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General stability analysis of synchronized dynamics in coupled systems
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We consider the stability of synchronized statexluding equilibrium point, periodic orbit, or chaotic
attractoy in arbitrarily coupled dynamical systenimaps or ordinary differential equationdVe develop a
general approach, based on the master stability function and Gershggk theory, to yield constraints on the
coupling strengths to ensure the stability of synchronized dynamics. Systems with specific coupling schemes
are used as examples to illustrate our general method.
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Large networks of coupled dynamical systems that exhibit 1
synchronized static, periodic, or chaotic dynamics are sub- ~ S(n+1)=J(x(n))-S(n)+ NDH(X(H))-S(H)'GT- ()
jects of great interest in a variety of fields ranging from bi-
ology [1] to semiconductor lased®] to electronic circuits
[3]. For a given problem it is essential to know the extent toAccording to the theory of Jordan canonical forms, the sta-
which the coupling strengths can be varied so that the syrpility of Eq. (3) is determined by the eigenvalue of G.
chronized state remains stable. Early attenjgt§] at this Denote the corresponding eigenvector @yand let u(n)
question have typically looked either at systems of very=3S(n)e. Then
small size or at very specific coupling schemégfusive
coupling, global all to all coupling, etc., with a single cou- 1
pling strength. Recent worK6,7] introduced the notion of a u(nt+1)= J(X(n))+N)\DH(x(n)) -u(n). (4)
master stability function that enables the analysis of general
coupling topologies. This function defines a region of stabil-
ity in terms of the eigenvalues of the coupling matrix. In this So the stability problem originally formulated in tihéxN
paper we present a general method that provides explicRpace has been reduced to a problem inMar M space
constraints on the coupling strengths themselves by combirwhere it is often the case thet<N. It is worth mentioning
ing the master stability function with the Gershigodisk that this eigenvalue based analysis is valid even if the cou-
theory. Our approach is applicable to both coupled maps anpling matrix G is defective[8].
coupled ordinary differential equatiof®DES. Commonly We note that =0 is always an eigenvalue @& and its
studied coupling schemes are used as illustrative examples:orresponding eigenvector is (1 1: 1) due to the synchro-

Coupled mapsThe system we consider is represented bynization constrainE}LlGij =0. In this case, Eq4) can be

used to generate the Lyapunov exponents for the individual

N
; : 1 : system, which we denote by,=hy,,=h,=---=hy.
X (n+1)=Fx(n))+ N le GijH((n)), @D These exponents describe the dynamics within the synchro-
. nization manifold defined byx'=x V i.
wherex'(n) is theM-dimensional state vector of théh map The subspace spanned by the remaining eigenvectors is

at timen andH:RM—RM is the coupling function. We define transverse to the synchronization manifold, in which the dy-
G=[Gj;] as the coupling matrix, wher;; gives the cou- namics will be stable if the transverse Lyapunov exponents

pling strength from map to mapi. The conditionX;G;; are all negativg9]. To examine this problem, we treatin

=0 is imposed to ensure that synchronized dynamics is &4. (4) as a complex parameter and calculate the maximum

solution to Eq.(1). Lyapunov exponent,.x as a function oh. This function is
Linearizing Eq.(1) around the synchronized statén), referred to as the master stability function by Pecora and

which evolves according te(n+1)=f(x(n)), we have Carroll [6]. The region in thd Re(\),Im(\)] plane where

Lmax<0 defines a stability zone denoted €Y. Figure 1
i _ i J. shows a schematic of two possible configurations{nf

Z(n+1)=J(x(n))-Z(n)+ N j§=:1 GijDH(x(n))-Z(n), Whether() is an unbounded ardéig. 1(a)] or a bounded

