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Controlling chaos to solutions with complex eigenvalues
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We derive formulas for parameter and variable perturbations to control chaos using linearized dynamics.
They are available irrespective of the dimension of the system, the number of perturbed parameters or vari-
ables, and the kinds of eigenvalues of the linearized dynamics. We illustrate this using the two coupled Duffing
oscillators and the two coupled standard maps.
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In 1990, Ott, Grebogi, and YorkéOGY) first succeeded We first consider the case of perturbikgparameters si-
in controlling chaos by applying a tiny parameter modulationmultaneously at each control statidff. Then the difference
to dissipative systemd]. They derived a simple formula of vectorx"=z"—zp is mapped fron®" to 3"*! by
small parameter modulation to stabilize the chaotic system to
one of infinitely many unstable periodic orbits inherently X" =M"x"+g"p", (N
embedded in the system’s strange attractor. The OGY work . ) ) .
turns the presence of chaos into an advantage. The OGYherep" is aK-dimensional vector representing the pertur-
method has since attracted growing interest and has bem:'on of r'fhen available parameters®t. The dxd matrix
applied in various fields of scien¢@—4. M"=D,® (zE ,Po) represents the linearization Bf' around

Some works on the controlling chaos in cases where th&r ,» Wherep, is a vector of nominal values of system param-
eigenvalues of the linearized dynamics at some periodic orbgters at which the system is chaotic. Tt K matrix g"
points are complex numbef§—7] were proposed in 1993. =D,®"(zz,p,) approximates the dependence of the map
Complex eigenvalues appear commonly in high-dimensionaP" on the control parameters. It is natural that EL.is the
systemg5], in Hamiltonian system§6], and when we use case only wherjx"|<1 and|p"||<1. Note that the periodic
generalized Poincarsections[7,8]. In dissipative and con- orbit pointszt, the Jacobian matriceldl", and the depen-
servative systems, the complex eigenvalues of the linearizedence of the dynamics on the parameter perturbagiode-
dynamics usually occur due to flow rotation and area conseipend on the control stem which has to be taken modubh
vation, respectively. Note also thak"*? generally depends on the values of pa-

Some methods have been proposed so far to treat themeter perturbation at previous Poincaeetions if we use
cases of complex eigenvalues. However, all the:se methodstime delay coordinate embedding technifi. However,
are available generically only in cases where Poincaa@s if we use the state-plus-parameter system instead of the
are two-dimensional. The convergence of the minimal exoriginal one[12], the linearized dynamics has the same form
pected deviation methd&] and the modified pole placement as in Eq.(1) [13,14.
method[9] has never been provedd] in more than two- We requirex=0 by control[15]. This requirement im-
dimensional map systems. And the modified OGY methodlies d equations and thereford unknown variables are
[6] and the singular-value decomposition metfidgfuse the needed for the equations to be solved uniquely. As
so-called unstable direction that can be obtained using théhe d unknown variables, we takeP=(p" p"*?!...

algorithm in Ref.[10]. The algorithm gives only the maxi- pn+Q—1p2+ng+Q. . .pij), wherep!" is theith element of

ma”y unstable direction, but all unstable directions arek-dimensional column Vectcp'n_ Here, nonnegative integers
needed, in general, to control chaos in high'dimensional Sy andR are quotient and remainder Sat|sfy|dg: KQ+ R.

tems. In this paper, we propose formulas for parameter ang specific, we require that"*?*1=0 after Q+1 succes-
variable perturbations to control chaos in high-dimensionakjye controls. The solutioR of x"*Q*1=0 is given by

systems when the linearized dynamics has complex eigenval-

ues at some orbit points of the target periodic orbit. P=(A"1C)x", 2
We consider a chaotic system whose the Poincaa@s

are d dimensional. If we will apply a control algorithiy ~ where ~ the  dXxd matrix ~ A=(a":a ...

. . S . :aN+Q—1. ,n+Q. n+Q. . AN+t Q i
times a period of the target periodic orbit, generalized :a fa; “iap “i---iag ) and thedxd matrix C
Poincare section 3", n=0,...,(N—1) and generalized =-II2 ,M""" [16,17. Here, the dxK matrix a™
Poincafemaps®":%"—3""! should be considered. The tra- =(al";al:---:al), where the dx1 matrix af'
jectory and the target periodic orbit intersect each of these- HjQ:i+1M n+igfk1+i and thed X 1 matrix aE+Q:gE+Q-
surfaces at the coordinate$ andzg , respectively. We next consider the case of perturbikgvariables si-

multaneously at each control station. Theh is mapped

from 3" to 3"*1 by
*Electronic address: kwon@pro.gjue.ac.kr
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FIG. 1. The projection of the chaotic attractor of the two
coupled Duffing oscillators into thé-» plane. As target periodic
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FIG. 2. The controlled trajectory and controlling variable per-
turbations of the two coupled Duffing oscillators, which is sampled

orbits, period-1 and period-3 orbits are represented by the soli@t integer times of forcing perioch ¢ and A (d¢/dt) represent con-

circle and triangles, respectively. Hefeand » have arbitrary units.

where theK-dimensional column vectos” represents the

perturbations of available variables®t and thed X K ma-

trolling perturbations of and &, respectively.

