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Estimating topological entropy via a symbolic data compression technique

Yoshito Hiratd and Alistair I. Mees
Centre for Applied Dynamics and Optimization, Department of Mathematics and Statistics, The University of Western Australia,
35 Stirling Highway, Crawley, WA 6009, Australia
(Received 5 June 2002; revised manuscript received 8 November 2002; published 12 Februpry 2003

We estimate topological entropy via symbolic dynamics using a data compression technique called the
context-tree weighting method. Unlike other symbolic dynamical approaches, which often have to choose ad
hoc parameters such as the depth of a tree, the context-tree weighting method is almost parameter-free and
infers the transition structure of the system as well as transition probabilities. Our examples, including a
Markov model, the logistic map, and the it map, demonstrate that the convergence is fast: one obtains the
theoretically correct topological entropy with a relatively short symbolic sequence.
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[. INTRODUCTION tates finding the topological entropy by representing the dy-
namical system in a different way. In Sec. Ill, we approxi-
Topological entropy is an important index for dynamical mate a dynamical system on symbols with a Markov model
systems. It was proposed primarily as an indicator of chaosiusing one of data compression techniques, the context-tree
how complex dynamical systems are. Now topological enweighting method 14,15, and estimate the topological en-
tropy plays a role in characterizing dynamical systems theotropy of the original system by finding that for the Markov
retically. For example, for a continuous map on an intervalmodel. In Sec. IV, we present three examples, namely, a Mar-
positive topological entropy implies the existence of periodickov model, the logistic map, and the i@ map, showing
points with a period not equal to a power of[2], p. 504.  how well we can estimate their topological entropies using

It also works in practical problems. It gives an upper boundhe proposed method. Section V concludes this paper.
for metric entropy([2], p. 194, showing the minimum num-

ber of symbols necessary to encode a point using an infinite
symbolic sequence.

As the definition of topological entropy is not suitable for
practical calculation, several methods have been proposed In this section, we define topological conjugacy. The aim
for estimating it[3-13]. of this section is to explain that if one has a dynamical sys-

Estimating topological entropy is more difficult when one tem topologically conjugate with the original system, we can
wants to approximate it from observed time series becausgnd the topological entropy of the original system by finding
we often ha\{e to choqse ad hoc parameters. When one dogst of the conjugate system.
not have a fitted continuous model, one may find the t0po- There are several possible definitions of topological en-

logical entropy by counting the number of distinct admis- .5y which are all equivalerf1 105—118 We use the
sible substring§3] or counting the number of periodic points def%tion proposed iqn Re[_‘Lrg]. I pp- B

[4,5]. For the first method, one wants to choose the length for Let us assume that there are two dynamical systems

counting distinct symbolic sequences as long as pos&ble_t\%hich behave in the same manner, but in differeaordi-

find a good estimate, although it is not clear what length Shates These two systems are transformed into each other b
reasonable. The second method is likely to fail to detect pe- y y

riodic points, especially for higher periods. atqpological conjuge}cy. Formally, a topological conjugacy is
In this paper, we propose a method for estimating the€finéd in the following way. ,
topological entropy from observed time series using a data -6t M be a metric space andM —M a map on it. We
compression technique. Our assumption is that one only ha!l the pair M,f) a dynamical system.
a finite amount of data and one knows how to encode it into Suppose that there are two dynamical systeMsf{ and
a symbolic sequence using a finite number of symbols. ThéN,g). Leth:M—N be a continuous map. Suppose thas
strength of the proposed method is that we select a Marko@ne-to-one and onto, and its inverse is continuous. Then we
model with states which are variable length substrings of theall h a topological conjugacy and the relatidr(f(x))
past symbols, closer to be the most relevant for the observed g(h(x)) holds for anyxe M. We also say thatMl,f) and
time series in terms of code length. As a set of substringg¢N,g) are topologically conjugate.
conditioning the past is chosen automatically from a given Topological entropy is invariant under topological conju-
symbolic sequence, we do not have aayhocparametersto gacy([1], p. 109.
specify. When two dynamical systems are topologically conjugate,
In Sec. Il, we define topological conjugacy, which facili- one of them may be a symbolic dynamics. We callg) a
symbolic dynamics wheiN is a shift space consisting of
infinite symbolic sequences with a finite number of symbols
*Electronic address: yoshito@maths.uwa.edu.au andg is a shift on it.

Il. TOPOLOGICAL CONJUGACY
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IIl. ESTIMATING TOPOLOGICAL ENTROPY
FROM TIME SERIES

In this section, we describe a method for estimating topo-
logical entropy using a symbolic sequence. We would like to
build a Markov model from a symbolic sequence because
one can easily find topological entropy for a Markov model ~ P(0[0) =05
by finding the largest eigenvalue of its adjacency mdttix. P(1]0) = 0.5
There is some previous work on building Markov models or
graphs for estimating the topological entropy when a map is

context: 0

context: 11

known[8,10,13 or a map is estimated.1]. P(O1) =05
First, we will build a context tree, a tree showing a con- P([11) =05
ditional structure in the symbolic sequence, by following context: 001 context: 101

Willems [15]. At this stage, the context tree does not repre-
sent well which substring appears and which does not. Next
the built context tree is pruned to obtain the best context tree
in terms of code length. This may not be immediately suit- FIG. 1. An example of a context tree.
able for finding topological entropy. Therefore in the third
step, the pruned context tree is changed into a Markov model _ _
by extending the pruned context tree. Then finding the largWe descend the arc 1 starting from the root, showing a sym-
est eigenvalue for the adjacency matrix of the Markov modePo! 1 time unit in the past, followed by descending the arc 0
gives the topological entropy, which we are looking for. (2 time units pagf and the arc @3 time units pagt

In what follows, suppose that we have a topological con- A set of contextsC; gives a _descrlp'uon qf_ conditional
jugacy of an original system into the corresponding symbolicStructure. Wg denote the conditional probability of the next
dynamics, and that we have a finite symbolic sequence gerutcomeX given the current contexC; by P(X|C;). For
erated by an observed time series. We also assume that tR¥a@mple, if the conditional probability at conte; is
0rigina| dynamics is topo|ogica”y transitivé[l], p. 27) P(0|C|):1, the behavior is deterministic for this context:
when we restrict the space to the attractor. Then the topologPne always has O aftet; .
cal conjugacy forces the corresponding symbolic dynamics
to be also topologically transitivg17], p. 205. Therefore, if B. Using a context tree to evaluate topological entropy

we have an aperiodic observed time series of infinite length, In the preceding subsection, we explained a context tree

we can expect to see every admissible substring of finiteq 5 {40 for representing a conditional structure in a sym-

length. bolic sequence. This section shows how to obtain this kind of
context tree from a symbolic sequence. We utilize insights
A. What is a context tree from data compression, specifically universal coding, whose

