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Exceptional points and double poles of thes matrix
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Exceptional points and double poles of tBenatrix are both characterized by the coalescence of a pair of
eigenvalues. In the first case, the coalescence causes a defect of the Hilbert space. In the second case, this is not
so as shown in previous papers. Mathematically, the reason for this difference is the biorthogonality of the
eigenfunctions of a non-Hermitian operator that is ignored in the first case. The consequences for the topo-
logical structure of the Hilbert space are studied and compared with existing experimental data.
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. INTRODUCTION ded[9]. Second, the propert§,(Agp) = E(Agp) is charac-
teristic of a double pole of the& matrix. Here, &=E,

Information on the topological structure of the Hilbert —i/2r", is the complex energy of the resonance skatgth
space can be obtained from a study of its singularities. BerngnergyE, and widthI',. The S matrix describes physical
[1] showed that geometric phases appear when a diaboligrocesses, and no hints at all to defects of the Hilbert space
point is surrounded by varying adiabatically external paramare known at a double pole. For numerical examples, see the
eters of a quantum system. Manifestations of this phase fagesults of calculations performed in a schematical mptie]
tor have been considered and proven experimentally alreaddhd for atomg11,17.
in 1980s in many different fields of physics, e.g., Réf. In Theoretical studies have shown that the topological struc-
1994, it has been studied also by using microwave resonaure of avoided level crossings is directly related to the to-
tors: the sign change of the wave function has been foungological structure of double poles of ti&matrix being
after a cyclic excursion around a diabolic point in the spaceyranch points in the complex plafi#3]. The transition from
of shapes of the resonatfs]. a double pole of th& matrix to an avoided level crossing by

Other singularities are exceptional poirit, which ap-  varying a parameter occurs continuously. The avoided level
pear in the complex plane of the eigenvalueg(A) of the  crossings are directly related to the diabolic pojris Thus,
HamiltonianH =H,+ AH;. Their positions are characteris- the topological structure of a double pole of enatrix and
tic of the HamiltonianH, onceH, andH, are given[5-7]  that of a diabolic point are related to one another.

(which both are assumed to be real and symmetiitie The problem is now the following. The double pole of the
exceptional points are characterized by the coalescence ofSmatrix and the exceptional point are both characterized by
pair of eigenvalues, i.e§(Agp) =E(Agp). When the corre-  the coalescence of two eigenvalues of a non-Hermitian
sponding eigenfunctions are assumed to be orthogonalized igamilton operator at a certain value of a parameter. Never-
the standard manner, it follows théf( Agp) = Y« (Agp). This  theless, their topological structures are different: according to
means, thai/,(Agp) cannot be normalized &t=Agp, since  Ref. [8], the topological structure of an exceptional point
the orthogonality conflicts with the normalization require- differs from that of a diabolic point, while the topological
ment. As a consequence, an exceptional point is charactestructure of the double pole is related to that of the diabolic
ized by the fact that the rank of the associated mattix point, as discussed abojE3]. The question arises, therefore,
+ AgpH4 drops by 1 atA = Agp and the two wave functions what differences exist between the exceptional points and the
coalesce into one. This implies a defect of the underlyingdouble poles of th& matrix, which could cause their differ-
Hilbert spacd4]. ent topological structures.

In Ref.[8], the topological structure of exceptional points  In order to find an answer to this question, the Sehro
is studied experimentally by using a microwave resonatordinger equation has to be solved in the whole function space
The exceptional point is surrounded by varying adiabaticallycontaining everything, i.e., discrete and continuous states. By
external parameters of the system. As a result, the eigenvalising a projection operator technique, an effective Hamil-
ues and eigenvectors are exchanged while encircling an exenian can be derived from this Schiinger equation which
ceptional point, but one of the eigenvectors undergoes a sigihescribes the systenQ( subspaceafter embedding it into
change which can be discerned in the field patterns. Frorthe continuum of decay channelB éubspack[9]. Its eigen-
these results, the authors draw the conclusion that the excepalues and eigenfunctions are complex. The eigenvalues co-
tional points can clearly be distinguished from other topo-incide with the poles of th& matrix. The eigenfunctions are
logical singularities such as diabolic points. related to the wave functions of the resonance states by a

