problems for

In an open microwave cavity has_ rgcently peen reportgd "hternal and external regions. Making use of Heaviside’s step
[22]._Stronger overlap and a nontrivial eﬁ‘ectw_e Hamiltonian function one can decompose the wave function into internal
matrix can, however, appear when open chains of a numbea[nd external parts as follows:

of similar potential wells connected to each other are consid-
ered. The energy spectrum has a band structure in this case _

with much denser spectrum within a given band. A schematic x(m=u(r)é(a=r)+¢(r)o(r-aj, (2)
model of such a kind was considered[28]. A similar ex- ) )

ample was also investigated [13] in the framework of Where_the functions a_ndqs are supposed t(_) be_ continuous at
graph theon[24]. Some general aspects of scattering in Ioe_the pointa together with their two first derivatives. The par-
riodic structures have also been considerefRHi. tition radiusa can be chosen arbitrarily; we suggest only that
Hamiltonian in potential scattering. The questions we are

concerned with do not depend on the regular or irregular Xx"(r)=u"(r)é(a—r)+¢"(r) 6(r—a)+[¢'(a)

character of the motion. Thus we restrict ourselves to the ) N . .

simplest case of the single-chanrelvave scattering. The u’(a)] o(r—a)—[u(a) - ¢(a)]&"(r-a).
extension to higher partial waves is straightforward. A con- 3

The radial motion in the-wave scattering is described by
the Schrdinger equation(we use the units#?/2m=1
throughout the papgr

x(r)=k2x(r) (1)

with the boundary conditiory(0)=0 at the origin. We use
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When substituting this expression into Efy), there exists a and that spanned by the eigenvectors of the external problem
freedom in attributing the local terms in E@) to the inter-  r>a with Dirichlet BC,

nal or external regions. One possible choice is to define the

singular functions asi(r —a_)=(r|a_)=(a_|r) and &’(r dz )0 o

—a,)=—(d/da,) 8(r—a,)=—(rla; ) =—(a,|'r), _ﬁ(bk(r):k &(r), ¢(a)=0, k=0. (8
wherea. =a*0, thus considering the first as belonging to

the internal subspace and the second to the external ongy . type of BC is explicitly indicated by the corresponding

respectively. ipts in Eq$4)—(6). A I liza-
With such definitions, we can represent Ed) in the igﬁegzﬁgmgr:g 444)—(6). As usual, we assume normaliza
form
(N) &0 0
( Hine . ) ( u) _kz( u) (4) 0 Un(X)Um(X)dX= Spm, (9a)
v H@le) T )
with the following entries: fw¢>8(x)¢>g,(X)dx= S(k—k") (9b)
a
HM=K+U+|a_)a_|’, (5a)

in the discrete and continuous spectra, respectively. The ex-
ternal function

Hglit):k+|a+>/<a+|’ (5b)
v=-la_)a.|', V'=—la,)(a ], (50 ¢E(r)=\/%sir[k(r—a)]oce‘“"—e‘Zikae"" (10)

yvhereR staqu for the kinetic_energy operator. In partiCUIar’describes a wave fully reflected at the pomtthe corre-
in the coordinate representation the matrix elements of thgpondingSfunction being equal t(SgD)(k):e—Zika.

entries take the form One can also proceed in the opposite way and ascribe the

42 terms withé’ and with 6 to the internal and external regions,
<r|Hi(nNt)|r/>:{_ —+U(r)|8(r—r") respectively. In this case, the entries in E4). read
dr2
sr-al)s(r—al), (63 Hi' =K +Ula) (@, (Ha
g2 er’:t)zk_|a+><a+|/1 (11b)
(rIHEIr) == —78(r=1") =8 (1=a,)8(r' ~a,), ~ 3
6 V=la_)(a,|, V'=|a,)a_|". (119

That corresponds to the nonperturbed internal problem with
Dirichlet BC vﬁ(a)zo, when the external one has Neumann
BC <p8’(a)=0. The latter results in an additional shift by
/2 of the reflection phase at the separation paint
S(ON)(k) — S(OD)(I() —e" 2i(ka+ 7T/2).

The interplay of the internal and external motions due to

(r[V|r"y=(r'|VTIry=6(r—a_)é'(r'—a,). (60

The presence of the singular terms assures Hermiticity of th

operatorsH;,, andH,, in contrast tok alone[26]. The rela-
tions (Uq|HiUo) = (Hiu1|u,), etc., can be easily checked
by means of partial integrations. The singular operators o . .
the boundary provide the boundary conditions, the first on:i1he off-diagonal element/ [Eq. (50)], d'StO_rtS the outzer
Neumann for the internal region, the second one Dirichlet fOvaaves¢. From the upper row in E¢4) we find for allk
the external region. Equatiof8) implies that both BCs are 7 &n» N=1.2,...,
interrelated. This also leads to the adjointness of the coupling
operatorsV and V', The Dirichlet boundary operator is es- U=
sentially different from that of Neumann type and cannot be k?2—H
produced by the boundary operators as use@é.

The range of operators in E(6) within the Hilbert space  Here G, is the resolvent operator for the internal problem.
is defined by the functions on which the singular terms vanThen, the lower row transforms into
ish. This requirement fixes the BCs at the point of separation

V¢=GiVe. (12

int

a. The full Hilbert space is a direct sum of the space spanned (k2= Heq—VIGiV) ¢=0, (13
by the eigenvectors of the internal problem<f<a with
Neumann BC, or, in the position representation,

d? d?
(——+U(r)>u2(r)=sgN>u2(r), uy'(a)=0, (7) (k2+F
r

2 d(N+38(r—a,)[p(a)+GN(a,a)¢'(a)]=0,
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d2 in close analogy with the representations found ] in a
<k2+ — | ¢(r)— s(r—a,)[¢'(a)—GD"(a,a)p(a)]=0 different way. They are quite similar to those appearing in
dr the R-matrix theory[4,28]. We should, however, stress that
. L the functionsR defined in our manner differ from the stan-
for the two cases considered. This yields change of the Bcaard Wigner'sR function by trivial factors like— 2k or

of the external part of the exact wave function o — 2/, which we include in the definition for the sake of

a)+GMN(a,a)¢’ (a)=0, 14 convenience.
@)+ Gni(a,2)¢'(a) (143 A certain caution is needed while taking the linnitr’
¢’(a)—Gi(,f:)”(a,a)¢(a)=O, (14b) —a in Eq. (18b) since the derivative of the Green’s function
where the shorthand GR(r,r)y=0(r" —r)x3(rxa(r’)
5 /N +HO(r =1 ") x3(r )x3(r)
Gi(nt)”(a’a)z—,Gi(nt)(r-r,”r,r’aa (19
arar

.S op(Hup(r’)
has been used. Let us note that Eita is the conventional A k2—g(®)
boundary condition in the Wigner-Eisenb&dmatrix theory
of resonance nuclear reactiof¥28].