) one [Fig. 1(b)] is contingent on the coupling scheme and
. other system parameters. The origin, which is the zero eigen-

wherez'(n) denotes théth map’s deviations fronx(n), J  value of G, may or may not lie in the stability zone. For
(+) is the M XM Jacobian matrix fof, andDH(-) is the  example, for equilibrium or periodic state in coupled maps,
Jacobian of the coupling functidd. In terms of theM XN  the origin is in(}, but for chaos, it lies outside &1. We note
matrix S(n) = (z*(n) Z%(n) - -- zZV(n)), Eq.(2) can be recast that, typically,() is obtained numerically. In some instances
as analytical results are possib{see below.
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W|th r=(G12, [P ,GlN)T, S:(G21, v ,GN]_)T, and
GZZ e GZN
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Choose a matri® in the form
I
1 or ) @
P= : 8
(a) en-1 In-1
Im(\) Herely_q isthe N—1)X (N—1) identity matrix. Similarity
) transformation ofG by P yields
(9) X rT
P~L.G-P= nE 9
0 Gn-1—en-1f

SinceP !GP and G have identical eigenvalue spectra, the
(N=1)X(N—1) matrix

=Re()\)
D'=Gy_1—ey-_1f" (10

assumes the eigenvalues®fsansk. We can obtairN dif-
ferent versions of the reduced matrix, which we denote by
DK (k=1,2, ... N), depending on which component eis
(b) made equal to 1.
o _ N Applying the above technique to the coupling mat@x
FIG. 1. Schematic illustrations of the stability zon@ un- by letting A\=0 and e=(11...1) we get Dk:[d:(j]’

bounded arealb) bounded area. whered!‘j =G;;—Gy;. From the Gershgin theorem the sta-

. . . o bility conditions of the synchronized dynamics are expressed
Clearly, if all the transverse eigenvalues @flie within ¢ f)é)llows 4 y P

), then the synchronized state is stable. Here we seek con- (1) The center of every Gershgo disk of DX lies inside
straints applicable directly to the coupling strengths. Th'snhe stability zone)). That is, G — Gy;,0) € Q
. ’ i i .

problem is dealt with by combining the master stability func- : Lo K i g
tion with the Gershgon disk theory. (2) The radius of every Gershgno disk of D* satisfies the

The Gershgon disk theorenf10] states that all the eigen- inequality
values of amXxn matrix A=[a;; ] are located in the union of N
n disks (called Gershgan disks, where each disk is given E |Gji—Gki|<5(Gii —Gy)ii=12,... N and ik
by i=1,)#i

Here 5(x) is the distance from point on the real axis to the
zeClz—ay|<Y, laji|1,i=1,2,...n. (5)  boundary of the stability zon@. _ N
J#i As k varies from 1 toN, we obtainN sets of stability
conditions. Each one provides sufficient conditions con-
To apply this theorem to the transverse eigenvalues, we needraining the coupling strengths.
to removex=0. We apply an order reduction technique in  Coupled ODEsThe above procedure for obtaining stabil-
matrix theory[11], which leads to aNl—1) X (N—1) matrix ity bounds can also be applied to coupled identical ODEs
D whose eigenvalues are the same as the eigenvalus of written as
except forn=0.
Suppose that, for a given matr®, we have the knowl-
edge of one of its eigenvalues and the eigenvectoe.
Through proper normalization we can make any component
of e equal to 1. Here, without loss of generality, we assumevherex' is the M-dimensional vector of théth node. The
that the first component is made equal to 1, namely, dynamics of the individual node i&=F(x). Linearizing
=(1,e{,_1)T. Rewrite G in the following block form: around the synchronized state, we get

1 N
X' =F(x)) NZ GijH(x), (11)
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. 1 _ Gij>hmax ¥ ij. (19
2=3(x) 2+ 2 GjDH(X)-Z, (12)
=t We show here that Eq19) is a consequence of the more

whereZ denotes deviations from J(-) andDH() are the general stability conditions g.iven in E@18). _Thils can be
M X M Jacobian matrices for the functiofsandH, respec- Seen as follows. First considde=1. Substituting G;; =

N . . e . . .
tively. Adopting the Jordan canonical form, we obtain —2j-1;+iGji (synchronization conditignand simplifying
we get the following equation:

u= J(x)+%)\DH(x) u, (13 N N
2 1G;i—=Gyl— 2 Gji—2Gy<—Nhpai#1.
where\ is an eigenvalue d&. Performing the same analysis Jm Jm2 (20)
as for coupled maps, we obtain the same stability conditions
as given above. If Gjj—Gy; is positive for all allowedi andj values, it is