Our symbolic dynamical modés a context tree. A context €chniques compress data generated from any stationary,

tree shows probabilistic structure conditioned on past subRroPabilistic source asymptotically in the shortest length
strings of a symbolic sequence. It was first used in dynamicaf’ithout using prior knowledge. _
systems in Refd18,19. It has been applied for testing sta- The steps for obtaining a context tree for evaluating topo-
tionarity [19,20 and estimating the entropy rd21]. In this  0gical entropy are as follows. _
paper, we only deal with cases where one needs two sym- (1) Build a context tree in essentially the same way as
bols, although general cases can be also handled similarij/illéms did in his context-tree weighting metht5]. (We
[18—21]. ill outline the method shortly. _ _
Let X be an alphabet, that is, a finite set of distinct sym- (2) Prune the context tree to obtain the best model in
bols, andC; (i=0,1,...|C|—1) be substrings of a sym- terms of the code length. _ _
bolic sequence oX. Assume that a set df;’s satisfies the (3) Convert the pruned context tree into a Markov chain.
suffix condition, meaning that the substring corresponding to In more detail, the steps are as follows.
eachC; is not a suffix ofC; for anyj#i ([22], p. 120. Then
these substrings can be represented as leaves of a tree, rooted
on their last symbols and sharing paths corresponding to Suppose one has a symbolic sequengg,: - -xy of
common suffices(So the most recent symbols are closest tolengthN overX. Let e be a symbol marking the beginning of
the root in such a treeWe call this tree a context tree and the symbolic sequence: we change the original sequence
each of the substrings corresponding to its leavesraext  X(X,- - - Xy, iNt0 €X1X,- - - Xy, Which is a sequence over the
We call the tree Markov if the set d;'s forms a Markov  new alphabeXU/{e}.
chain. For symbolx;, the past subsequencedg X,- - -X;_1 if
We show an example of a context tree in Fig. 1. Its coni>1, ande if i=1. Using all the past subsequences, we
texts are 0, 001, 101, and 11. Descending the tree corrdsuild a context tree as follows.
sponds to going back into the pase., to earlier symbo)s First we initialize the tree to just contain the root with a
For example, to reach the node 001 from the root of the treesingle childe. We record at the child node whether the next

P(0|001) =1  P(0[101) = 0.25
P(1j001)=0  P(1]101) = 0.75

1. Building a context tree from a symbolic sequence
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Xg=0, respectively. We add each past subsequence into the
context tree we are building. At each leaf, we mark the next
symbol, which assigns its counts. Using this marking, we
obtain the counts at each internal node.

2. Batch pruning

The context tree built above is not suitable for estimating
topological entropy, since it does not show which substrings
can appear and which are forbidden. Instead of using the
context tree as it is, we prune it in a way that is optimal in
terms of “code length” by importing a method from data
compression. This step was also discussed in [Ré&].

(a) Two code lengths for each conteMte call a coding
techniqueuniversalif it achieves the shortest length for any
stationary information source asymptotically. There are sev-
eral universal coding$22]. When these methods choose a
model from a class of models, the selected model can be
€ regarded the best in the class for the given data. We use the
FIG. 2. Building an unbounded-depth context tree from a sym-mlmrnum .descr'ptlon Ie.ngtk(MDL)_ principle, Wh.ICh has

een applied for modeling a continuous dynamical system

bolic sequence 011010. We start building it by preparing a tre%) .
containing just a root with a chilé. Then we insert all the past rom observation§23]. In the present work, we use the MDL

subsequences into it. At each leaf, where one findse mark the principle for finding the best symbolic dynamical model, that

next symbol. Using this marking, we find the counts of the next!S: the best context tree.
symbols 0 and 1 for every internal node by going up the tree from e find the best context tree as a subtree of the context

the leaves. Two numbers shown next to each context show, from thige€ built above. At each node we decide whether we keep its
left, the counts for the next symbols 0 and 1 observed after th€hildren or prune them. For this, we define two code lengths
context in the symbolic sequene®11010. at each node: the code length when using only the counts at
that node, and the code length when also using knowledge
symbol x, is 0 or 1. This process corresponds to the casebout its children. If the first code length is shorter than or
wherei=1. equal to the second code length, pruning the children gives a
Suppose that we have built the tree using the subseshorter code length.
quences up t&x;X,---Xj_1 if i>1 ore if i=1. Then we Observe that each node in a context tree corresponds to a
insert the subsequenes;x,- - - X; into the existing tree by unique substring represented by the recent symbols. In what
following the symbolsx;,xj_1, . ..,e backwards in time, follows, we use a substring for showing the corresponding
while descending the tree from the root; we extend the tre@ode.
as required, until the symba has been added. At the leaf  Given a nodey, the code length for the next symb®ls
corresponding to the contexk;X,- - - x;, we record whether given by —log P(s/y), whereP(s|vy) is the conditional prob-
the next symbok; ,; is 0 or 1. After the construction, every ability of the next symbos given nodey [22]. Therefore the
past sequence is represented by a unique leaf. current problem, how to define the two types of code lengths,
The construction we have given here is clearly inefficient,is equivalent to how to decide the conditional probabilities
but it is not hard to encode the same process so that the tréer the two different situations. We prepare the two code
can be constructed in space of order lengths by modifying slightly the method proposed by
The context tree does not at present have the conditionadillems[15]. Throughout this paper, we use 2 for the base of
probabilities seen in Fig. 1. We will allocate these usingthe logarithm.
next-symbol counts. (b) Code length when using just counistst we define a
For any given node, len, andn; be the counts for the code length at node/ using just the counts for the next
next symbols 0 and 1, respectively. The counts at any leafymbols. Suppose that the counts for the symbols 0 and 1
have already been allocated: they are eithes=<1, n;  appearing after a substring area andb. When we do not
=0) or (ng=0, n;=1). The count at any internal node is have any prior knowledge about the next-symbol distribu-
the cumulative sum of the counts of its descendants, whickion, the Krichevsky-Trofimov estimatof14,15 gives a
can be generated by tracing the tree upwards from the leavegood estimate for the conditional probability. Under the
We could immediately define a conditional probability at Krichevsky-Trofimov estimator, we always add 1/2 to the
each node, but for this paper we will be pruning the tree firstcount for each symbol at each node: that is, the count is
which we describe shortly. always 1/2 greater than the number actually observed. Then
An example of the construction we have just described ighe conditional probabilities for the next symbols 0 and 1 are
shown in Fig. 2. The given sequence is 011010. First we addstimated as
e at the beginning of the sequence, obtainé@®j1010. The
past subsequences atee0, €01, €011, €0110, ande01101 a+1/2 b+1/2
for the symbolsx;=0, x,=1, x3=1, x,=0, xs=1, and a+b+1’" a+b+1’