(19

has a discontinuity whem=r'. The symboIsX(l)(r) and
Xg(r) stand for solutions of the internal problem with Dirich-
lll. SAND R FUNCTIONS let BCs only at the points=0 or r=a, respectively. It is
In the external regiom>a, where the potential vanishes réadily seen that the mixed second partial derivative contains
identically, the wave function has the formp(r)=const @& Singular contribution
x[e~kr—g(k)e'k"]. Therefore, the conditiond4) obtained

above allow us to express the function [X2 (Nx3(r) = x2(r) x5 (1)18(r—r')=Wa(r _r,)’(ZO)
. 1+ikg(a)/¢’'(a _
S(k)=e? ik =—— #(a) ¢,( ) g 2ika (16) W=—1 being the Wronskian. This singularity at=r'=a
1-ikg(a)/¢'(a) must be excluded and the second derivative must be under-
in terms of the internal Green’s functions, stood as
(D)n —_ 0 0/
1-ikG{(a,a) D) G (8- ) =x1 (@)xz"(a). @)
Sk =——n - S (K (179 . . .
1+ikGj’(a,a) It immediately follows from this remark that the spectral sum
=02 (r) v (r")/(k*—¢P)) diverges whemr =r’. Indeed,
1—(i/k)GE(a,a) ) convergence of this sum depends on the contributions of the
= (D) Sy (k). (17D very high levelsn—o. For such an excitation, we can ne-

1+(/k)Gir"(a,2) glect the potentialJ(r), whereupon the solution of the in-

Both expressions are exact and equivalent to each other. T#gMal problem reduce/s simply tofi(r) = V2/asin( r/a).

only difference is that they are written in different complete The COQ"DV)'bUt'OM(rZ_r ) to be dropped appears due to the

bases in the full Hilbert space. The merits as well as limitafactor ™= (mn/a)®, which arises in the numerator after

tions of each of these representations will be discussed bébe double differentiation has been done. Itis easy to see that

low. just a contribution of this kind mainly caused the numerical
We define further the phase shifé§“°)(k) due to the Problems in[17]. Forr#r’, the sum converges, although

influence of the internal region and the functidR@"®(k)  slowly, to the finite limit(21) because of oscillation29].
=—2tanv™™P)(k) by It would be a mistake to rely upon the spectral represen-

tations in Eq.(18), and interpret the eigenvalues, as the
uﬂ(a)uﬂ(a) energies of resonance states and the phégl%sk)zka or
RM(k)=2kG(a,a)=2k > RO (188 s (k)=ka+ 7/2 as smooth phases of the background scat-
" ~&n tering. Indeed, the levels, depend on what sort of boundary
o o, conditions have been used. More than that, many other forms
RO) (k) = EG-(D)”(a a)= E E vy'(a-)vy'(a) of BC are equally permissiblesee, for example, the funda-
ke -’ k 4 kZ_SE]D) ' mental review[28]). It can be shown that the most general
(18p  Possible BCs,

The spectral representations of the Green’s function are used  u% (a)+ B, u%(a)=0, ¢% (a)+ Bexd®(a)=0, (22)
here in the last steps. This shows that the energy levels of the

corresponding internal problems are real poles oRfienc-  involve two arbitrary parameterg (here we include for-
tions in the complex energy plane. The formulas obtained arenally 8= =+« for the Dirichlet BC$. Returning to Eq(17),
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we see that, due to the relati@§") (k)= — S{®’(k), the lev-
else(®) arezerosof the functionR™ (k) and, similarly, the
levels&(V) are zeros oR(®)(k). In fact, the two phases are
connected as

tans®) (k)= — cot SN (k) =tar] N (k) — 7/2]. (23

The shift /2 just compensates the similar shift 6§ (k)
and the total scattering phasé(k)= M (k)+ s (k)

PHYSICAL REVIEW 67, 026215 (2003

This clearly demonstrates again the independence of the
choice of BCs for disconnected internal and external mo-
tions.

Actually, the form of the operatd@6) is provocative. One
is tempted to interpret this operator as an effective Hamil-
tonian whosek-dependeneigenvalues define complex ener-
gies of metastable resonance states formed by the potential
U(r). However, this interpretation is, generally, wrong. To
make our points clearer, let us start with the following simple

=6O)(k) + %N)(k) does not depend on the type of BC used.remark. Let the potential vanish identically everywhere,

In particular, the positions of the poles of the functi®fk)
in the complexk plane, which are found from the equation

1-itans®(k)=0=1—itans™(k), (24)
are BC independent because of the relai@8). This is in
agreement with the fact that both facta§®™) are entire
functions in thek plane.

The factorized form of the residues of poles in Eg8)
allows one to represent the functi®@fk) in a different but
fully equivalent form as

S(k)=| 1—iAT

So(k), (29

A
k?—H
where the non-Hermitian symmetric operatdis defined by

i
H(k)=e— =AA".

5 (26)

U(r)=0, so that thes function S(k)=1. Nevertheless, nei-
ther the operatot{ nor the function

é(k)zl—iATi A (3D
k?—H

are trivial in themselves. For example, in the case of Neu-
mann BCs the matrix elements &f are

1 2
m+ =| 728y~ ika(—1)M M|

5 (32

1
N
Hsng?

Any truncated finite-size\ XN matrix obtained from Eq.
(32) gives, when substituted in ER9), N pairs of complex
roots. However, the complex poles of the resolvént
—Hyund2)]71 of the truncated matrix have nothing to do
with the poles of the genuin®function. The truncation pro-
cedure is not stable wheN—oo. The difficulties become
even worse in the case of Dirichlet BCs when the imaginary

Heree is a diagonal matrix of the eigenvalues of the corre-part also grows,

sponding internal problems and the column veddk) of

the coupling amplitudes, which originate from the off-

diagonal elemenY in Eq. (4), has the components

AgN)(k)Z\/ﬂug(a) or AgD)(k)=\/%v2’(a) (27)

1 mn
Him=—| ea? Sy —im? (= 1)™ W (33
a

In fact, all poles found go to infinity in the limiN—oo.
Indeed, the true poles because of the identity[afet

in the cases of Neumann or Dirichlet BCs, respectively. A~ 1(2)]1=det@*—Hi,)[1+(i/2)R(z)], must satisfy the

proof of equivalence to the expressiofik?) immediately
comes from the following relation between resolvefsse,
for example[9]):

1 [
5 =G5

Gint A
kZ—H int

ATGi.

1
1+(i/2)R (28)

It follows from Eg. (25) that the poles of thé& function
can also be found from the secular equation
defz>—H(2)]=0, (29

wherez is a point in the compleX plane. In the position

representation this is equivalent to the spectral problem wit

a complex(outgoing-wavé boundary condition

d2
(—ﬁw(r))w(r):zzw(r), (303

Y'(a)—izy(a)=0. (30b)

equation

1+i§R(z)=0, (34)

which is equivalent to Eq(24). For example, in the case of
Neumann BCs this equation runs a% i]zGi(,ﬂ\t')(a,a)=0. In
particular, when the potenti&)(r) vanishes identically, the
Green's function in thez plane is equal toG{\(a,a)

= —(1/z) tanza, and Eq.(34) looks like 1—i tanza=0 and,
therefore, has no roots in any finite domain of this plane.
This implies, in turn, that Eq(30) has no nontrivial solu-

tions. In fact, the function31) is simply equal t0S;ed K)
£ e?k2 in this case and compensates exactly the phase shift
due to the fictitious reflection at the separation paint