In describing physical processes, the exceptional pointsippmann-Schwinger-like relatiofi4]. They are biorthogo-
lead to problems. First, the splitting of the Hamiltonieih  nal. At the double pole of th& matrix, the Hilbert space has
into Hy andH, cannot be done arbitrarily. For a fixddl,, no defect due to the biorthogonality of the wave functions.
the partH, is well defined since it describes the coupling of The S matrix behaves smoothly by varying parameters also
the states of the systefdescribed byH,) via the environ-  when the double pole is mgt3].
ment(continuum of decay channglsito which it is embed- It is the aim of the present paper to derive the phase
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changes of the wave functions that appear after surroundingrovide the wave functions, that contain the coupling be-
a double pole of thé& matrix parametrically. In Sec. Il, the tween the two subspaces.

relation between the eigenvalues of the effective Hamilton Using the completeness relatidh+Q=1, one obtains
operator and the poles of tf&matrix is discussed, while in for the solution of the whole problef®]
Sec. Il the relation between double poles and avoided level

crossings is discussed. The double poles ofSimeatrix are 1 ;/k

: . . Pl = C(+) 2
branch points in the complex plane. At these points, the wave E™ \/— “ i (6)
functions of the two states are exchangeég— =i,. This E— E+ Er"

causes a mixing of the wave functions in the region of

avoided level crossings. In Sec. IV, the phase changes afyere,

pearing after surrounding a diabolic point and a double pole

of the S matrix are derived and compared with experimental 0 =3 +0=(1+ G(pHHpq)CT)k 7
results. They agree with all data for isolated crossings of two

states that are published in Ref8,8]. Conclusions on the s the wave function of the resonance stkteG(”— P(E
topological structure of the function space are drawn in the Hpp) ~P is the Green function in the subspacewk is

last section. determined by Eq(5) with <I>k replaced byd,, and

Il. EFFECTIVE HAMILTONIAN AND POLES ~ciey = . e o(+) =
E)=\2m(®*|H =27 Hoo| D).
OF THE SMATRIX Yx(E) m( Dy [Hopl €8 ) (68 7[Hpg| D) ®

After embedding a system into the continuum of decay ~ ) , ~ ==
channels, the discrete states of the system turn over in resbUrther, @ is the eigenfunction and,=E,—i/2T'y is the
nance states with a finite lifetime. The Hamiltonian of the €igenvalue of the effective Hamiltonian
system becomes effectively non-Hermitian with complex ei-
genvaluest,=E,—i/2l'y, where the widthl", is inversely
proportional to the lifetime. _ which describes the system after embedding it into the con-

The relation between the poles of tematrix and the  tinyum of decay channel${ is non-Hermitian, its eigenval-
complex eigenvalues, can be derived from the Schtinger  yes and eigenvectors are complex. The eigenfunctions are
equation, biorthogonal,

(H-—E)¥e=0, () (D D))=y, (10

with the Hamilton operatoH and the sef{ WV} of wave
functions containing the discrete states of the system as we
as the scattering wave functions of the environment into _ ~ T 1\
which the system is embedded. The operatds Hermitian. (DD =Ra(PDi)); A= (DY D=1
In a first step, two sets of equations have to be solved:

Wheredb”gh‘— and® "=} [13,15. As a consequence,

(DU Dy i) =1 IM(Dy| Dy 24)) = — (D 24| D)