€y
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respectively. The estimator gives an estimate for the condi- 1 1, o o
tional probability even if the counts are both 0. Given the | 5Pe(ay,b))+ 5 PyPyPy if y isinternal,

countsa andb, the Krichevsky-Trofimov estimator gives the w _
code lengths for the next symbols 0 and 1 as Pe(ay,b,) otherwise. "
| a+1/2 | b+1/2 2 ) ) ) ] o )
—log g % (2)  Although it looks slightly different, this definition is equiva-

lent to one in Ref[15]. Let A be an empty substring corre-

respectively. In this way, one can evaluate the code length fg}Ponding to the root of a tree. Using this weighted probabil-
the next symbol given the recent substripgand its next-  ity, we define the coding distributioR.(x;) for a symbolic

symbol countsa andb. sequence; as
We are interested in the “total cost” of coding all the . ot
symbols appearing after the substringin a symbolic se- Pe(x1)=Pu(Xxy]e), %)
quence. Denote by, andb,, the number of symbols 0 and 1 . . .
appearing after a substring in the whole symbolic se- forallx;e{0,1}',t=0,1,.... Thecode length_(x;) for se-
quence. Let quencextl is upper bounded by thiBC(xtl) [14]:
L P L(x}) = ~TogPe(xy) +2. ©
22 v 2/22 L
Pe(a,,b,) 12 .. (. +Db.) In this way, Willems[15] assigned the probability fo, and
LA 3 used it for compressing a symbolic sequence with arithmetic

coding.

We defineP4(0,0)=1 for convenience. Then the code length  Our aim is to find themost likely symbolic mechanism
for describing all the next symbols appearing after congext given a symbolic sequence. Therefore, instead of using arith-
in the symbolic sequence is given bylog Pg(a,b,). This metic coding, we rather focus on th_e code length for the
gives the code length for nodewhen one does not use the sequence and select the best model in terms of code length
knowledge about its children. by finding the context tree which is that subtree of the given

(c) Code length when using knowledge about childrencontext tree which minimizes the code length.
When one uses the knowledge about its children, the code Modifying Eq. (4) slightly gives a code length when cod-
length for each node is defined using more complicated foring using a subtree. Willens.5] proved that
mulae. The point is that now we may be able to encode more
cheaply because there is additional information available.  _ y N . iy

First, we review how the counts at a node and knowledge logPy=1+ mln[ log PE(ay'by)’i 6{20;5,1} oGP
about its children are “merged” in the context-tree weighting (7)
method[15]. ~

At each nodey, a weighted probability?}, is defined as  This suggests that we defift, so that

1+min{ —logP?, >
le

—IogIB{NV] if y isinternal,
{0,¢,1}

—~logPy= 8)

—logP! otherwise.

The first term 1 of ¥ min{—log ngEie{O,e,l}_lc’gﬁm can children. But when we prune the context tree, we have to
be regarded as the cost of describing the topology of the treglecide the priority of the nodes: which node should be tested
or the cost for selecting a certain context tr€€hat is, itis  for pruning first.
the cost of the binary decision “prune” or “do not pruneg.” We choose to prune from the bottom. Specifically, we
Thus the quantity—log P, can be interpreted as the code search the tree depth first, and at each npdee prune the
length for nodey when one uses the knowledge about itschildren ofy if —log pgg—mgﬁvyv, where coding using just
children. By combining the counts WitD the children’s infor- the counts works better than coding using the knowledge
mation in this way, the code lengthlog P}, for nodey using  about the children.
the knowledge about its children is defined.

(d) Pruning by comparing two code lengtlidow we are
ready to describe the pruning. In principle, at each node we
prune its children if coding using just its counts gives the Pruning makes a context tree simpler. However, it may be
shorter code length than coding using the knowledge of itstill hard to use it for purposes such as estimating topological

3. Markovizing
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entropy because sometimes it is not Markov. It has been
stated elsewhere that a tree is Markov if it contains all its
subtrees in itself18]. This is a necessary condition because
every past context contains the recent symbols necessary for
reconstructing the current context. It is also sufficient when
one uses a complete context tree, for which each internal
node has every child.

However, we would like to use an incomplete context (a)A pruned context tree
tree, as illustrated earlier: that is, we do not create children if
they have zero counts. An incomplete tree is smaller than the
corresponding complete tree, but in this case the subtree con-
dition is not sufficient. It is possible that some contexts,
which are required by other contexts to make the tree Mar-
kov, may correspond to leaves of the complete tree which
have been omitted in the incomplete tree because they did
not occur in the original symbolic sequence. We can solve
this situation by inserting these missing future contexts into (b)After step 1
the context tree.

Applying the following algorithm changes the pruned
context tree into a Markov tree.

(1) Construct a context tree containing every prefix of
each context in the pruned context tree.

(2) For each leafC of the tree, assign the conditional
probability of the next symbols 0 and 1 by /(ac+b¢) and
bc/(ac+be), respectively.

(3) End the algorithm if for each context all the admis-
sible next symbols give the corresponding next contexts to
transit among the leaves of the tree.

(4) Extend the context tree so that it contains the missing
contexts. Go back to ste2).

Step (1) ensures that every context has all the possible
immediately proceeding contexts among the leaves of the
context tree. Step&), (3), and(4) ensure that each context
has all the appropriate contexts immediately following
among the leaves of the tree. By checking the Markov prop-
erty for the both time directions, we change the pruned con- FIG. 3. An example of Markovizing a pruned context tree.
text tree into Markov. Edges going down with moving to the Igfhe righ) correspond to

This algorithm will finish within a finite time because we symbol 0(1).
add 2 nodes at most, whei is the maximum depth of the
pruned tree. Typically, most trees we worked were Mark- C. Finding topological entropy for a Markov model
ovized after steft1), and around 20 loops of steg)—(4) After obtaining a Markov model, one can easily find its
were enough for_ every tree we tested. We show an e)_(ampll%pological entropy. For statésj of a Markov model, leP;,
of the algorithm in Fig. 3. Let us suppose that we obtained g 5 conditional probability that given the current siatiae

context tree given in Fig. (&). Assume that at each node ey state i§. Then we define an adjacency matfixor the
there can appear both 0 and 1 as the next symbols. First W84 rkov model in the following way:

add nodes 0101 and 1101 so that we have all the prefixes for
nodes 01011 and 11011 in the context tree. Then, we obtain 1 if P;>0,
the tree shown in Fig. (8). But node 00 does not have a
destination when the next symbol is 1. Therefore we add a
node 001 into the tregFig. 3(c)]. However, the node 001

does not have a destination when the next symbol is 1yg1ye it can be shown thatis always positive, and that the
Hence we insert a node 001Fig. A(d)], completing the topological entropy of this Markov model is given by leg
Markovization. ([17], p. 120.