The remark above is of quite a general nature. The radius
of separation can be chosen arbitrarily. For the sake of sim-
plicity, we suggest only thai is larger than the finite radius
of the potential. The actual wave function satisfies at this
point the conditions
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d(a)=u(a), ¢'(a)=u’(a). (35) Because of the local character of the barriers, it is most
convenient to start from, instead of the Safirmer equation,

Of course, none of these quantities is known before the proghe equivalent integral equation
lem has been solved. Any boundary condition used above .
generates a complete basis in the Hilbert space, in which the X(r):sin(kr)+f dr’'Go(r,rHU(r’)x(r")
actual wave functions can be expanded. All such bases are 0
formally equivalent. But this does not mean that all of them .
are equally adequate from the physical point of view. In par- ) 0
ticular, the more the basis eigenvectors and their derivatives :sm(kr)+lzl xGL(r ) x(1). (37)
differ at the pointa from the real value§35) the more slowly
the corresponding expansion converges near this point.  Here the symboGY (r,r’)=—(1k)g°(r,r’) with

A forced BC creates a false reflection at this point, which
is described by the fact@,(k), whose phase should be fully ~ g°(r,r")=6(r'— r)sin(kr)e““' +6(r—r")sin(kr’)e'k’
compensated by the similar part of the total phase of the
function (k). Both factors separately depend aalthough sta_nds for the Gree_n’s function of the_free radial motion,
the complete functiors(k) does not. The main role in this Which has an outgoing-wave asymptotic. From the second
compensation is played by the matrix elemetts,, with  lIn€ in Eq.(37) we find immediatelyS(k) =1—iT (k) where
large m,n when the influence of the potential becomes the scattering amplitude is given by
negligible, and we return to the situation described in the 5 L 5
previous paragraph. - i =_gT

However, the choice of the separation radius and BC in- T(k) k 21 r sin(kl)x() kS X 38
fluences the positions of the poles well as the residugef ) ] _ _
the functionR and, consequently, the explicit form of the In the sef:ond e_quallt)_/ we have used- matrix notation, with
matrix H,,,. This influence is stronger the less adequate thénd x being L-dimensional vectors with the componeis{s
choice made of BC and. In general, the parameters of tRe ~ =Si(K)=sinkl) and x,=x(1)(I=1,2, ... 1), respectively,
function can carry rather poor information about the actualhen K=Q|ag{;<1,;<2, SRRLL ) _ _
complex poles. For this reason, diagonalization of a trun- According to Eq.(37), the L-dimensional vectoy satis-
cated matrixH,,,, (which is necessary in any numerical com- fiés the equatioy=s+G"«x, whereG"=—(1/k) g~ and
putation can lead in the case of a poor choice to stronggo is a symmetric non-Hermitian matrix with the matrix el-
disagreement with the characteristics of the actual poles d¥ments
the functionS. The explicit dependence of the matrix ele-

; iK' ,
mentsH,,, on the wave numbek causes additional prob- o _ | sin(kl)e' it 1<l

lems (see next section To extract the physically relevant G sinkle if 1>, (39)
effective Hamiltonian from the formal operataf, additional
physical considerations must be engaged. For example, orfdus, we obtain finally
may expect from the physical point of view that the most .
relevant choice of the separation poémvould be a distance S(k)=e?90=1—isTG(k)s= 1—-(i/2)K(k) (403
matching an outer potential barrier which is strong enough to 1+(i/2)K(k)"
make immediate reflection at this point quite probable.
To explore in more detail the questions briefly discussed K(k)=—2tans(k) =s'G(k)s, (40D

above, we will apply in the next section the formal technique

; T

sketched here to the problem of scattering by a finite periodi(‘f"h_ere we have used the factqnged form gft=ss Of. the

set of 6 barriers, which can be solved exactly. anti-Hermitian part of the matrig® to pass from the first to
' the second equality. ThHexX L matrix propagators

IV. OPEN KRONIG-PENNEY MODEL
G(k)=

A. Exact solution K\ +g°

and G(k)= (41)

kh\+Reg®
We will consider belows-wave scattering by a periodi-

cally disposed chain df & barriers, are connected with one another by a relation similar to Eq.

(28). The diagonal matrix = «~* characterizes the penetra-

L bilities of the barrierd30]. The poles of theS function are
U(r)zz K 8(r—1). (36) defined by the equation
I=1
i
0 —N—
To ensure formation of long-lived resonance states, at least defzh +97(2)]=0=1+ 5K(2). (42)

some of the strength constants should be positive. The

distancer is measured in units of the size of the well formed  All the matrix elementg39) are entire functions in the
by two neighboring barriers. Below, we derive the effectivecomplexz plane. The same is valid for the determinant in Eq.
Hamiltonian starting directly the Schiimger equation. (42). Therefore, one can show that this equation has an infi-
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nite number of isolated complex roots. Further, its roots be- * 0, 0

cause of the relatiopg,(2)]* = —g;,(—2*) come in pairs T(k= > - +2 k_-q : (47
— * . . n=—o Z, q Iyq

z,andz_,=-2z;,n=1.2,...,symmetrically with respect

to the imaginary axis, or lie on the latteg,=iy. All poles
of the first type are situated in the lower part of the complexwhere the residueg, 4 can easily be found from E¢43).
plane. Poles on the positive half of the imaginary ayis, Another representation of the scattering amplitude some-
>0, correspond to bound states and can appear only if sonfénes considered in the literature ensues from diagonaliza-
number of the constants, are negative. Those which are tion of the (finite in our casg matrix G(k) at a given fixed
situated on the negative pasty<0, correspond to the so- realk. Since this matrix is complex symmetric, such a diago-
called virtual levels. The total number of purely imaginary nalization is performed by a complex orthogonal transforma-
poles is finite for any finite.. tion defined together with theomplexeigenvalue matrix
Atfter all poles have been found, the functitk) can be  A(K)=diag{A(k),A»(k), ... ,A (k)} from the equation
presented in the form

0

(k+z,)(k—=2}) k+iyq
S(k)= —,
o nl;[1(|<—Zn)(k+2?§) q k—lyg

[N +g%(K) W (k) =W (k) A (K). (48)

(43
The scattering amplitude reduces then to a finite sum
where we took into account th&k=«=)=1, sinces barri-

ers become transparent for a particle with asymptotically L 7T ) P

. ; X [s'(k)W (k)]
large energy. These expressions are in agreement with the T(k)=2> ——————"— (49)
general theory31,32, which is valid for any potential with =1 Ay(k)

a finite radius.
Each factor in Eq(43) is singly unitary. In particular, for

; . whereW ()(k) is thelth eigenvector. However, such a repre-
a pairz.., of conjugate roots we have

sentation is of limited practical use inasmuch as the terms of
the sum are, generally, extremely complicated. There is no

e
K)= w simple interpretation of a given term and all of them can give

n

(k—z,)(k+2Z}) comparable contributions. The compatibility of the two rep-
resentation$47) and(49) is very indirect. A particular term
k?—|z,|2+ 2ik Im z, sk of the second one cannot be uniquely continued from the real
= =e? (), (44) axis at an arbitrary poirgin the complex plane because both

2_ 2__o;
k®=|zy|*—2ik Im z, w)(z) and A,(z) are multivalued functions in this plane.