(HY-EJ)DF'=0 2
Bl “=(®| D) .1)[=0. (11)
and ) ) )
Using Egs.(6) and (7) and the Lippmann-Schwinger
cc ¢(+) equation for the scattering wave functions, one gets for the
> (HeC—E)gg (M=o, (3 resonance part of th® matrix [9,13],
C/
N ~ L~ ’
whereH® describes the system with the discrete statasd Sre9_j 3 Yok (12)
H°® the continuum with coupled decay channelsThen, R = E_E 4+ )1
the two projection operators are defined by kit k

The }k are the coupling matrix elements of the resonance
states to the continuun&'s” describes the resonance part of
the S matrix also in the overlapping regime. The interfer-
andH is identified withQHQ=Hgq and Hee with PHP  ences between the resonance states are taken into account by
=Hpp. The two other terms ofH=HgotHppt+Hgp  diagonalizing the effective Hamiltoniak. Due to the uni-
+Hpq describe the coupling between the two subspacesarity of the S matrix, theyg, Ey, andT' are energy depen-
The solutions of coupled channel equations with source teryant functions. The relatioﬁk=2(§/§)2 holds only for iso-
lated resonances. In the overlapping regime, the energy
> (HCC'—E)<§E'(*)|wk>= _<§CE(+)|HPQ|<I)E> (5) dep_endence of both functions is different, as a rule. For nu-
' merical examples, see R¢i.6].

o-3 lopy@fl. P-3 [ aEla e @
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As can be seen from E@12), the poles of theS matrix  critical coupling, respectively. The more complicated cases
are determined by the eigenvaligsof the effective Hamil- WitthOmp|EXw| are %OnSidh?f?ﬁ in Ref19]. e el

; i ; : P The example with real illustrates nicely the relation
tonian (9) after solving the fixed-point equatiorg= & (E X ,
=E,) [13]. As an example, resonances of a microwave Cav_betvveen a double pole of t@”’a“'x and avoided or even
ity are studied experimentally in the overlapping regimefree crossings of two Ie_vels in the complex plane. The double
[17]. The results show the phenomenon of resonance tragC!€ IS @ branch pointin the complex plane. The number of

ping and are described well by E€L2) with the effective these branch points is of measure zero, but their influence on
Hamiltonian (9) the dynamics of quantum systems can be traced in many

avoided level crossings. While the wave functions of the two

states are exchanged just at the double pole ofStheatrix

and are unmixed at any value of the parameter different from

the critical one, this is not so at an avoided level crossing. In
The relation between double poles of tBematrix and  this case, the wave functions remain mixed in a certain range

avoided level crossings can be illustrated best by means of @& the parameter around the critical value. This fact has a

Simp'e two_leve| mode'_ Let us Consider the Comp|ex tWO_StI‘OI’Ig inﬂuence on the mixing Of a.” the wave funCtiOI’]S Of a
by-two Hamiltonian matrix system when the level density is high, and different avoided
level crossings appear at values of the parameter inside this
i range. For the results of numerical studies, see Ré&i.
61(7\)—57’1 w The biorthogonality relatior(10) holds everywhere, in-
H= . , (13 cluding at the double pole of tH@matrix. The reason is that
w e,(\) — '_7,2 A—; Bl—o [Eq.(11)] and tha{ ®} |D,) is the difference
2 between two infinitely large numbei®ut not their sum
This difference may be @for | #k) or 1 (for |=k). Thus,
the orthogonality and normalization requirements do not
conflict with one another and the Hilbert space has no defect
at all. For the results of numerical studies, see REJ].
It should be mentioned here, that the biorthogonality of

the {®,} follows directly from the non-Hermiticity ofH.
Only for the eigenfunctions of a Hermitian operator holds

Ill. DOUBLE POLES OF THE SMATRIX AND AVOIDED
LEVEL CROSSINGS

wheree, and y, (k=1,2) are the unperturbed energies and
widths, respectively, of the two states. Téeare assumed to
depend on the paramet&rin such a manner that the two
states may cross in energy)d whenw=0. The two states
interact only viaw, which is assumed in the following to be
independent of the parameten(as they,). The eigenvalues

of H are ~ - ~
O "= P9 [15]. Due to the symmetry of{ it holds "
i1 i +1\/— =9 for its eigenfunctions what results in E(LO) for
E.—slu=5(erte) =5 (yity)|=5VF, (149 ihe biorthogonality relation.