ExamplesWe now illustrate the general approach by ap-g45y 1o see that the above stability condition is satisfied
plying the above results to two examples where analytlcabiven the condition in Eq(19). However, if more than two
results are possible. In the first example we consider thg ,c.n terms are negative, we have a problem. We can get
coupled differential equation systems wht{x)=x [7]. Itis - around this by considering the othed ¢ 1) sets of stability

easy to see thaDH is an MXM identity matrix. The .gnditions obtained by setting=2,3, ... N in Eq. (18):
Lyapunov exponents for E¢13) are easily calculated since

the identity matrix commutes witl(x). Denoting them by N N
#1(N), mo(N), ..., um(N), we have X 1Gi—Gal— X G;i—2Gu<—Nhpg,,
j=1lj#i#2 j=1lj#i#2
1 :
pi(\)=hi+ GRe(V)i=1.2, ... M. (14) 22
For stability, we require the transverse Lyapunov exponents : (21)
(A#0) to be negative. This is equivalent to the statement
that the maximum Lyapunov exponent is less than zero: N_1 N_1
1 __; _ |Gji—GNi|—__; Gji—2Gy<—Nhpay, i#N.
Kmad\) = Nimaxt GREN) <0. (15 TH7 e

If we take the average of the inequalities okecancellation
In other words, the stability zon@ is the region defined by takes place, resulting in a simplified inequality that will be
Re(\) <—Nhyay. The distance function from the center of satisfied if the sufficient condition given in E€L9) is met.
each Gershgm disk to the stability boundary is given by |n other words, the previously derived stability condition is
3(Gji—=Gk) = ~Nhpax—(Gii —=Gyi)  (i=1,... N,i#k).  obtained as a special case when we require the coupling

Thus, thekth set of stability conditions is strengths to meet thi stability conditions simultaneously.
In the second example, we consider a coupled map with
(Gii = Gii) <~ Nhpyay, (16) H=f [5]. Under this assumptiodH=J and the linearized
N equation[cf. Eq. (4)] reduces to
2, 181~ Gul <~ Nhna— (Gy = Gy), u(n+1)=(\/N+1)J((n)u(n). (22)
i=12,...N, i#k. (17  The Lyapunov exponents for E¢R2) are easily calculated
analytically. Denoting them by (N), wa(N), ... , unm(N),

It is obvious that the second inequality implies the first onewe have
So the stability condition for the synchronized statdether
an equilibrium, periodic, or chaotic statis given by mi\)=h;+In|]N/N+1

L i=1,2,... M. (23)
N

2, 16~ Gul+(Gi = G <~ Nhimay,

For stability, we requireumad\) =hmaxt IN]A/N+1/<0. In
other words, the stability zone is defined by

i=1,2,... N, i#k. (18) IN+N[<Nexp(—hpay. (24

When the coupling is symmetric, i.é5;;=G;;, Rangarajan The distance from the center of each Gershdisk to the
and Ding[12], based on the use of Hermitian and positiveboundary is easily calculated to b&(G;—Gy;)=Nexp

semidefinite matrices, derived a very simple stability con{(—h.0—|N+G;i—Gy| (i=1, ... N, i #k). Thus, the condi-
straint tions of stability are
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N This can again be derived from the general stability condi-
. E [Gji = Giil +IN+(Gji — Gyj) | <Nexp( — hpay), tion in Eq. (25 with the averaging technique used above.
=17 In summary, we have set up a general formalism to study
i=1,...N,i#k k=1or2or--- orN. 25) the stab_ility of _synchrpnized sFate in coupled identical maps
and ordinary differential equations. We have also considered
For eachk from 1 toN, we obtain a set of sufficient stability the often used coupling function for coupled maps and
conditions. coupled ODEs and given analytical results in these cases. We
In Ref. [12], a simple stability bound for synchronized have also shown that known stability bounds can be derived
chaos in the case of symmetric coupling was obtained as from our more general results.

[1—exp—hnmad I<Gjj<[1+exp(—hpa ], V i,j. This work was supported by U.S. ONR Grant No.
(26) N0O0014-99-1-0062.
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