The same is, of course, also true for the opposite direction.
Therefore, even if a roal; of the equatiom\(z) =0 is found
and near this point the pole approximation

Since Imz,<0, the phaseS,(k) increases when the energy
E=k? grows, and passes the value’2 at the pointE
=|z,|>=E,. The typical energy intervabE of the main
gain of the phase is estimated by the quantikyl® z,|. If

this interval is small enough and the latter quantity does not 2 [sT(ZH W) 2IA!(Z)
vary appreciably within it, the total gain is close4oand the T}(z)w ! |J 5 (50)
factor S, receives the standard Breit-Wigner resonance form Z=

E-E,—(i/2r, E-&

(res) — =
S (k) E-E,+(il2T, E-&,’

(45) is valid, this expression cannot, generally speaking, be con-
tinued on the real axis by sir}‘nply sublstitutin?» k, since the
with the energyE,=Re &, and width[',=—2Im &, of the ~ POWer expansion(2) =A,(z)) + A[(z))(z=z)+ -~ has a
resonance defined as follows finite radius of convergence. Further, for any fiXea set of
roots exists depending on the branch of the funcilg(iz)
E,=|z.?, T,=4|Rez, Imz,|. (46) considered. There is no one-to-one correspondence between
the set of roots! and the manifold of actual poles  that
The k dependence is neglected in the definition of the widthappears in the expansi@47). Many of the rootsz} are false
and the substitutiok=E~|Re z,| has been made. Such a and their contributions must finally cancel out. Therefore,
substitution is well justified when the scattering energy isdiagonalization of the propagator with nontrivial energy de-
large enough, but becomes improper néar0. Due to the pendence is not as a rule useful; rather it can lead to mis-
“threshold” E dependence of the widths, some specific bedeading conclusions.
havior takes place when in the proximity of this point there We compare below the closed expressions (Ef). found
exists a number of bound and decaying st#%33,34. with the formalism described in the previous section. In cor-
We conclude that the scattering amplitu@igk) =i[ S(k) respondence with our remark at the end of Sec. Ill, we fix the
—1] is a meromorphic function in theplane and can there- separation point. by superposing it on the position of the
fore also be written down as an infinite sum of the poleouter barriera=L. The appearance of an additior&afunc-
contributions tion changes the corresponding boundary conditions. In
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particular, if thes terms are ascribed to the internal region,

Hon= 60 Sma—ikup(a)u(a)
the Neumann BQ7) for the internal problem is replaced by

kul(a)+u®(a)=0=u’a)+r.u(a), (51 =& Smn— iNTkuly (@)uf (a), (59)

whereas attributing such terms to the external domain yieldgiith the levels " being the eigenvalues of the internal

the following change of the BC of the external problem:

k %(@)— % (a)=0=¢"a) -\ ¢%(a). (52

We stress that neither of these conditions coincides wit

the boundary conditions

x(a_)=x(a;)=x(a),
(53
X' (ay)—x'(a_)=x x(a)

satisfied by the exact wave functigr).
In the casg52), the immediate reflection at the poiais
described instead &) by

k_iKL_ 1+|)\Lk (D)
k+iKL_1_i)\|_k ’

So(k)=s§V (54)

[Recall thatS{P) (k) =e~2k@=e~2kL ] The additional factor

is due to the influence of the barrier outside the radius of

separatiora. This factor has a pole= —i«_ on the negative

problem with the BQ’51). For the sake of simplicity, we use
the same superscript N as before.
In spite of the seemingly similar general structure of the

I%axpressions(40),(41) on one hand and55-(57) on the

other, they are, in essence, quite different. The most impor-
tant distinction shows itself in the dimension of the vectors
and matrices, which ifinite and coincides with the number
of barriers in the first case, andfinite in the second. In
addition, the factoiSy(k) of the immediate reflection does
not appear explicitly in Eq(40). We will analyze below a
couple of simple special cases before drawing general con-
clusions.

C. One 6 barrier

In this case we find immediately from Eggl0) (a=L
=1 and we drop the subscriptin the strength of the barrigr

part of the imaginary axis, which formally corresponds to a

virtual Wigner level. Actually, such a pole does not exist in
the exact solution and disappears due to cancellation with the

contribution of the internal regiofsee Eq(95) below.

B. Internal problem with Neumann BC

The exactS function in the case of the BC51) reads
S(k) =S(k)S{P(k), where

S= PR L, (55)
1+(i/2)R
with
R(k)=ATk2_—Hi(rw~A=2kGi(,ﬂ)(a,a)
and
~ ~ 1 ~
T(k)=ATk2_—H(N) A (57)
The coupling amplitudes are equal to
An(k)=\2kuy(a) = — N 2ku)' (a). (58)

Finally, the matrix elements of the operatar™ [see Eq.
(26)] appear as

Sk = sinke ¥4+ \k (603

sinke®+\k
K (k) 2 sirfk s0b
(k)= sinkcosk+ Nk’ (60b)

whereas

%= sink+\kek 613

sink+\ke ¥’

ksink

R(k)=—2\ (61b)

sink+\kcosk "

In Egs.(61) the phase5®) (k) = —k of the immediate reflec-
tion at the pointa is extracted. The two functions(k) and
R(k) are related to each other by

2 tank+ R(k)
1-(1/2tankR(k) °

K(k)=

The positions of the poles of the functi@roincide with
the complex roots of the equation
e??+2 ixn z—1=0. (62)

In the right half of thez plane they can be searched for in the

form z,=nw+¢,, where any{, is restricted to the strip
|Re ¢,|<m/2 and satisfies the equation

gn+'§|n[1—2i>\(nw+gn)]=o. (63)
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There also exists the trivial roat=0 but this root fully
cancels out. Even for not very largeone can omit, in the
logarithmic term. This yields the approximate solution

gns—liln(l—Zi)\nﬂ-) (64)

which is valid with good accuracy for almost all poles, being

asymptotically exact when— oo,
However, by no means all of the complex roatscorre-

spond to resonances. For a pole to correspond to a long-lived
resonance state, the following two additional conditions also

must be satisfiedi) Re z, should be a real pole of the func-
tion K(k) or at least should be close to such a paie;the

corresponding residue should be small enough for the scat-

tering phases(k) to increase near this point by in an

interval Ak<<1. The validity of these conditions depends on

the value of the parametar. Indeed, the poles df(k) are
found from the equation

sink cosk+\k=0. (65)
There exists only &finite numberof real roots *k;, j
=1,2,... jmax, Of this equation. They satisfy the require-
ment 24k; <1 or, equivalentlyk; <«/2. (The trivial solution
k=0 should be dismissedAll other roots lie in the complex

PHYSICAL REVIEW 7, 026215 (2003

5 (@
3
(k)
1
-1 JUUUL
20 (b)
K(k) lz j KJ j j /\/\
=
20 ©
10
R(k)
LT
-20

FIG. 1. Oneé-barrier model forA =1/35. (a) The time delay

plane and the phase does not reach its maximal value ak(k)=ds(k)/dk, (b) K function, and(c) R function. Only a finite

though it can change rather fast if a polekofs still close to

number ne~[1/27\](=5) of poles located near the points

the real axis. It is clear that they move away from this axiszn, n=1, ... n.., correspond to long-lived resonance states; the

when |z| grows. In particular, no real solutions exist Xf
>N\g~0.2 (k<kg=5). The scattering phas&k)< /2 in
this case and smoothly dependslohe barrier is too weak
to form a long-lived resonance state. Whejsink/k|<1 the
scattering phase can be calculatedsék)~ — 2« sir? kik+

- in the framework of perturbation theory.