For each context, we define the conditional probability
of the next symbols 0 and 1 simply B¢ /(ac+bc) and
bc/(ac+be), respectively.

Now we have a Markov chain on the contexts, helping In short, we construct a context tree for estimating topo-
find the topological entropy. logical entropy by building a big context tree by following

(c)After the first time of Step 4

(d)After the second time of Step 4

(€)

T, = .
" |0 otherwise.

Let « be an eigenvalue oT with the largest absolute

D. Summary
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Willems [15], pruning it to have the best context tree in
terms of code length, and Markovizing it by extending the o/ \1
pruned context tree.

The leaves of the Markovized context tree form a Markov
chain. Finding the largest eigenvalue of the adjacency matrix
of the Markov chain and taking its logarithm gives an esti- @
mate for the topological entropy.

P(0)=0

IV. EXAMPLES P(eh=0 PO=0¢/\v  PO)=0 ,
In Sec. lll, we explained how to estimate the topological ! ! 1
entropy using the context-tree weighting method. To show P(1)=0 P(1)=0
the efficacy of the proposed method, we present in this sec (©) ) (@
tion some examples: a Markov model, the logistic map, and o .
the Hanon map. FIG. 4. Classification of Markovized pruned context trees ob-

tained from different symbolic sequences in the numerical experi-
ments for the Markov model. At each context of the context trees,
we show symbols which do not appear using probabilities if some
of them exist. Treega), (b), and(c), which appeared dominantly,

In the following examples, we compare our method withachieved the correct topological entropy, 0.6942. Tabewith the
previous work: counting the number of the distinct admis-topological entropy 0, appeared when the symbolic sequences were
sible substrings of finite lengtH8]. periodic. Treege), (f), (g), and (h) have 0.4057, 0.5972, 0.5514,

We briefly summarize the method described in R8. 0.5514 as their topological entropy, respectively. See Table | for the
Let N(n) be the number of admissible substrings with length™UmMPers of occurrences for each tree.

n. Then an estimatdé(n) of the topological entropy for

A. Another method for estimating topological entropy
from time series

lengthn is given by correspondence between a poinf@1] and an infinite sym-
bolic sequence to make the symbolization a topological con-
h(n)=logN(n)—logN(n—1). (100  jugacy.

This map is equivalent to a Markov chain with two states
However, it was reportef3] that this estimate would oscil- 0 and 1 such that 4 P(0|0)=P(1/0)=1 and 1-P(0|1)
late. To overcome this, we averaged the estimates for severalP(1|1)=1—a. Therefore, we obtain the topological en-
lengths and obtained another estimE(e): tropy by finding the maximum eigenvalue of the following
adjacency matrix:

n mi=m+1
1 1)

N(n)
E h(i)=-——ogy~—~. (1) 0 1
N(m) [ (13

wherem=|n/2]. It can be easily shown thét(n) converges
to the topological entropy. Finding its maximum eigenvalue and taking the logarithm,
One wants to choose the substring lengibng to obtain  we have 0.6942 as the theoretical topological entropy of this
a good estimate. But has to be short enough so that one cansystem. It should be remarked that this Markov model does
observe all the possible admissible substrings of lemgth not produce a substring 00, which is forbidden.
But there is no prescription for choosimg Therefore, given
the lengthl of a symbolic sequence, we choseto be TABLE I. The numbers of Markovized pruned context trees
|logl/log|X|| arbitrarily and estimatedN(n) and N(m) by  observed in the numerical simulation of a Markov model. Tree
counting substrings appearing in a given symbolic sequencéypes from(a) to (h) correspond to ones shown in Fig. 4. Tréas
(b), and(c) achieved the correct topological entropy. Tkek cor-
B. Markov model responds to the periodic cases. We see that from any aperiodic

symbolic sequences of length more than 150, we obtained the cor-
For the first example, we try to find the topological en- rect topological entropy.

tropy of the following map of 0,1] into itself:

1 Tree type
—a)(x;—a

(1-a) ; T 0 xel0a) Lengh @ (G © @ @ O @ O
1=y . (12 50 86 6 2 2 0 1 1 1
t i x e[a1]. 100 93 3 0 2 1 0 0 0
a—1 150 97 0 0 2 0 0 0 0
200 94 3 0 2 0 0 0 0
Here we takea=0.7. 250 97 0 0 2 0 0 0 0
It is known that when we dividg0,1] at the critical point 300 96 1 0 2 0 0 0 0

a into two intervals[0,a2) and[a,1], we have one-to-one
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TABLE Il. Maximum, minimum, mean, and standard deviation 0.02
of the topological entropy estimated from 97 aperiodic symbolic 0.018 |
sequences using the proposed method, the Markov model. 0.016

0.014

Length Maximum Minimum Mean Standard deviation

50 0.6942 0.5514 0.6913 0.0203
100 0.6942 0.4057 0.6912 0.0291
150 0.6942 0.6942 0.6942 0.0000
200 0.6942 0.6942 0.6942 0.0000
250 0.6942 0.6942 0.6942 0.0000
300 0.6942 0.6942 0.6942 0.0000

0
0 01 02 03 04 05 06 07 08 09 1
X

In the following way, we generated a set of symbolic se- k|G, 5. A measure observed from the logistic map. We gener-
quences of lengtm. We first prepared 99 initial points ated 1 001000 points from an initial point 0.1. After throwing away
0.01,0.02. .., and0.99. For each initial point, we applied the first 1000 points, we spli0,1] into 1000 bins of the equal size
the map, generatingn(+1000) points. Abandoning the first and built the histogram using the remaining 1 000 000 points.
1000 points, we converted the rest into a symbolic sequence
of 0 and 1 using the partition mentioned above. We observed Lastly, we compare the performance of the proposed
that sequences obtained from 0.7 and 0.79 were of period 3nethod with that of Ref[3]. The estimates obtained using

