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Measuring billiard eigenfunctions with arbitrary trajectories
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We propose a method of measuring approximate quantum eigenfunctions in polygonalized billiard geom-
etries, based on a quasiclassical evolution operator havismaothenedPerron-Frobenius kernel modulated
by a phase arising from quantum considerations. Using a plane wave ansatz, we show that the condition under
which this is an eigenfunction of the quasiclassical operator is identical to the condition for it to be an
eigenfunction of the Schdinger equation for polygonalized billiards. Finally, we demonstrate this technique
by determining the quasiclassical eigenfunctions of the polygonalized stadium billiard using arbitrary trajec-
tories and comparing this with the exact quantum stadium eigenfunctions.
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The quantum billiard problem consists of determining thespersed in the chaotic sea. Since the quantum ¢btatéhe
eigenvalues and eigenfunctions of the Helmholtz equatiomuasiprobability distributions constructed out of theaan
V2y(q) + k?y¥(q) =0 with ¢(q) =0 on the billiard boundary essentially resolve phase space structures of the size of a
4B (Dirichlet boundary condition This simple wave equa- Planck cell, is information finer than that redundant? For
tion arises in various contexts and has been used extensivepfliards, the de Broglie wavelength, provides a relevant
to test ideas of quantum chaos. It can describe acoustiéngth scale that can be used effectively to probe the bound-
waves, modes in microwave cavities and has relevance iy of the enclosure. If a smooth billiard boundary is polygo-
studies on quantum dots, where the motion of electrons ca@lized such that the short time classical dynamics is well
be regarded as “free” inside an enclosure. The problem i€@PProximated, the two billiards are semiclassically equiva-
analytically tractable only for the small subset of “inte- lent, provided) is Iarg_erthan the average Ien_gth of ed_ges of
grable” boundaries for which the classical dynamics is regu-the polygor{4]. Thus, instead of the full chaotic dynamics of

lar. For other enclosures, the eigenstates must be computerél‘e stadium billiard, one may as well consider the dynamics

. o= . . Of its polygonal counterpart for a given de Broglie wave-
nu.mtetr;]cailly”and a r;um?e(; OIhefﬂC.'ent bloundar)(/j ”.‘e‘h‘]?ds length [5]. This idea has, however, not been used to deter-
Ez)(lnss at aflow us to study the eigenvalues and eigen unCr'ninesemiclassicalaigenvalues or eigenfunctions. Indeed, by

) ) ) L ) most accounts, a polygonalized approach to semiclassics is
Of particular interest is the determination of approximatey,,ng to be even more difficult since periodic orbit quanti-

quantum eigenstates using classical quantities. While the olg+i5n of polygons has proved largely unsuccesggbiand it
quantum theory of Bohr and co-workers works only for regu-is generally believed that diffractive contributions must be

lar or integrable systems, modern semiclassical theories hayg:|uded even for obtaining a first approximation of a po-
respondend to the challenge posed by chaotic classical degonaI quantum statg7,8].

namics and the successful quantization of the helium atom "¢ polygonalization approach is, however, aptly suited
[_1] points to its success. The aim, however, _is not necessarily, 5 recently developed time domain technidi@eld] of
Imkedlto the. development of a cheap substltute.for the COMgetermining quantum eigenvalues in marginally stable bil-
puter intensive numerical methods that determine the exagl,,q geometrieswhich includes polygonalized onesThe
quantum states. While this is a desirable consequence, semjiyorithm involves shooting arbitrary trajectories in various
classical studies endeayor to provide an gnders;andlng of th&rections from a point interior to the billiaretall it q’) and
quantum phenomenon in terms of classical objects that gt gach time step, recording the fraction of trajectories that
are so familiar with. Modern semiclassical methods have inyq in ane neighborhood of a poind, weighted by a phase
deed furthered our understanding of the quantum-classicljsing from quantum considerations. The peak positions in
correspondence. Thus, we are now aware of the duality ke power spectrum of this weighted fracti(t) are related
quantum eigenenergies and classical periodic orbits—a relgg e quantum eigenvalues and as we shall show here, the

tionship t_hat now forms the cornerstone of most SemiCIaSSiheights of the peaks are a measure of the quantum eigenfunc-
cal theorieq2]. The study of “scars” has also revealed the tions at the point.