There are two kinds of real roots of E@5) when\ is
appreciably less tham,. The most interesting caskk;
<1, althoughj>1, can easily be considered analytically.
The first set consists of the rootg which are close to the
points n7: k,~(1—N+A%)nw, (nw<1/\). Near such a
pole theK function manifests typical resonance behavior

2(Anm)?

Kk~ ==k

(66)

Strictly speaking, a similar contribution of the symmetric

root k_,= —k,,, which corresponds to the same energy
=k2, should be added, so we arrive near thie resonance
at

_@0nm)?

Kn(E)=—2—
n

(67)

others refer to the smooth phase of reflection at the paint

(=1).

The residues are large in this case and such terms contribute
to the smooth background part of the total scattering phase.
Indeed, the (dimensionless time delay (k) =d&(k)/dk
=1,/|70|, which measures the Wigner time delay,
=2d6/dE in units of the (negative time delay 7,
—2a/(dE/dk) because of the immediate reflection at the
point a(=1), is large near the points, but small whenk
~k.,. Poles of the two different kinds alternate and resonant
and smooth contributions are mixed. Figure 1 clearly dem-
onstrates all the features described above.

Let us, on the other hand, consider the properties of the
function R(k) [see Eq.(61)]. Its poles are the roots of the
equation

sink+\ kcosk=0 (69

instead of Eq(65). Contrary to the latterall roots =k, of
Eq. (69 are real. Those of them that satisfy the inequality

\k,<1 and, therefore, have numbars:n,,,, are equal to
k,~(1—\)n7 again and correspond to resonances. The dif-

Each neighboring pair of resonance roots is separated by farence from the similar roots of E465) appears only at

root of the second sek,~[1+(Amm) ](m+3)7, in a
vicinity of which

K(k)~

— (68)

higher order corrections in the parameter For largern,
when\k,>1, an infinite number of rootk,~=(n+3)[1
+X"Ynm) 2] exists, giving a smooth contribution, which
combines with the phaséf’)(k): —k and almost compen-
sates it at largek [see Fig. 1c)]. Indeed, thes barrier be-
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comes almost transparent when the collision energy is large

3
and the total scattering phase can be calculated by applying 100 o @ ‘; ?5 % & ¥
perturbation theory. 8 g a8 o
The meromorphic character of the functi®gk) allows 10 ﬁg ™ o
us to represent this function in the form of the pole expan- L Qa 500 o
sion e
” 2 (\k,,)? 0.1 1000015000 20000 25000
R(k)= > 3 500 1000 1500 2000

e 140+ (\k))? k—k,

n

)

2 (Nkn)? FIG. 2. Widths(in log scal¢ versus energies for=1/35. Exact
=2k, = T~ (700 poles[from Eq. (63), O] and approximatiofEq. (72, ¢, com-
=11+ +(Akn)® Ko—ep pared to the “diagonal” approximatio#t,,(k=k,) with Neumann

o~ ~ . [from Eg.(76), X] or Dirichlet BC [from Eq.(97), +]. The inset
The symmetry connectiok_,=—k, has been taken into gy the asymptotic region of remote poles, where the diagonal
account in the second equality. approximation breaks down.

Returning to the poles &(k), we can expand the expres-
sion (64) in the resonant regionMhm7<1 with respect to

Matrix elements of the operatdi [Eq. (59)] are in our

this parameter to calculate the poles case
Zo~(1=N+N)nm—i(Anm)? (72 Ak Ak
, HMN=K25,,,—i2k e .
and the complex energies of the resonance states VI+N+(Nkp)? VI+N+(Nkp)

(76)
[

Ev=(1=20+30%)(nm)*~ 5[4)\2“”7)3]' (72) In the resonance domaink,<1, the diagonal matrix ele-
mentH fﬁ?(k: k,) approximates well the complex ener§y
Note that the widthd",=4\?*(n)* of the resonances ap- of the resonance which lies near the scattering enégy
pear only in the second order in the penetrability parameter ~k2. In this region off-diagonal elements influence only
when the shifts of their energies are of the first order ofcorrections of higher orders. At the same time, the diagonal
magnitude. The resonances are well isolated since the ratigpproximation becomes insufficient for the remote poles,
T'n/(Ens1—Ep)=2m(An)?><1. Finally, the remote poles preaking down to reproduce exact asymptatien behavior

with n>1/2w\ are given by of the imaginary parts. Figure 2 illustrates the consideration.
1 ) We therefore conclude that the extraction of the phase

Zn%( n— _) ,— In(2xnm)2. (73) 583)(!() of the immediate reflection and utilization of tife
4 2 function is adequate only in the resonance region where such

o ) a reflection is probable. Beyond this region the internal and
Now we compare our findings with the resule5)—(57) of  jmediate reflection phase shifts almost compensate each

the general formalism. The normalized solutions of the interyiher so that the functiok (k) proves to be a more relevant
nal problem with the BG51) are readily found to be tool.

/ 2

0 . .
up(r)= sin(k,r), (74) D. Resonance domain
ol 1+xcogk, "kn

Below, we restrict our attention to the resonance region

wherek, are the roots of Eq(69) which follows directly ~ Well above the energig=k?=0. To simplify the investiga-
from BC (51) this time (we omit the tilde and note that only tion further, we suggest assuming the strength constants to be
positive rootsk,, N=1,2, ..., are to b&kepd. This fact is the same\, =\, 1=23,... L —1, for all inner barriers. In
quite satisfactory and demonstrates the physical relevance gfcordance with the results of the simple consideration pre-
the choice of BC made. Indeed, for such a Bfta)~\ in sented at the end of Sec. IV C, segregation of the smooth
accordance with the exact bour;dary condit{&B). The Di- phase of the immediate reflection meets expectations based
richlet BC uﬂ(a)=0 would be deficient in this sense. With " physical mtgltlon. T(.J perform t#ns segregation, we write
Eq. (74) taken into account, we find from E¢56) first the scattering amplitudg(k) =s'G(k)s as a block prod-

2 , uct
R(k)=2k2 2cosk, (\k,)

. 75 G F\[s
n=1 14\ cogk, k’*—¢, 79 T()=(s" SL)(J-'T gL)(SL)

Equivalence to Eq(70) is seen from the relation cok,
=[1+(\k,)?]", which follows directly from the secular -

. 1
\ ()\Lk—sLe'ka)sTT
equation Eq(69).