We tested the proposed method with symbolic sequenceRef.[3] are listed in Table Ill. The values 0 for the standard
of lengths 50, 100, 150, 200, 250, and 300. We focused odeviations showed that our selectionroind m was appro-
their topological structures and classified them depending opriate. The estimates occurred widely. The comparison of the
the varieties of included contexts, and their possible transiestimates using the proposed method with those obtained
tions. The classification was shown in Fig. 4. Table | showsusing Ref[3] shows that the proposed method works effec-
the numbers of context trees which appeared using the testegely.
symbolic sequences. The estimates for each length are sum- If the system is Markov, the proposed method seems to
marized in Table II. provide the theoretically correct topological entropy, given

When the sequences were periodic, we obtained a contexhly a short aperiodic symbolic sequence.
tree shown in Fig. @) with the topological entropy 0 for
every length investigated here.

For the lengthsr= 150, 200, 250, and 300, all the tested ) i o
aperiodic sequences achieved the correct topological entropy 'he previous example is a Markov model, which is ex-
0.6942. The numbers of tested aperiodic sequences nB(essed exactly using acontext_trge of finite depth. Howe\(er,
achieving the correct topological entropy were three forln general, a context tree of a finite depth may not describe
length 50, and one for length 100. Clearly longer symbolicthe original dynamics complet_ely as one may need an infinite
sequences improve the chance of obtaining the correct top&lePth. The next map, the logistic map, illustrates this.
logical entropy. The logistic map is defined as

We found, in this numerical experiment, three types of
trees achieving the correct topological entropy as shown in
F'g'.4' Although the_s_e three mo_dels look different, they " Here we only focus on the parameter 3.7, which is the
equivalent to the original model in the sense that they forbid .

. . same as one used in REB].
a substring 00. Hence we say that we selectaxpalogically

o . We calculated the theoretical value of the topological en-
correct model from the aperiodic sequences even with Iengtpropy under this parameter using REB). Utilizing the first
150. o

20 symbols of the kneading sequence, we found that the
topological entropy is 0.550 701, which is within 10of the
correct value.

Shown in Fig. 5 is a measure exhibited under the param-
eterr=3.7. As the orbit looks dense in the invariant set, or
the interval approximately equal {0.2567,0.9250 the dy-
namics seems topologically transitive on the invariant set.

C. Logistic map

Xe41=X(1—=X). (14

TABLE Ill. Maximum, minimum, mean, and standard deviation
of the topological entropy estimated from 97 aperiodic symbolic
sequences using Rdf3], the Markov model.

Length Maximum Minimum Mean  Standard deviation

50 0.5283 0.5283  0.5283 0 We took a partition consisting ¢f0,0.5) and 0.5,1] to di-

100 0.6160 0.6160  0.6160 0 vide the invariant set, assigning symbols 0 and 1, respec-
150 0.5946 0.5946 0.5946 0 tively.

200 0.5946 0.5946  0.5946 0 We tested the efficacy of the proposed method using the
250 0.5946 0.5946 0.5946 0 logistic map withr=3.7. Suppose that one wants to have
300 0.5111 0.5111 0.5111 0 symbolic sequences of length We first had initial points

0.01,0.02. .., and0.99, mapping them (1066n) times,
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TABLE IV. Maximum, minimum, mean, and standard deviation TABLE V. Maximum, minimum, mean, and standard deviation
of the topological entropy estimated from 99 symbolic sequencesf the numbers of contexts of context trees obtained from symbolic

using the proposed method, the logistic map. sequences, the logistic map.

Length Maximum Minimum Mean Standard deviation Length Maximum Minimum  Mean  Standard deviation
100 0.6942 0.4205 0.5772 6.9970 2 100 15 2 5.2323 2.2894

200 0.5973 0.4856  0.5494 1.0810 2 200 21 4 7.1313 1.9041

1000 0.5515 0.5365  0.5512 2.1470 3 1000 22 6 8.3636 2.5252
10000 0.5515 0.5501  0.5511 3.40860 4 10000 135 8 51.8586 22.7699

100 000 0.5507 0.5502  0.5507 7.2460 ° 100 000 219 118 153.6667 24.1433
1000000 0.5507 0.5507 0.5507 3.3860° ¢ 1000000 505 310 411.4141 38.9885

respectively. For each initial point, we threw away the first®nt time series, it may be possible to obtain an upper bound
1000 points, changing the remainingoints into a symbolic  for the topological entropy.

sequence of 0 and 1 using a partition contairfi@.5) and The fourth observation is that the numbers of contexts
[0.5,1] as mentioned above. We observed that none of th&/€re relatively small. The numbers of contexts were listed in
symbolic sequences were periodic. Table V. Even with symbolic sequences of length 1 000 000,

We list in Table IV the maximum. the minimum. the the maximum number of the contexts was 505. We postpone
mean, and the standard deviation of our estimated topologiSCussing the number of contexts until the next example, as
cal entropy for each length. We also show in Fig. 6 the his\We d0 not have the previous works to compare.
tograms of the estimated topological entropy for each length, . 1he fifth observation is that the convergence was fast. See

We have several interesting observations. The first obsefliStograms shown in Fig. 6. For length 1000, we found a
vation is that the estimated topological entropy approached™ond peak at a point slightly bigger than the theoretically
the theoretical value of the topological entropy when theCOTect value. But we also had a small peak at 0.5365, which
length of symbolic sequence got longer. But the convergencB12de the standard deviation big. When we changed the
was not monotonic. Figure 7 shows how the topological enl€ngth to 10000, 100000, and 1000000, we saw that the
tropy estimated from a sequence changed according to tH¥ak Of the estimated topological entropy became sharp at
increase of the length. Although it approached the theoretical-2°07, the theoretical value. , _
value, the error sometimes got bigger than that of the previ- W& compare the convergence of the estimates obtained
ous values. using _the proposed method with that qf R[e‘], which were

The second observation is that the estimated topologica“Sted in Table VI. As the standaro_l deviations were s_mall, we
entropy was sometimes overestimated, sometimes underesgSSert that the lengths of substrings were appropriate. Now
mated. For each length we tested, the maximum was alway¥€ can check the validity of the lengths of substrings be-
over the theoretical value. cause there are several symbolic sequences for each length.