structure of quantum eigenfunctions and (_:Iassi(_:al tra_jectories The arbitrary trajectory quantization method outlined
have even been used to construct semiclassical eigenfungp e is based on a quasiclassicdl] propagator
tions of chaotic systemg3]. Quantum states can, thus, be
contemplated in classical terms as a first approximation with ,
corrections providing its true quantum nature. ‘C;c((P)Od)(q):f dg’ 8(q—q''())e O™ ¢(q"),

In this context, a question that may be asked is the fol- (1)
lowing: What is the degree of classical information that is
required in order to extract a first approximation of a quan- whereq’'(¢) is the position at time of a trajectory which
tum stat® This is especially pertinent when the system instarts atg’ (t=0) on an invariant surface labeled yand
question is chaotic or mixed with islands of regularity inter-the energyE. The phasev(t)=v(q''(¢)) depends on the
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caustic structure of the trajectory and is identical to the phasaheren[q~'(+v)] is the number of reflections suffered by a
in the semiclassical propagatd2]. For billiards, v(t) trajectory in time—t with initial positionq and initial veloc-
=2n(t), wheren(t) is the number of reflections suffered by ity +v. Similarly, ﬁgc(—)own(q) is

the trajectoryq’'(¢). When v(t) is identically zero(as in

case of Neumann boundary conditiang (¢) reduces to (elknla™ (o)l _ g=iknla~'(~0)]) g=imnla”(~o)] (4)
the (classical Perron-Frobenius operator on thE, ) in-
variant surface. with the — sign inﬁfm(—) denoting negative velocity. Note

Note that marginally stable billiards have an invariant sur-that the flow is such that the velocity changes sign at every
face labeled by two constants of motion one of which is thereflection from the walls atj=0 andqg=L, while n(t) in-
energyE [12]. We denote here the second constanpbyor  crements by one at each of these instants. For the flow
the circle billiarde is a measure of the angular momentum,q~!(+v), the reflections occur af =(q+nL)/v so that for
while for a rectangle billiarde is a measure of the linear t§<t<t1+, q—t(+v)zv(t_tg)=vt_q_ Similarly, for the
momentum p cose,psing) and can be taken as the angle fiow q~'(—v), the reflections occur af, =(L—q+nL)/v
that the unfolded trajectory makes with tkeaxis. In case of g for té<t<t;, g Y(—v)=L—ov(t—ty)=2L—vt—q.
rational polygonal billiards toop can be taken to be a mea- |; follows, hence, that
sure of the linear momentum even though, it is not directly a
conserved quantity. However, in an unfolded picture where a g;c(i)o%(q) = glkn(a = vt) _ g—ikn(a = vt) (5)
family of trajectories can be denoted by a single straight
band, ¢ is conserved and serves to label families of trajecfor all t. Finally, noting that there are only two possible val-
tories. ues of ¢ (linear momentum in this one-dimensional ex-

The full quasiclassical evolution operator is defined as  gmple, the full quasiclassical operator is expresseotgp

=Lg(+)+Ly(—). It follows that

£ ob(q) = f deL! () £ (@) = 2c08kwt) (). ®

, " ity 2 ) In other words, the quantum eigenfunction is also an eigen-
:J dq quaé(q—q (@))e $(a’) function of the full quasiclassical evolution operat6i;

[13].
_ , / / This is true for general polygonalized billiards as well and
f da'Kec(9.97.04(a"), @ we shall establish this by showing that the condition under

which a plane wave superposition is a quantig@amiclassi-
cal) eigenfunction is identical to the condition for this plane

. B . t .
whereK is the quantity in{}. The operatol ;. takes into /o superposition to be an eigenfunction[cﬁc.

account the entire constant energy surface by sumrfimg For polygonalized billiards, the semiclassical wave func-
tegrating over all ¢ invariant surfaces. tion can be expressed as

