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General stability analysis of synchronized dynamics in coupled systems
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We consider the stability of synchronized states~including equilibrium point, periodic orbit, or chaotic
attractor! in arbitrarily coupled dynamical systems~maps or ordinary differential equations!. We develop a
general approach, based on the master stability function and Gershgo¨rin disk theory, to yield constraints on the
coupling strengths to ensure the stability of synchronized dynamics. Systems with specific coupling schemes
are used as examples to illustrate our general method.
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Large networks of coupled dynamical systems that exh
synchronized static, periodic, or chaotic dynamics are s
jects of great interest in a variety of fields ranging from
ology @1# to semiconductor lasers@2# to electronic circuits
@3#. For a given problem it is essential to know the extent
which the coupling strengths can be varied so that the s
chronized state remains stable. Early attempts@4,5# at this
question have typically looked either at systems of v
small size or at very specific coupling schemes~diffusive
coupling, global all to all coupling, etc., with a single co
pling strength!. Recent work@6,7# introduced the notion of a
master stability function that enables the analysis of gen
coupling topologies. This function defines a region of stab
ity in terms of the eigenvalues of the coupling matrix. In th
paper we present a general method that provides exp
constraints on the coupling strengths themselves by com
ing the master stability function with the Gershgo¨rin disk
theory. Our approach is applicable to both coupled maps
coupled ordinary differential equations~ODEs!. Commonly
studied coupling schemes are used as illustrative examp

Coupled maps.The system we consider is represented

xi~n11!5f„xi~n!…1
1

N (
j 51

N

Gi j H„xj~n!…, ~1!

wherexi(n) is theM-dimensional state vector of thei th map
at timen andH:RM→RM is the coupling function. We define
G5@Gi j # as the coupling matrix, whereGi j gives the cou-
pling strength from mapj to map i. The condition( jGi j
50 is imposed to ensure that synchronized dynamics
solution to Eq.~1!.

Linearizing Eq.~1! around the synchronized statex(n),
which evolves according tox(n11)5f„x(n)…, we have

zi~n11!5J„x~n!…•zi~n!1
1

N (
j 51

N

Gi j DH„x~n!…•zj~n!,

~2!

wherezi(n) denotes thei th map’s deviations fromx(n), J
(•) is the M3M Jacobian matrix forf, and DH(•) is the
Jacobian of the coupling functionH. In terms of theM3N
matrix S(n)5„z1(n) z2(n) ••• zN(n)…, Eq.~2! can be recas
as
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S~n11!5J„x~n!…•S~n!1
1

N
DH„x~n!…•S~n!•GT. ~3!

According to the theory of Jordan canonical forms, the s
bility of Eq. ~3! is determined by the eigenvaluel of G.
Denote the corresponding eigenvector bye and let u(n)
5S(n)e. Then

u~n11!5S J„x~n!…1
1

N
lDH„x~n!…D •u~n!. ~4!

So the stability problem originally formulated in theM3N
space has been reduced to a problem in anM3M space
where it is often the case thatM!N. It is worth mentioning
that this eigenvalue based analysis is valid even if the c
pling matrix G is defective@8#.

We note thatl50 is always an eigenvalue ofG and its
corresponding eigenvector is (1 1•••1)T due to the synchro-
nization constraint( j 51

N Gi j 50. In this case, Eq.~4! can be
used to generate the Lyapunov exponents for the individ
system, which we denote byh15hmax>h2>•••>hM .
These exponents describe the dynamics within the sync
nization manifold defined byxi5x ; i .

The subspace spanned by the remaining eigenvecto
transverse to the synchronization manifold, in which the d
namics will be stable if the transverse Lyapunov expone
are all negative@9#. To examine this problem, we treatl in
Eq. ~4! as a complex parameter and calculate the maxim
Lyapunov exponentmmax as a function ofl. This function is
referred to as the master stability function by Pecora a
Carroll @6#. The region in the@Re(l),Im(l)# plane where
mmax,0 defines a stability zone denoted byV. Figure 1
shows a schematic of two possible configurations ofV.
WhetherV is an unbounded area@Fig. 1~a!# or a bounded
one @Fig. 1~b!# is contingent on the coupling scheme a
other system parameters. The origin, which is the zero eig
value of G, may or may not lie in the stability zone. Fo
example, for equilibrium or periodic state in coupled ma
the origin is inV, but for chaos, it lies outside ofV. We note
that, typically,V is obtained numerically. In some instanc
analytical results are possible~see below!.
©2003 The American Physical Society09-1
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Clearly, if all the transverse eigenvalues ofG lie within
V, then the synchronized state is stable. Here we seek
straints applicable directly to the coupling strengths. T
problem is dealt with by combining the master stability fun
tion with the Gershgo¨rin disk theory.