The third observation is that the mean value tended to bEUt We remark that when there is only a symbolic sequence,
more than the theoretical value. It means that we tend t¥/& do not have any way to check the validity of the lengths
overestimate the topological entropy. If one has some differof Substrings when using Reff3]. The convergence of both

the methods are compared in Fig. 8. The estimates obtained

100 len_gth 1,000 100 length 10,000 0.7

8 8

280 £80 2 I

3 5] o'0.68

2.60 2.60 =1

o] o *E
o 40 40 T 0.66 |

S] S] —

520 520
2 2 ] %')o 0.64

0.53 054 055 056 0.53 054 055 0.56 = 0.62
topological entropy topological entropy o V.04

100, length 100,000 100 length 1,000,000 &

¢80 <80

: B

2.60 260

& &
o, 40 40

o o

520 520

) = 0.54 . .
- (?53 0.54 0.55 0.56 - (?53 0.54 0.55 0.56 50 100 150 200

"topological entropy "“topological entropy length of symbolic sequence

FIG. 6. Histograms of the estimated topological entropy using FIG. 7. Change of the estimated topological entropy along the
symbolic sequences of lengths 10@6p left), 10 000(top right), length of a symbolic sequence generated from an initial point 0.1,
100 000 (bottom lef), and 1 000 000(bottom righ}, the logistic  the logistic map. Observe that the estimated topological entropy did
map. not converge to the theoretical value monotonically.
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TABLE VI. Maximum, minimum, mean, and standard deviation 0.65
of the topological entropy estimated from 99 symbolic sequences B
using Ref.[3], the logistic map. %0-58‘

[ K

Length Maximum Minimum Mean Standard deviation ,‘2?0‘56 /\
100 0.5283 0.4595 0.5221 1.9880 ? 20.54 ‘ \/
200 0.5504  0.5344 0.5480  5.7780 2 2 s 5
1000 0.5615 0.5615  0.5615 0 g
10000 0.5581 0.5581  0.5581 0 E 0.5/
100 000 0.5541 0.5541  0.5541 0 8 )
1000000  0.5498 0.5498  0.5498 0 0.48 1000 10000 100000 1000000

length of symbolic sequences

using Ref[3] varied greatly, although those of the proposed _FIG. 8. The comparison in convergence of the estim_atgs ob-
method got closer to the theoretical value. Judging from thd@ined from symbolic sequences generated from the logistic map

convergence, the proposed method is better than the meth{?&tween the proposed method and a method in [8¢fThe dotted
ines show, from the top, the maximum, the mean, and the mini-

énum of the estimates obtained using the proposed method. The
Solid lines show, from the top, the maximum, the mean, and the
‘minimum of the estimates obtained using R&f. The broken line

We also discuss the convergence quantitatively. Th
change of standard deviation with length is shown in Fig. 9

Linear fitting to a log-log plot gave the slope 0.9597, shows the theoretical value obtained using Réf. This graph

which is cIo_se to 1. . indicates that the proposed method converges to the theoretical
To examine how fast the convergence was from a differyq e faster than that in Ref].

ent viewpoint, we compared the standard deviation of the
estimated topological entropy with that of the metric entropy._ 0.5334
Let P, be the stationary distribution for contextThen the : '
metric entropy of a Markov model is given by

It showed that the topological entropy converged
faster than the metric entropy. This is quite natural because,
although the topological entropy can be obtained by finding
only a structure that forbids appropriate substrings, for the
2 —P,P;;logP;; . (15) metric entropy one must Qs_timate not (_)r_1ly the topological
] structure but also the conditional probability of the next out-

come. Figure 9 provides support for the fact that topological
We estimatedP; using the sum of the counts on contéxt entropy is often preferred to metric entropy for analyzing
divided by the sum of all the counts on all the contexts.  observed time series.

Table VII shows the maximum, the minimum, the mean, This example of the logistic map shows that we can use
and the standard deviation of the estimated metric entropyhe proposed method for systems whose corresponding sym-
The mean of the estimates for the length 1 000 000 agreeinigolic sequences are not Markov chains with a finite number
with the Lyapunov exponent suggests that Pesin’s identityf states.
([2], p. 198 holds.

The standard deviations of the topological entropy ob-
tained from various lengths of symbolic sequences are com- . . ]
pared with those of the metric entropy in Fig. 9. Linear fit-  The previous two examples are one-dimensional maps.
ting in the log-log plot gave the slope for the metric entropyBut our method is not restricted to one-dimensional maps if

we have a well defined partition which changes a time series

TABLE VII. Maximum, minimum, mean, and standard devia- in'go a symbolic sequence. Here we present an analysis of the
tion of the metric entropy estimated from symbolic sequences off€non map.
lengths 100, 200, 1000, 10 000, 100 000, and 1 000 000, the logistic The Hewon map is defined as
map. The Lyapunov exponent is 0.5120.0001(obtained by iter- 2

Xt+1) (1_3)(1 +by;

D. Héenon map

ating 10 000 000 times for each initial point and averaging over 999 _
initial points), which agrees with the mean estimate obtained with
symbolic sequences of length 1 000 000.

Yi+1 Xt

We used a set of standard parametersl.4 andb=0.3.

Length Maximum Minimum Mean Standard deviation . p

The topological entropy for the Hen map under these
100 0.6666 0.3258  0.524 8.18102 parameters has been estimated using different techniques. Bi-
200 0.5748 0.3663  0.5077 3.4830°? ham and Wenze[5] estimated 0.67080.0003(in base 2
1000 0.5493 0.4847  0.5221 1.1080 2 using the numbers of periodic points. D’Alessandioal.
10 000 0.5333 0.5044 0.5185 6.1470 3 [8], using a graph, gave an estimate, which is, according to
100 000 0.5157 0.5093 05127 1.2430°3 Ref.[13], close to 0.4651 in the natural base (0.6710 in base
1000 000 0.5131 05109 05121 4.0090 4 2). Jacobset al. [12] estimated 0.464 980.00003 in the