The motivation in constructing the quasiclassical operator
as in Eq.(1) is as follows. For polygonal billiards, the trace M
of the classical Perron-Frobenius operator is related to the W)= Aje'k cosuyx ik sinu)y, (7
trace of the semiclassical propagator whéh)=0. For Di- =1

richlet boundary condition, this correspondence can be re- ,
stored if the kernel contains the phasg (™2 [9,10]. This whereA; are constant$14] and the number of terms! in

gives rise to a quasiclassical propagator. the expansion is determined by closure of the wave vector

In the following, we shall first establish that the eigen- k= (k cosu; ksingy;) under reflection from the edgé45].
functions of Ef:]c for p0|ygona|ized geometries are also For this finite superposition of plane waves, the boundary
eigenfunctions of the Schdinger equation. We shall demon- condition#(q) =0 onJB can be satisfied if the waves van-
strate this numerically for a polygonalized stadium billiard ish in pairs with an incident wave giving rise to a reflected
by constructing the quasiclassical keril.(q,q,t) using ~Wwave. Thus, on théth segmeny=a,x+b,, we must have
arbitrary trajectories and use this to determine the eigenfunc-
tion intensities.

As an illustrative example, consider a particle in a one- +Aj,ei(k cosuj +ajk sinup)x+ibk singjr — (8)
dimensional box and consider the evolution of the quantum
eigenfunction(Dirichlet boundary conditionsyn(q) =€ Assuming thatu;, is related toy; through the laws of re-
—e i, ky=nm/L . Its time evolution in quantum mechan- fiection, it is easy to show that
ics is simplye "B’ y(q), whereE,=#%2k3/2m. Its quasi-
classical evolution for positive velocity ;.(+)¢n(0), is cosuj+asinu;=cosuj +asinu;: . ©)
given by

A]- ei(k COSpj +ak sin,uj)x+ib|k sin,uj

Thus, Eq.(8) reduces to

(eiknq*‘(w)_e—iknq*‘(w))e—iwn[q*t(w)]l (3) Ajeib|ksin,u.j+Aj'eib|ksin,ujr:0’ (10)
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INTENSITY (a) INTENSITY (b)

FIG. 1. (8 A quasiclassical
bouncing ball eigenfunction of the
polygonalized stadium antb) its
quantum counterpart in the
smooth stadium.

where uj,=7—u;+26, and 4, is the angle between the Itis easy to verify that after one reflection from the segment
positive X axis and the outward normal to théh line seg- y=ax+b,, the WaveAje'k cospupxtrksinuy eyolves quasiclas-
ment. sically to
Note that for each of th& segments on the boundary, the
jth wave has, in general, a different reflected wave as a coun-
terpart so that Eq.10) givesK different expressions foh, .
In general(barring exceptions such as the rectangle billiard
these “boundary conditions” can be satisfied only approxi- Ajeikbusinuj+Aj,eikb|sinujr:0_ (15)
mately as we shall argue below. Recall that for the numerical
determination of exact eigenvalues using a plane wave basi$hus, after one reflection, the finite plane wave superposition
the boundary is discretized\( pointg and an appropriate assumes the form for smalprovided the reflected waves are
measure(such as a determingnis used to determine the included in the superposition and the “quantization condi-
eigenstates which satisfy the boundary condition at thesgons” are (approximately satisfied for a given value d,.
points. Convergence can be achieved by increalisg that It follows that ¢,(q) is an (approximate eigenfunction of
asN— o, the boundary condition is satisfied exactly. In con-the full quasiclassical evolution operator:
trast, the number of terms in Eq. 7 is fixed. Thus, if the exact
eigenfunction contains additional plane waves, the boundary It
condition will be satisfiedpproximatelyand the plane wave e
expansion of Eq(7) can only give an approximate quantum
eigenfunction. _ N :J de e~ iknut cos@—,;pE Ajeisj(kn)
We shall now establish that thénite) plane wave super- ]
position[Eqg. 7] is also an approximate eigenfunction of the (17)
guasiclassical evolution operator provided the set of “quan-
tization” conditions given by Eq(10) are satisfied. =2mJo(knvt) ¥n(Q), (18)