The Gershgo¨rin disk theorem@10# states that all the eigen
values of ann3n matrix A5@ai j # are located in the union o
n disks ~called Gershgo¨rin disks!, where each disk is given
by

H zPC:uz2aii u,(
j Þ i

uaji uJ ,i 51,2, . . . ,n. ~5!

To apply this theorem to the transverse eigenvalues, we n
to removel50. We apply an order reduction technique
matrix theory@11#, which leads to a (N21)3(N21) matrix
D whose eigenvalues are the same as the eigenvaluesG
except forl50.

Suppose that, for a given matrixG, we have the knowl-
edge of one of its eigenvaluesl̃ and the eigenvectore.
Through proper normalization we can make any compon
of e equal to 1. Here, without loss of generality, we assu
that the first component is made equal to 1, namelye
5(1,eN21

T )T. RewriteG in the following block form:

FIG. 1. Schematic illustrations of the stability zone:~a! un-
bounded area,~b! bounded area.
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G5S G11 rT

s GN21
D ~6!

with r5(G12, . . . ,G1N)T, s5(G21, . . . ,GN1)T, and

GN215S G22 ••• G2N

A A A

GN2 ••• GNN

D . ~7!

Choose a matrixP in the form

P5S 1 0T

eN21 IN21
D . ~8!

HereIN21 is the (N21)3(N21) identity matrix. Similarity
transformation ofG by P yields

PÀ1
•G"P5S l̃ rT

0 GN212eN21rTD . ~9!

SinceP21GP and G have identical eigenvalue spectra, th
(N21)3(N21) matrix

D15GN212eN21rT ~10!

assumes the eigenvalues ofG sansl̃. We can obtainN dif-
ferent versions of the reduced matrix, which we denote
Dk (k51,2, . . . ,N), depending on which component ofe is
made equal to 1.

Applying the above technique to the coupling matrixG
by letting l̃50 and e5(1 1 . . . 1)T we get Dk5@di j

k #,
wheredi j

k 5Gi j 2Gk j . From the Gershgo¨rin theorem the sta-
bility conditions of the synchronized dynamics are expres
as follows:

~1! The center of every Gershgo¨rin disk of Dk lies inside
the stability zoneV. That is, (Gii 2Gki,0)PV.

~2! The radius of every Gershgo¨rin disk of Dk satisfies the
inequality

(
j 51,j Þ i

N

uGji 2Gkiu,d~Gii 2Gki!,i 51,2, . . . ,N and iÞk.

Hered(x) is the distance from pointx on the real axis to the
boundary of the stability zoneV.

As k varies from 1 toN, we obtainN sets of stability
conditions. Each one provides sufficient conditions co
straining the coupling strengths.

Coupled ODEs.The above procedure for obtaining stab
ity bounds can also be applied to coupled identical OD
written as

ẋi5F~xi !1
1

N (
j 51

N

Gi j H~xj !, ~11!

wherexi is the M-dimensional vector of thei th node. The
dynamics of the individual node isẋ5F(x). Linearizing
around the synchronized state, we get
9-2
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zi̇5J~x!•zi1
1

N (
j 51

N

Gi j DH~x!•zj , ~12!

wherezi denotes deviations fromx, J(•) andDH(•) are the
M3M Jacobian matrices for the functionsF andH, respec-
tively. Adopting the Jordan canonical form, we obtain

u̇5FJ~x!1
1

N
lDH~x!Gu, ~13!

wherel is an eigenvalue ofG. Performing the same analys
as for coupled maps, we obtain the same stability conditi
as given above.

Examples.We now illustrate the general approach by a
plying the above results to two examples where analyt
results are possible. In the first example we consider
coupled differential equation systems withH(x)5x @7#. It is
easy to see thatDH is an M3M identity matrix. The
Lyapunov exponents for Eq.~13! are easily calculated sinc
the identity matrix commutes withJ(x). Denoting them by
m1(l), m2(l), . . . , mM(l), we have

m i~l!5hi1
1

N
Re~l!,i 51,2, . . . ,M . ~14!