natural base, 0.670 7#50.000 04 in base 2, using tls¢retch-
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TABLE VIII. Comparison of the numbers of periodic points for 101!
the Henon map between the proposed method and the theoretical .
one found in Auerbaclet al. [4] and Biham and Wenzg¢b]. For s +
. . I 10721 » N
each length, we used a symbolic sequence generated using an initial & . e
point (0.1,0.1). ;g . .
"1;)10—3 o,
Length o . *
Period 1000 10000 100000 1000000 Theoretical :%10_4 ‘ * .
1 1 1 1 1 1 T% .
2 3 3 3 3 3 %105 .
3 1 1 1 1 1
4 7 7 7 7 4 10-6 . . .
5 1 1 1 1 1 102 10° 104 ) 10° 108
6 21 15 15 15 15 length of symbolic sequences
7 29 29 29 29 29 FIG. 9. The standard deviations of the estimated topological
8 63 63 63 63 63 entropy (*) and that of the metric entropy+(), the logistic map.
9 73 64 55 55 55 We obtained both the values for symbolic sequences of lengths
10 123 103 103 103 103 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200 000,
11 155 155 155 155 155 500000, and 1 000000 except for that of the topological entropy
12 289 247 247 247 247 for length 2000, where all its sequences happened to give the same
13 443 443 417 417 417 estimates. Linear fitting gave the slopes in the log-log plot
14 787 675 647 647 647 —0.9597 for the_ topological entropy, anel0.5334 for the metric
15 1231 1141 1081 1081 1081  ©ntropy, respectively.
16 2079 1743 1711 1695 1695 points, we converted the remainimgpoints into symbols of
17 3180 2891 2806 2823 2823 0 and 1 using the partition found in RéfL.3].
18 5151 4416 4245 4263 4263 First, we compared the numbers of periodic points for
19 8057 7183 6936 6917 6917 showing how well the models are estimated using the
20 13167 11287 10827 10807 10807  context-tree weighting method. Here a periodic point with a
21 20987 18509 17564 17564 17543  periodp means a poink satisfyingfP(x) =x for mapf. This
22 34235 28955 27151 27107 27107 x may be a periodic point with period gi's factor. For a
23 54764 46668 44322 44368 44391  Markov model with its adjacency matri&, the number of
24 88521 73863 69903 69927 69951 periodic points with periodp is given by the trace ofAP
25 141351 118701 112426 112476 112451  ([17], p. 38.
26 227555 188321 177349 177349 177375 We used four symbolic sequences for lengths 1000,
27 364303 301438 284203 284041 284041 10000, 100000, and 1000000 generated from an initial
28 586775 480375 449967 449463 449519 point (0.1,0.1) and found the numbers of periodic points

using each of them. The numbers of periodic points esti-
mated for each length are listed in Table VIII. For compari-
ing factor. The lower bound is given in Reff9] as 0.67Q(in son, we also list, in the same table, the numbers of periodic
base 2. The upper bound is given in RdflL3] as 0.4687in points obtained by Auerbacét al. [4] for periods up to 10,
the natural basewhich is equivalent to 0.6762 in base 2. and Biham and Wenz¢b] for periods from 11 to 28, which

There is a proposed method for constructing a generatingave been confirmed in Rdf7]. Table VIII suggests that if
partition of the Heon map by connecting therimary tan-  we have a longer time series, the estimated number of peri-
gencies[24]. One can find points to connect in R¢1.3]. odic points becomes closer to the true number. In particular,
Assuming that this partition is also a topological conjugacywhen we used a symbolic sequence of length 1 000 000, we
we employed this partition to obtain, from a time series, acounted the number of periodic points up to period 20 cor-
symbolic sequence. rectly, up to period 27 within error of an orbit.

We tested our method for symbolic sequences of lengths ) . L
1000, 10000, 100000, and 1000 000. For each length, we TABLE IX. _MaX|mum, m|n|_mum, mean, and sta_ndard deviation
tried to prepare 121 time series of initial pointso(yo) af,the topological entropy estimated from symbolic sequences, the
=(0.1u,0.1v) for u,v=0,1,...,10. However, it turned out enon map.
that initial points (0,1) and (1,1) were not appropriate be-

| ength Maximum Minimum Mean Standard deviation
cause they escaped from the attractor. Therefore, we only
used time series of the remaining initial points. 1000 0.7208 0.6373  0.6866 1.42400 2
We generated each symbolic sequence in the followingo 000 0.6794 0.6689  0.6753 2.24%0°3
way: Suppose that one wants to generate a symbolic s&00 000 0.6711 0.6700 0.6707 1.8700*

guence of lengtin. From each initial point, we applied the 1000000 0.6708 0.6706  0.6707 3.5620° >
map (1006-n) times. After abandoning the first 1000
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FIG. 10. Histograms of the estimated topological entropy using FIG. 12. The standard dev_iation of the estimated topological
symbolic sequences of lengths 10a6p leff), 10 000(top righy, ~ €Ntropy (*) and that of the metric entropy-(, the Henon map. We

100 000 (bottom lefy, and 1000 000(bottom righy, the Hewon  ©Obtained both the values for symbolic sequences of lengths 1000,
map. 2000, 5000, 10000, 20 000, 50 000, 100 000, 200 000, 500 000, and

1000000. Linear fitting gave the slopes in the log-log plot
—0.8893 for the topological entropy, an€0.5472 for the metric

. . ., ..__entropy, respectively.
It shows that modeling using the context-tree weighting P resp y

method may be used to give an initial rough guess for the
numbers of periodic points of unknown systems. agreeing with the theoretical value. Length 10000 was

We list the maximum, the minimum, the mean, and the .
enough to have at least a two-digit accuracy.

standard deviation of the topological entropy estimated from The mean of the estimates was alwavs more than the the-
symbolic sequences of each length in Table IX. 8retical value, as we found with the Iogiystic map
The estimated topological entropy seems to converge t Now we would like to discuss the speed of the conver-

the values proposed by the previous works. In particular, all ence. Histograms in Fig. 10, showed the speed of the con-

the values obtained using symbolic sequences of lengtf -
g sy g 9 vergence more clearly than the case of the logistic map. For

1000000 were within an estimate of the interval 0.6708 ; -

+0.0003 suggested in Réb], and the mean of the estimates Lsiré%tlg 1@\?& tt?\i iztsjr:fﬁdt;%pﬁ:gagg gg;rlf %a\;vaGs WL‘ZT
was within the interval 0.670 750.000 04 suggested in Ref. makiné the length longer, we observed that the péak Was
[12]. These show that, given a time series of sufficient etting sharper. For Iengtr’1 1000000 we had 94 out of 119
length, the proposed method gives the topological entmpgstimates at a éingle bin with the Wid’thl‘b

Next we evaluated the speed of the convergence quantita-

. 0.8 . tively. We plotted changes of the standard deviation accord-
§ : ing to the length of symbolic sequences in Fig. 12. Linear
‘50'75“* fitting gave the slope in log-log plot-0.8893. Using the

5 .. ® values from length 10000 to length 500 000, we found the
@ 0.77 - slope —0.9802.

g We do not have evidence enough to say anything on the
50-6 i value of the slope. It may be alwaysl or it may depend on

2 the number of symbols. The value of the slope here is an
5 0.67 open problem.