)\lkl‘f‘go

s+ sﬁ,l G, (77)
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where the symbol@ and F, etc., stand for I( —1)Xx (L 2
—1) submatrices andL(—1)-dimensional vectors, respec- R(k)=— 1\ k+cot(d,+ka)’ (81)
tively, andg® is the similar upper left block o§°. To pass
from the first to the second line, the relations In the limit A, —0 (closed interioy we haveR(k)=0 and
S(k)=1, so that only the immediate reflection at the paint
s'Gs= —(\ ke K+g)) STF survives. Obviously, the spectrum of the poles of the func-
tion R(k) is determined by the equation
and
sin( 8, +ka)+ X\ kcogd,.+ka)=0 (82

1
which should be compared with E(9). It is easy to check

——=S
A1kl +g° that the spectrum exactly coincides with that of the wave
. ) ~ numbers of the internal problem for the potential.(r)
have been used, which follow, together with the expression— k1 EHE5(r—1) with the BC (51). This potential is per-
fectly transparent on the separation radausL where the
latter condition is fixed. This directly follows from the ex-
pression

S'F=F's=—elkag'

-1

. _ 1 _
QLIZ )\Lkeflka_FSL_elkaSTT s eflka,
A kl+g°

[ i 1 Qo . .
from the equationK\ +g°) G(k) =2. We notice now that the (1) =i _ = ikr — _@—ikr _ ikr
function ur(r)=sin(kr) - ST.(k)e™ =5[e S.(k)€ ]( )
83

T.(k)=s'————s (78)  for the wave function in the regiorL(~1)<r<a=L.
A kl+g°

L . . . . E. Two & barriers; resonance trapping
coincides with the amplitude of scattering on the potential
(36) with the last barrier being removed; =0 or, in other

words, A =c. Finally, we obtain after simple transforma-
tions S(k) = S(k)e~ 2L, where

Now we will use the formulas just found to analyze as an
illustrative example resonances in the double-weppoten-
tial, L=2. The equation for the poles of ti&function (79
looks in this case like

"S(k)_ e—2ik|-_(1+ 2')\Lk)Soc(k) (1+2i)\12)e4iz_2(1_2i)\22)82i2
= : o
(1—2ix k)e kL5 (k) +(1—-2iN12)(1—2iN,2)=0 (84)
sin(8..+ka) + A ke/(%="ka) [cf. Eq. (62)]. Again, the ansatz,,=ma+ ¢, with |Re {,,|

(79 <2 is valid. Supposing also the integer numbeto be
appreciably large, we arrive for each fixedat a couple of
closed solutiongcompare with Eq(64)]

©Sin(S,+ka)+ A ke =k

The poles of the functio®(k) [as well as ofS(k)] in the

complexk plane are given by the zeros of the denominator. It i (2N 1+\,) m
is convenient to introduce in parallel with this function a gmw__m[ _juchaT ) T
sequence of function§!)(k)=S"(k)e?'* which describe 2 1+2inmm

the scattering on chains dfbarriers with the penetrability
Eonstanmj and~the BC fixed at the radigs=1. In paiticular, |1+ \/1_ 4NN, (14 2in;mm) | b
SH(k)=S(k), St Y(k)=S.(k)e "Dk and SO(k) (2N +1\,)?
=1. These functions are related to each other by a recursion 85)
() — 1—(1+2ink)e?¥S1 1 (k) (80 It is worth noting that within the approximation adopted the
(k)= 1—2in k—e?¥S0-1(k) sum of the imaginary partsm ({;+ ()= —3INZnZ,)|

=—1Iny1+4\Z(mw)?, whereZ;, stand for the arguments
Using as before the ansatz=mm+ /,, in the resonance of the logarithm in Eq(85), does not dependn the penetra-
region\y, |z]~\;.|m|m<1, we arrive at an algebraic equa- bility constant\, of the interior barrier. Indeed, simple
tion P(1)(e?{m =0, with P(w) being a polynomial of the transformations ~ show that Z;Z =[(1-2i\;mm)/
Lth power with respect to the argumemt=e?'¢m, This equa-  (1+2iA;ma)](1—2ix,m).

tion gives a bunch of close complex poles of thgfunction We fix now the numbem>1 within the resonance do-
well separated from all the other poles. main, A1 Jm7|<1, and consider the doublet of poles close

The correspondingR function is readily found from Eq. to this point. Keeping the terms of the two first orders of
(79 to be magnitude we find
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L1 i
tn~ = 5 (2Nt IE N )ma HEp =™ — o ART (92)

— IE )\g( 14;% (m)2. (86) coincide with the_complex energies of the two resonances of
VANT+AS the doublet considered. Henceforth, we drop the inaheof
) o the doublet to avoid too bulky notation. The energiésare
In the resonance region, the splittingAzy|=|Aln|  the jevels of the internal problem for the potentiaf?)(r)
~ \/4)\21+ )\22 within a given doublet is much smaller than the _ x,8(r —a) with the BC (51) whereas the amplitudes are

distance between adjacent doublets which-is. given by Eq.(58), with the wave numbek substituted by
Equation(81) reads in the case=2 mar. Just the energy-independent mat®®) is naturally in-
) , terpreted as an effective non-Hermitian Hamiltonian. The no-
R(K) = — 2\ ok(sin? k+ X 1k sin 2K) tion of the effective Hamiltonian is valid, however, only
7 , ) ' within a fixed doublet. Similarly, in the cade=1 the “ef-
simk+ 5 (2N 1+ hp)ksin Zk+ A 1A k" cos X fective Hamiltonian” coincides with the corresponding diag-
8 onal matrix element of the formal operathf constructed in
(87)
Sec. Il
For the mth resonance doubleky,=m+ 5k, and the As we have already mentioned above, the total width
small shift 5k, satisfies the quadratic equation :r++r_%4)\§(mw)3 of the doublet remains constant as

long as the openness of the system is fixed. At the same time,
the individual widths depend also on the ratig/\,. A re-
giving immediatelysk;, = Re ¢, , with {;; from (86). markable redistributiorof the total width between members

This convinces us that each resonance doublet with gooflf the doublet takes place when this parameter changes.
accuracy can be considered independently of the other pole¥/nen the system is almost closed,<A,,
Near a giverk,,=mar within the resonance region the func-
tion R(m#+ 6k)=R,(k) is decomposed into a sum of two E.~(1—4N;—\,)(mm)?,
partial fractions

(SKm)2+ (2N 1+ N o) (M) 8K+ N o(mar)?=0, (88)

+ - E_~(1-\y)(mm)?, T.=~2\5(mm)3. (93
Ym + Ym

k—ki  k—k. '

Rm(k)= (89

Both levels have similar widths in this case. However, in the

opposite limit\,>\; the state that exists in the outer well

the residues being found to be equahty=—2 Im ¢, _ |
appropriates almost the whole total width

To pass from thé& to the energy plane, the terR (k)
must be added, which yields
. E.~(1-2\—2\)(mm)?,  To~4(\5-\)(mm)?,
r r, 1
Ru(E)= =" " = AT~ Au. (90 (%4
E-en E—en E-em E_~(1-2\)(mm)?, T_=~4a\3(mm)3.