Consider, therefore, the plane wave superposition of E%\/here S, (k) = k,CoS(u)x+ksin(w)y and J, is the Bessel
JATN n | ]

7). Its quasiclassical evolution is given b ) - -
™ q g y function. In summary therg finite plane wave superposition
M L _ can be an approximate semiclassical and a quasiclassical
LL@)oyn(q)= 2, Ajelx (@Fiky (9emin® - (11)  eigenfunction under identical conditions
=1 We shall now demonstrate our result for a stadium billiard
where k,=kcosf), k,=ksin(u), while x{(¢) and consisting of two parallel straight segments of length 2

vy~ '(¢) denote the flow at time-t with initial position (x,y) joined on either end by a semicircle of unit radius. For the

and velocity § cose.w sing). For short times, this is given e_valuatlon of the q_uasmlassmal eigenfunctions, we shgll con-
sider a polygonalized enclosure, where each semicircle is

A, /ek cospuj 1(X—v coset) +k sin,uj r(y—uv sinet) (14)
J 1

Where/J,j/: 7T_,LLJ +20| and

Yol Q) = j do Lol @)Un(a) (16

b .
y replaced by 12 straight edges of equal length. In order to
M ) ) ) determine the quasiclassical eigenfunctions, we shall first
Lyl @)on= 21 Ajelkxmvcoseh Hikyly—vsingd) = (12)  eyaluate a smoothened quasiclassical kernel
=
sincen(t)=0. We shall first determine the evolution of a ch(q,q’,t)=f do 6.(g—q'(¢))e imla’ ()

single wave after reflection from one of the segments,
=ax+b,. For the flow,(x '(¢),y (¢)), reflection from

the line segment takes place &= (X—Xo)/(v cose)=(y :En: (@) ¢ (A") An(t) (19

—Yo)/(vsing), where q,Yo) is the point of impact. The

flow at a timet after the reflection is given by as a function of time §. is a smoothened function). This is
X Y @)=x(t)=Xo+v coge—26,)(t—ty), achieved by shooting trajectories from a paiitat various

angles and evaluating the fraction of trajectories in a cell of
y Y(@)=y(t)=yo+v sine—26)(t—to). (13)  sizee [19] at g, weighted by the phase™ ™[4 (¥)] Since
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INTENSITY (a) INTENSITY (b)

FIG. 2. (8 A quasiclassical
eigenfunction peaked along thé
axis and(b) its quantum counter-
part.

A

A
2 \‘\“ Negptins
OGN e

A=27Jy(kwt), for v=1, a Fourier transform of stadium ak=11.05 is shown in Fig. (b). An example of a
Kqc(d,9',t) has peaks at=k, and the heights are propor- quasiclassical eigenfunction &t=4.02 peaked along th¥
tional to ,(q). axis is shown in Fig. @ along with its quantum conterpart

Note that the smoothening of thé function kernel is atk=4.38. The quasiclassical eigenfunction clearly provides
essential for polygonalized billiards and shows up naturallya first approximation of the quantum eigenfunction in both
in an alternate approach involving the trace of the quasiclaszases. Eigenfunctions of other billiards including triangles
sical and semiclassical propagatd?®|. In the present for- have also been obtained. Details of this work will be pub-
malism involving plane waves, smearing of the kernel leaddished elsewhere. In conclusion, we have demonstrated that
to a modified quantization condition for the quasiclassicalthe quasiclassical eigenfunctions determined using arbitrary
eigenfunctions. We shall however ignore these complicationrajectories in a polygonalized chaotic enclosure, approxi-
and merely remark that the parameteis O(1k) [10]. mate the quantum eigenfunctions of the smooth billiard. We

Figure 1a) shows a “bouncing ball” quasiclassical eigen- have also shown that a finite plane wave expansion is an
function intensity|,(q)|? at k=10.97 in the quarter sta- approximate eigenfunction of the quantum and quasiclassical
dium, while the corresponding quantum eigenfunction in theevolution operators under identical conditions.
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