Further analytical studiglsl3] have shown that the wave
with functions of the two states at the double pole of matrix

, are exchanged. It is

+4w?. (15 ~

F= =
PP +iDPP, (19

i
(e;—ey)— 5(71_ Y2)

WhenF(\,w)=0 atA =\ (and w= 0", the S matrix has
a double pole.

According to Eq.(15), F=Fgr+iF, is generally a com-
plex number. For illustration, let us discuss the case with re
w. Thene;=e, at A=\ and we have to differentiate be-
tween three cases

in approaching the double pole of tBamatrix. This result is
confirmed by numerical studies on laser induced continuum
?tructures in atomgl2].

&' The real and imaginary parts of the wave functions of two
resonance states as a function of an external parameter in-
crease limitless in approaching the double pole ofShea-
trix [13]. The sign of the imaginary part jumps at the double

F >0—+Fpr= | 1 ~ ~
RN @)>0— \Fe=real, (16 pole (when®;— +id,). When the double pole is not met
_ _ by varying the external parameter, but the levels avoid cross-
Frid,©)=0— ‘/F_R_O’ (17 ing at the critical value of the parameter, the real and imagi-
. . nary parts remain finite but the jump of the sign remains. The
Fr(\,0)<0—\Fr=imaginary. (18 wave function

The first case gives the avoided level crossing in energy with - - -

an exchange of the two wave functions)\&. The second Cp=a;P1*ia®, (20
case corresponds to the double pole of &wmatrix. In the

third case, the two levels cross freely in energy and the twahanges smoothlgwithout any jump of the sign of its com-
states ar@ot exchanged at the critical valug' [13]. In Ref.  ponent$ for a,—a, at the double pole of th& matrix or at
[18], the two caseE >0 andFg<0 are studied experimen- the critical value of the parameter where the levels avoid
tally in a microwave cavity and calledvercritical andsub-  crossing. For the results of a numerical study, see Ré&i.

026204-3



I. ROTTER PHYSICAL REVIEW E 67, 026204 (2003

The diabolic points are related to avoided crossings othange of the wave functions takes place only at overcritical
discrete levels. They occur by varying two independent paeoupling where the resonances avoid crossing. Thus, a first
rameters: at the diabolic point, two energy surfaces drawifull surrounding gives
over the plane of the two external parameters touch each
other at one point forming a double cone. (B, D) —{—1D,,+id,} (24)

and a second on@n the same directiongives
IV. GEOMETRIC PHASES nen o)ng

Let us now consider the geometric phases appearing after {=idy, +i®}={+ Dy, + Dy} (25
encircling a diabolic point and a branch point in the complex . o
plane(double pole of thé& matrix), respectively. In any case, That means, surrounding the branch ~pomt in the complex
the paths of encircling are characterized by the v&lugq.  plane twice restores the wave functiorg including their
(15), which vanishes only at the branch point in the complexphases. This corresponds to the result obtained for surround-
plane. Most interesting are states whose eigenvalues are néag@ the diabolic point twice. In both cases, the wave func-
to the real axis. We can restrict our discussion therefore téions including their phases are restored after a second encir-

real w (see Sec. Il cling in the same direction:
For encircling the diabolic point or the branch point in the L o
complex plane, two external parameters have to be varied. In {Dq, D} ={D,, Dy} (26)