The two-dimensional vectoA} = (T, VT,,) and the ma-
trix sg\‘)zdiag (e, &) of the internal levels: = (k)2 of Simultaneously, the enerdy. of the broader resonance gets
the doublet have been introduced in the last step. strongly displaced due to the coupling to the energy con-

The corresponding representation of the scattering ampliinuum. The other resonance turns out to be trapped in the
tude near the scattering energy=k2 is as follows: inner well. Figure 3 illustrates the behavior just described.
2 :

For anarbitrary ratio A1 /\,, the complex energies of the

5 1 two resonances of a doublet are separated by a distance

Tm(E)=ALW Ang. (91)  which is large on the scale of the total widtB5]. For this
E—(Het' I m reason, the off-diagonal matrix elements of the anti-

N . . . Hermitian part of the effective Hamiltoniaf®2) give only
In these formula§ =2 \E y,;~27rmy,;] ,1.e., we have ne-  corrections of higher order and can therefore be neglected. In
glected the change of the scattering enegyithin the dou-  gpite of the nontrivial behavior of the complex levels just
blet considered. The difference betweep contributes only  described the resonances may still be considered separately
at higher orders. This is contrary to the case of widths fronpf each other within the given accuracy.
different doublets wheR,, differ from each other already in Extension to the general case of arbitrary numbenf
the zero order in\; ». In such an approximation, both func- parriers is now straightforward. The effective Hamiltonian
tions R,(E) and T,,(E) become meromorphic in the com- appears as ainx L block of the operatot, which describes

plex energy plane. a fixed bunch oL close resonance states. It is important that
By the very construction, the complex eigenvalues of theenergy dependence can be fully neglected within such a
two-dimensionaknergy-independersymmetric matrix bunch.
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FIG. 3. Widths(in log scale versus energies for a doublet of
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10 (marked with@) at fixedA,=0.001.

F. Internal problem with Dirichlet BC

The internal problem with the B@51) does not corre-
spond to a finite motion of a quantum particle even when th
coupling matrix elements are neglected. Indeed, the intern

solution is sensitive to the penetrability of the outer barrier.
Meanwhile, in numerous applications the intuitively most at-

tractive convention, which goes back to the textb§dk is

PHYSICAL REVIEW 7, 026215 (2003

Similar to Egs. (55)—(57), we have S(k)=S(k)Se(k),
with Sy from Eq. (54), and S(k)=1—iAT[k?—H )]~ 1A,
where

Him=ei dmi~ 7=y Um (A)VR (@)
©) 1 —— 0 -
=& Omn— 2N K AmAn_E ARA, (97
and
_ 2k
n=AL Tozdn (a). (99)
L

This should be compared with E¢8) and (59). Not only
widths but also Hermitian shifts result from the coupling to
the external region this time. Indeed, in the resonance region
N k<%1 the phases that come from the first two factors in Eq.
(95b) are equal approximately to

-(D)H
int

14\, G

(a,a)

PY(a,a)

S(k)~—\2k 8y (K)=~\(k.

The two contributions perfectly compensate each other at the
Gointsk?=¢() . Within a bunch of resonance levels the ei-
genvalues of the Hermitian part 8%’ coincide in the main
approximation with the corresponding level§" . In gen-

eral, the connectiod(k) = 5(k)+ 8, (k) holds for arbitrary

adopted, to using as an internal basis the states of a closgd
counterpart of the system under consideration. Such a coun- | et us first return to the case=2, for a moment. The
terpart can hardly be defined uniquely but, in our case, it issmplitudes(98) for the mth doublet are easily calculated to
natural to fix it by choosing the Dirichlet BC at the point 4 iy the main approximatioK+~ + 2\ ,(mm) %2 when

=a. This corresponds to the internal problem with an infi- oo ) 2
. ) ) the corresponding internal levels asg”’~(1—4\,)(m
nitely hard wall put at the point=a. The formalism of Sec. b ¢ éj ( ) (m)

| aives then and ¢®=(mm)2. Therefore, the diagonal elements of the
9 effective Hamiltonian of the doublet are equal to
s (D)"
s — —— WAL NG (28] g (958 o[ (1=Ba=2p)(mm=inZ(mm)?
. ( " O~ 99
1+ (i k) [1+1 G2 (a,a)] = (1= n ) (mm)2=inE(mm)3, (99
_1+[)\L/(1+i)\Lk)]Gi(r?t)”(aaa) 1+iNK p) which exactly coincide with Eq93). Off-diagonal elements
T (1-in k]G (a,a) 1—inK O of HEY can be neglected X,<\;. These elements become
(95  important, however, when the coupling to the continuum be-
comes strongh,=\;. The two resonance®9) interfere in
Comparison with the closed solutid®5) and (79) shows this case. Diagonalization of thex2 matrix Hgﬁ) gives
that now
1 o 1« vr'(a)vd(a) Eo~[1-2N1— A, T VANZ+ N3] (mr)?
cot( 8., +ka)= -G "(a,a)=— )i By =~ 17 A2 1+ Az]l(ma)
k k 4 k2— (P

(96)

—ixg( 1+ (100

A2
—— | (mm)3.
VaNZ+ xg)
In the limit N\,>\; this reduces to Eq94).

For an arbitrary numbedr of barriers, thenth bunch ofL
close resonances is described by ltheL submatrix+(5’ of

which implies that the spectrum of the internal problem is
given by the equation sia(+ka)=0 instead of Eq.82).
Unlike the eigenvalues(V), the levelss{® do not depend
on\,.
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the infinite matrix(97), with the wave numbek being sub-  from the bunch by the distanc®, and coupled to a back-
stituted byk,~m. The absolute values of the coupling ground of L—1 stable states by means of the matrix ele-
amplitudes within such a resonance bunch are estimated asentsh,. Only due to this interaction do such states get
|An| =2\ (mm)¥? JL. The total collective width r(cm) access to the continuum via the doorway state existing in the

=Sk A?=A2~4)\2(mm)? of the bunch, which is deter- OUter well iy

mined by the trace of the anti-Hermitian part’d ?f), char- With the help of the completeness condition
acterizes the openness of the system and does not depend on

the penetrability constank, of the internal barriers. The > 7t nl(f‘)=5|,,—a|a|, (105
same is valid in the main approximation regarding the col- m

lective real energy displacementéeﬁ””z2)\,_(m77)2
~F§m)/27\,_m77. When this displacement is small in compari-
son with the total energy spread of the internal levels,

one finds from Eq(104)

1

5l <A(M(£(®), the bunch consists df independent nar- 7W=—h,——= a. (106)
row resonances GM_SF )
1 i1 The orthogonality conditiora- ¥)=0 immediately gives
(M .DO)_= g (m__ =~ pr(m) .
En=en L e 2L e (10D the equation
Note that the Hermitian shift does not influence the level a,2
spacings but changes only the position of the bunch. o =0 (107

Under the opposite conditionge(™sA(M (&), the e
doorway basis in which the interaction matA" is diag-  for the new positions of the stable levels. This equation
onal becomes more adequé3] than the basis of the inter-  shows that each new leve), lies between two neighboring
nal problem used up to notsee alsg36). The latter matrix 4|4 onese(®) and therefore is shifted with respect to the

is diagonalized by an orthogonal transformation |5iter only by a distance comparable with the initial mean

— (1) (2 L 1
._(,,( ) ,7('). .. 1,'( )), where each entryy( .) is a real VECIOr |ave| spacing. This is much smaller than the displacement
in the L-dimensional part of the total Hilbert space, which Se. of the collective levek. .