For stability, we require the transverse Lyapunov expone
(lÞ0) to be negative. This is equivalent to the statem
that the maximum Lyapunov exponent is less than zero:

mmax~l!5hmax1
1

N
Re~l!,0. ~15!

In other words, the stability zoneV is the region defined by
Re(l),2Nhmax. The distance function from the center
each Gershgo¨rin disk to the stability boundary is given b
d(Gii 2Gki)52Nhmax2(Gii 2Gki) ( i 51, . . . ,N,iÞk).
Thus, thekth set of stability conditions is

~Gii 2Gki!,2Nhmax, ~16!

(
j 51,j Þ i

N

uGji 2Gkiu,2Nhmax2~Gii 2Gki!,

i 51,2, . . . ,N, iÞk. ~17!

It is obvious that the second inequality implies the first o
So the stability condition for the synchronized state~whether
an equilibrium, periodic, or chaotic state! is given by

(
j 51,j Þ i

N

uGji 2Gkiu1~Gii 2Gki!,2Nhmax,

i 51,2, . . . ,N, iÞk. ~18!

When the coupling is symmetric, i.e.,Gi j 5Gji , Rangarajan
and Ding @12#, based on the use of Hermitian and positi
semidefinite matrices, derived a very simple stability co
straint
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Gi j .hmax, ; i , j . ~19!

We show here that Eq.~19! is a consequence of the mor
general stability conditions given in Eq.~18!. This can be
seen as follows. First considerk51. SubstitutingGii 5
2( j 51,j Þ i

N Gji ~synchronization condition! and simplifying
we get the following equation:

(
j 52,j Þ i

N

uGji 2G1i u2 (
j 52,j Þ i

N

Gji 22G1i,2Nhmax,iÞ1.

~20!

If Gji 2G1i is positive for all allowedi and j values, it is
easy to see that the above stability condition is satis
given the condition in Eq.~19!. However, if more than two
such terms are negative, we have a problem. We can
around this by considering the other (N21) sets of stability
conditions obtained by settingk52,3, . . . ,N in Eq. ~18!:

(
j 51,j Þ iÞ2

N

uGji 2G2i u2 (
j 51,j Þ iÞ2

N

Gji 22G2i,2Nhmax,

iÞ2

A ~21!

(
j 51,j Þ i

N21

uGji 2GNiu2 (
j 51,j Þ i

N21

Gji 22GNi,2Nhmax, iÞN.

If we take the average of the inequalities overk, cancellation
takes place, resulting in a simplified inequality that will b
satisfied if the sufficient condition given in Eq.~19! is met.
In other words, the previously derived stability condition
obtained as a special case when we require the coup
strengths to meet theN stability conditions simultaneously.

In the second example, we consider a coupled map w
H5f @5#. Under this assumption,DH5J and the linearized
equation@cf. Eq. ~4!# reduces to

u~n11!5~l/N11!J„x~n!…u~n!. ~22!

The Lyapunov exponents for Eq.~22! are easily calculated
analytically. Denoting them bym1(l), m2(l), . . . ,mM(l),
we have

m i~l!5hi1 lnul/N11u, i 51,2, . . . ,M . ~23!

For stability, we requiremmax(l)5hmax1 lnul/N11u,0. In
other words, the stability zone is defined by

ul1Nu,Nexp~2hmax!. ~24!

The distance from the center of each Gershgo¨rin disk to the
boundary is easily calculated to bed(Gii 2Gki)5Nexp
(2hmax)2uN1Gii2Gkiu ( i 51, . . . ,N, iÞk). Thus, the condi-
tions of stability are
9-3
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(
j 51,j Þ i

N

uGji 2Gkiu1uN1~Gii 2Gki!u,Nexp~2hmax!,

i 51, . . . ,N, iÞk, k51 or 2 or••• or N. ~25!

For eachk from 1 toN, we obtain a set of sufficient stabilit
conditions.

In Ref. @12#, a simple stability bound for synchronize
chaos in the case of symmetric coupling was obtained a

@12exp~2hmax!#,Gi j ,@11exp~2hmax!#, ; i , j .
~26!
n

v.
,

n-

l.

02620
This can again be derived from the general stability con
tion in Eq. ~25! with the averaging technique used above.

In summary, we have set up a general formalism to stu
the stability of synchronized state in coupled identical ma
and ordinary differential equations. We have also conside
the often used coupling function for coupled maps a
coupled ODEs and given analytical results in these cases
have also shown that known stability bounds can be deri
from our more general results.
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