the experiment of Ref.3], the diabolic point is surrounded
by varying the shape of the microwave resonator by means Encircling the branch point in the complex plane in the
of two parameters but leaving the coupling strength to theé®Pposite direction gives
antenna unchanged. Since the two levels considered avoid - - -
crossing, the whole path of encircling the diabolic point is in {D1, Do} = {+idy, =iy} (27)
the overcritical regime. That means, the critical value of the ] ) »
parameter is passed twice, on the way forth as well as bacieince the experiment of Refig] is not sensitive to the pos-
under overcritical conditions, and the wave functions are exSible occurence of a phasef the wave function, the results
changed each time when the critical value of the parameter i&4 for one loop with a certain orientation of the path and
reached. This is not so in the experiment of &l where the resu_lts(27) with _the opposite _orlen_tatlon of the path
one of the two parameters is the coupling strength of thédree with the experimental data given in R&f. There are
cavity to another one. Therefore, the critical value of theN© €xperimental data in ReB] for the phase changes after a
parameter is passed on the path of encircling the exceptiongcond loop. _ .
point (or branch point in the complex planenly once under An gxpenmental ;tudy of interferences betwegn atomic
overcritical conditions. The other part of the path is in thel€vels in a laser field is expectg#i9] to allow conclusions on
subcritical regime where the wave functions are nowhere exte phase changes, including those after a second loop.
changedsee Sec. I\

In detail, the diabolic point is surrounded in the experi- V. CONCLUDING REMARKS
ment of Ref[3] in the regime of overcritical coupling along
the whole way of encircling ani® is passed twice in oppo-
site directions,

(l) &)kﬂ_i(’i)“ a)|~>+i(’bk, i.e.,

In the present paper, the phase changes occuring after
encircling parametrically an isolated diabolic point and a
double pole of theS matrix (branch point in the complex
plane are calculated. The results are shown to agree with all
o 5 _ experimental data that are published in R¢Ss8].

{D, D} —={—1D,, +id,} (21 The results of Ref.3] point to the interesting fact that the
phase changes after surrounding higher-order degeneracies
are more complicated than those obtained after encircling a
diabolic point. This result has given rise to further theoretical
~ ~ - - studies, e.g., Ref20].

{=iDy, +iD}={ Dy, — Dy} (22) The experimental results in RéB] are interpreted by the

authors on the basis of exceptional points. This interpretation

The phase change occuring after one surrounding the dideads to the conclusion that an exceptional point can clearly

and(ii), on the way backd,— —id,; &,—+id,, ie.,

bolic point is therefore be distinguished from other topological singularities such as
diabolic points. The authors claim the following: encircling
(B, 30 - 1— By, - D). (23) the exceptional point a second time completely with the

same orientation, one obtaifis ®,,—®,}, while the next

This corresponds to the geometric phase discussed by Berfpmplete loop yields —®,,d,j and only the fourth loop

[1]. restores fully the original paif®, ,®}. The authors show
The way of encircling the branch point in the complex experimental results only for one complete loop. No data are

plane itself passes from a region with overcritical coupling atgiven for two or more loops.

N\ to another one with subcritical coupling &t". An ex- The appearance of a phase change of both wave functions
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after a second loop around the exceptional pofbt= two interpretations since the experiment is not sensitive to
~d,; &=-®,, suggested in Ref(8], does not agree the possible occurence of a phase the wave function. It

with the result(26) obtained for a second complete loop can therefore not be concluded from the published experi-

around a branch point in the complex plane. According tomental data whether or not the topological structure studied

- o in Ref.[8] is different from that of a diabolic point. Further
result(26), the original pa|r{®k,q?|}: is restored alrgady after experimental studies are necessary, maybe on atoms in a la-
a second complete loop when it is completed with the SaMEq field as suggested in REL9].
orientation. This result coincides with that obtained for a
second loop around a diabolic point. It is an expression for
the fact that diabolic points and branch points in the complex
plane are related to one another as discussed in this paper. | am indebted to M. Lewenstein for the suggestion to

The results for one loop cannot differentiate between thevrite the present paper instead of a Commen{&in
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