corresponds to the considered bunch. Due to the factorized The interactionh mixes these states and formsfinal
structure, the interaction matrix possesses the only nonzefaqonance states. The complex energies of the exact states,
eigenvalue ' = A2, which belongs to the eigenvector je., the eigenvalues of the effective Hamiltonidi2), sat-
n(1)=aE,K/\/ﬁ. As a result, the effective Hamiltonian ob- isfy the secular equation
tains in the doorway basis the forfwe drop below the index

i h2

m of the bunch E=€— = Tt > —4—. (108

_ 2 n E—€,

i

ee— =T, h' _ _ .
Hé?)= 2 . (102 In particular, for the collective doorway state one obtains
h A from this equation
€
, , 2 i h?
'Lhzes folloji/\;|.ng notation has been used hereu ( Er~(e®)—|1— | sec— 5 1 |Te.
S J . (560) (56(:)

(109
— (D) 42 2_ (o(D)y_
= el ’ay— 2N (mm)“=(e e, .
¢ EI P L(mm)™=(ei™) ¢ Equations(103 and (105 allow us to express the square
(103 lengthh? of the mixing vector in terms of the variance of the

h,=> &®a 4 nonperturbed internal levels,
M ’
[

h?=2 (ef)? af-

S o0

with the L —1 vectorsy*) and elementg,, of the diagonal
matrix e being defined by the eigenvalue problem
=((e® = (@) =147 (110
©) (W, (V= ¢ 10
zn: En M n " En O (104 Thus, interaction is weak in the doorway basis under the
. _ _ condition de.>A&(P) and the doorway state keeps almost
in the (L —1)-dimensional subspace orthogonal to the vectothe whole energy displacement and width. All other states are
a. The quantity{afD)) is the weighted mean position of the trapped in the interior region and share small portions
internal levels. The non-Hermitian Hamiltonigd02 de-  ~[A&(P)/Se.]? of the collective displacement and width in
scribes a widedoorwayresonance with widtl’; displaced accordance with the group velocif23]. The solution just
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described has formally very much in common with the scheeffective Hamiltonian. Energy-dependent eigenvalues of this
matic model of the so-called nuclear dipole giant resonanceperator are not, generally, in one-to-one correspondence
developed i 36,37). with the complex energies of the actual resonance states.

Overlap and interference of the resonances can become
possible in the cases when the energy spectrum has a band
structure. As an example of this kind we investigate a peri-

In this paper we analyzed the relevance of the concept apdically disposed chain of a finite numblerof radial § bar-
the non-Hermitian effective Hamiltonian in finite-range po-riers. All S, K, andR functions are found in closed forms in
tential scattering. Single-chanreWave resonance scattering terms of arL X L k-dependent matrix propagator. This allows
is considered as an example. The scattering fun@id) is  us to study in detail all analytical properties in the compkex
meromorphic in this case, i.e., has only isolated poles in th@lane and to verify the correspondence with the projection
complex plane of the wave numbers. The number of poles igormalism used. There exist a finite number of separated
generally, infinite but only a finite part of them can be inter-bands of close resonances. Within timh band which lie
preted as resonances. near the scattering energg~|z,|? one can neglect all

We first presentedSecs. Il and Il a consistent self- smooth variations wittk. In this approximation, the men-
adjoint formulation of the scattering problem, which is basedtioned propagator proved to coincide with the resolvent of
on separation of the configuration space into internal andhelL XL block H,;,(|z|) of the matrixHﬁQ\',Z(k) taken at the
external segments. In this way, ti8¢k) function is repre- fixed value k=|z,|. Just this matrix plays the role of the
sented in terms of a non-Hermitian energy-dependent opera&ffective Hamiltonian of the system in the energy interval
tor H(k). There exists a wide freedom in choosing the radiuswithin the band.

a of separation as well as the boundary conditions at this Different choices of BCs yield different patterns of the
point. Different choices yield different explicit forms of this resonance interference. In particular, the spectrum of the
operator together with th&(k) and R(k) functions. This poles of theR function is exactly reproduced in the frame-
can, in particular, come out strongly if one truncates the mawork of the projection technique with the BG1) of Neu-

trix H to calculate numerically the positions of the poles of mann type fixed at the positian=L of the outer barrier. The
the Sfunction in the complex plane. Nevertheless, the true corresponding energy levels depend on the penetrability con-
complex poles of thé function and this function itself de- stant\, of the outer barrier. Shifts of the levels due to the
pend, as we explicitly demonstrate, neither on the BC nor oroupling to the continuum are included in this case from the
the radiusa. very beginning.

Although all choices are formally allowed, this does not Utilization of the Dirichlet BC for the intrinsic motion
mean that they are equally adequate from the physical poirgives another but equivalent formulation of the scattering
of view. For instance, a fictitious immediate reflection takesproblem considered. The internal problem in this case fixes a
place at the(arbitrarily choseh point of separatiora. The  closed counterpart of the open system under consideration.
artificial separation of the phase of this reflection results, inThis enables us to investigate the change of regime of the
turn, in the appearance of an infinite number of remote polemternal motion of the system as its openness grows. The
of the functionR(k), which describe the smooth contribution interaction via the continuum shifts the original
from the interior regiorr <a. The phase of the immediate A, -independent levels of the internal motion along both real
reflection must be compensated by the contributions of suchnd imaginary axes. A transition is explicitly demonstrated
poles for the radiua to disappear finally from the scattering from the bunch ot similar narrow resonances to the forma-
amplitude. This can cause unjustified complications in intertion of a relatively broad resonance strongly shifted with
mediate stages of the calculations. We argue that the harm igspect to the band, which exists in the outer well. The other
minimized if the separation radius matches an outer potentiaesonances turn out to be trapped in the inner part of the
barrier when it is strong enough to make immediate reflecsystem. This is quite similar to the results of earlier investi-
tion at this point quite probable. gations which rely upon the notion of the non-Hermitian

The notion of the non-Hermitian effective Hamiltonian effective Hamiltonian of an open system.
first introduced in the theory of resonance nuclear reactions
emerges when a group of very close resonance states
strongly overlap and interfere. We stress that, in contrast to
the nuclear reactions, in the cases of the potential resonance We are grateful to Y. V. Fyodorov for discussions on
scattering usually discussed in the literature the density ofeshbach’s projector technique at an early stage of this work,
the energy spectrum is too low and the ordinary Breit-to H. Schanz and V. Zelevinsky for interesting discussions,
Wigner approximation of isolated resonances usually sufand to G. Hackenbroich and C. Viviescas for their interest in
fices. The complex energy of timath resonance which domi-  the work and useful conversations. One 0f\U4/.S.) greatly
nates in the scattering amplitudes near the scattering energypreciates the generous hospitality of the Max Planck Insti-
E~|z,|? is well approximated by the diagonal matrix ele- tute for Complex Systems extended to him during his stay in
ment Hm(|Zm|). There is no room for an effective Hamil- Dresden. Financial support by RFBR Grant No. 03-02-16151
tonian in this case or, more strictly, it is embodied by the 1(D.V.S. and V.V.S). and SFB 237 “Unordnung and grosse
X1 “matrix” Hy,m. We emphasize that the energy- Fluktuationen” (D.V.S. and H.J.S.is acknowledged with
dependent operatd/ (k) should not be confused with the thanks.
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