3 To show the efficacy more clearly, we used also Ref.

0.5 1600 5600 T80 for estimating topological entropy.

1000000

length of symbolic sequences
TABLE X. Maximum, minimum, mean, and standard deviation
FIG. 11. The comparison in convergence of the estimates obof the topological entropy estimated from symbolic sequences using
tained from symbolic sequences generated from theoHemap  Ref.[3], the Heon map.
between the proposed method and a method in [B&fThe dotted

lines show, from the top, the maximum, the mean, and the mini{ ength Maximum Minimum Mean Standard deviation
mum of the estimates obtained using the proposed method. The

solid lines show, from the top, the maximum, the mean, and thel000 0.6710 0.6531 0.6680  3.7940°
minimum of the estimates obtained using H&f. The broken line 10000 0.6786 0.6753 0.6773 6.5670 ¢
shows the theoretical value obtained using RHéf. This graph 100 000 0.6753 0.6749 0.6752 9.3940 °
indicates that the proposed method converges to the theoreticalp00 000 0.6757 0.6756 0.6757 6.3010°°

value faster than that in Rdf3].
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TABLE XI. Maximum, minimum, mean, and standard deviation TABLE Xll. Maximum, minimum, mean, and standard devia-
of the metric entropy estimated from symbolic sequences of lengthSon of the numbers of contexts of context trees obtained from sym-
1000, 10000, 100000, and 1 000 000, thenbte map. The mean bolic sequences using the proposed method, theokienap.
value obtained for length 1 000 000 is close to 0.66880002, the

Lyapunov exponent obtained by Grassberger and Kgmy, im- Length Maximum Minimum Mean Standard deviation
plying that Pesin’s identity[2], p. 198 holds under the standard
parameter set. 1000 86 18 375 9.6
10000 238 72 115.3 35.2
Length Maximum Minimum Mean Standard deviation 100000 852 440 613.31 73.36
1000 000 2348 1613 1888.8 127.8
1000 0.6817 0.5681 0.6339 2.0490°?
10000 0.6388 0.6022  0.6218 7.4330°°
100000 0.6134 0.6043  0.6084 2.0980 2
1000 000 0.6067 0.6038  0.6054 5.4580 4 However, the size of the tree may be slightly bigger than

is found using Markov models, where the map is assumed to
be known and one can generate desired orbits. For the same
parameter set of the en map, D’Alessandret al. [8]

The result when using Reff3] is summarized in Table X. have 676 nodes as the maximum. Froylatdl. [13] have
In this case, the lengths of substrings were slightly long. 1f1162 nodes as the maximum. There is a trade-off between
the lengths of substrings were correctly chosen, we shoulthe accuracy and the size of the graph. Unfortunately, the
have seen all the possible admissible substrings in a synprevious works did not mention any accuracy, so we cannot
bolic sequence and obtained the same numbers of substrinfigther compare our method with the previous works. If the
for each symbolic sequence, that should have made the stapartition given in Ref[13] is a topological conjugacy, we
dard deviations 0. The convergence of the estimates arassert that 0.670 720.000 04, which is obtained with 119
compared in Fig. 11. The figure shows that the estimatesymbolic sequences of length 1 000000 shown in Table IX,
obtained by the proposed method converged to the literaturis one of the most precise estimates of the topological
value faster than that in Reff3]. The comparison suggests entropy of the Haon map under the set of the standard
that the proposed method gives the better estimates at mgsarameters.
times.

The metric entropy was estimated as shown in Table XI.
The mean value obtained for length 1 000000 is close to V. CONCLUSION

0.6048, the Lyapunov exponent obtained in R24]. There- oo .
fore, Pesin’s identity seems to hold under the standard pa- We have proposed a method for estimating the topological

rameter set. We compare the standard deviation of the esttla_ntropy given a time series of a finite length and its good

mated topological entropy with that of the estimated metricpart'.t'on.' One can apply the.r.nethod wheq the or[glngl dy-
e ) e namics is topologically transitive and the time series is not
entropy in Fig. 12. Linear fitting in the log-log plot gave the

slope for the metric entropy: 0.5472. Hence, we also saw in periodic. After converting the time series into a symbolic

the Henon map that the topological entropy converged fastef - duence, the' rrr:gthod imgf)f a te%hrrl'qug callgd the

than the metric entropy context-tree weighting met dd 4,15 to mode its dynamics
The numbers of coﬁtexts were listed in Table XII. Still and find the most reasonable Markov model in the sense of

these numbers were reasonably small enough to handle. Fg?de length. By constructing the corresponding adjacency

. . atrix and finding its maximum eigenvalue, one obtains an
example, it took 10.5 sec using the same computer and .. . )
. ; . . estimate of the topological entropy. The biggest advantage of
MATLAB to find the maximum eigenvalue of the adjacency

matrix of 1903< 1903 for obtaining the topological entropy gtjerr;n ?’m?ghlzf?;t ggseg??: Q&te?a:;llzt:]%ézdmocparam-

geln%gggggggggs data generated from (0.1,0.1), which was We demonstrated the performance of the proposed
The proposed .al orithm did not take much time to con-memOd with a Markov model, the logistic map, and the
prop 9 Henon map. In these models, whether they are Markov or

igllja\(t:;S g(r)]n;e)éto:;eit;hsvi;?dg;dv eArl\(illgv- n}géegSHg%chalén q not, we found that one can achieve the theoretical value if
P the time series is sufficiently long. When we have several

384 M bytes memory. We used 10000 and 1 000 000 point : :
: ymbolic sequences, the mean of the estimates tends to con-
data generated from (0.1,0.1) for the evaluation. For 10 00 erge to the correct value from above. The convergence of

points data, we had a context tree with 115 contexts and thﬁ]e estimated topological entropy is fast: in our examples, its

maximum depth 14. To obtain the context tree for evaluatln(‘:Etandard deviation almost varied inversely as the length of

topo_loglcal entropy took 0.94 Sec. It too_k 0.09 sec for IVlark'symbolic sequences and its decay rate was nearly twice that
ovizing the tree, where the algorithm did not enter the IoopOf the estimated metric entropy

of steps(2)—(4). For 1000000 points data, we obtained a
context tree with 1903 contexts and maximum depth 36. It
took 2 min 18 sec for obtaining the context tree for evaluat-
ing topological entropy, and 15 sec for Markovizing the tree,
doing the loop once. We thank Devin Kilminster for checking the draft.
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