We will control chaos by perturbing two variablésind &

trix h"=D,®"(z¢,po) approximates the dependence of thesimultaneously at each control station. Note that the chaos is
map®" on the control variables. The control requirement iscontrolled even if we perturb only one variable at each con-
the same as in the case of parameter perturbation discussidl station[12]. But the chaotic transient before stabilization

above. Thed unknown variables of the equatiod'"Q*?!
=0 areV=(v""" 1. . "N QIHQ.L R Q) where
v{ is theith element of th&-dimensional column vectar”.
The solutionV of x"*Q*1=0 is given by

V=(B~!C)x", (4
where  the dxd matrix ~ B=(b":b"*1:...
bR p R pl*Q: .. 1 bR Q). Here, thed X K matrix
b"=(bP:b]:---:bY) where the dx1 matrix bf™®

=hp"? and thedx 1 matrix by "'=TZ; , ;M "I
Note that there are no solutions in E®) and (4) if

det(A)=0 and detB) =0, respectively. This gives the con-
trollability condition of our method. We also put a physically

is much longer than that of perturbing two variables simul-
taneously[21]. If we useN control stationsN Poincaresec-
tions along the target periodic orbit are needed. We choose
PoincaresectionsX"(0=n<N-—1) with the phase of the
external periodic force"=n(2=/N). M" andh" in Eq. (3)
at eachX" are calculated numerically using the least square
method[11]. In this exampled=4K=2,0Q=2,R=0. Thus,
M™h" v in Eq. (3) are 4x4,4xX2,2X1 matrices. The ei-
genvalues oM" are usually complex numbers. For example,
whenN=1, the eigenvalues of the period-1 orbit depicted
by solid circle in Fig. 1 are 4.119%4,0.0596+0.1574,
—0.0596-0.1574,0.1441.

Figure 2 shows the controlled trajectory when we use 50

sensible restriction such that control is applied only when alfontrol stations. Although we use 50 control stations, we

elements ofP or V are in between- § and 8, a small num-

sample the data only at the first Poincasection ¢° to

ber. Note that, ab,"*?, P andV give the values of the first Present the result clearly. In this control, we set the maxi-
R available parameters and variables, respectively, but ngium available variable perturbatighto 5% of the range of

information on the lask — R ones, which are set zero.
To illustrate the availability of our formulé2) and(4), we
control chaos in the two coupled Duffing oscillat¢iss] by

the activity of £&. That is, 6=0.05X(3.6—2.1). The trajec-
tory moves freely unless it comes into one of the controlling
regions of the periodic orbit points in the Poincaections.

perturbing two variablefl9] simultaneously at multistations As soon as it comes into the controlling region, we perturb

and next in the two coupled standard m#&p8] by perturb-

the variables and the trajectory is stabilized to the target pe-

ing two parameters. The system of two coupled Duffing osriodic orbit after two successive controls irrespective of the

cillators is described by+ aé+ 3= 5+ Bcospt) and 7

period of the target periodic orbit sing@=2 andR=0 in

+en+ 3= £[18]. Heret is time and dot over the variables this example. In Fig. 2, the trajectory is initially chaotic and
¢ and 7 represents time derivative. The first oscillator is Stabilized to the period-1 orbit and the control is maintained
driven by an external periodic force, and the two oscillatorsfor 300 forcing periods. Next, we turn off the control to

interact with each other by and . When the parameters are make the trajectory move freely. After some time, the trajec-

fixed ata=0.2,8=10,y=1,6=0.45, the two coupled Duff-

tory comes into one of the controlling regions of the period-3

ing oscillators behave chaotically in the four-dimensionalorbit. Just at that moment, we turn on the control and the
phase space. Figure 1 shows the projection of the chaotitajectory is stabilized to the period-3 orbit after two succes-
attractor into é-n plane and, as target periodic orbits, sive controls. We maintain the control for 300 forcing peri-

period-1 and period-3 ones that are represented by a solmds. Last we cease the control to make the trajectory move

circle and solid upper triangles, respectively.

freely. After some time, the trajectory comes into one of the
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FIG. 3. Critical noise level for bursts to appear increases accord-

ing to th ber of trol stati Here the critical noise level i FIG. 4. The projection of the chaotic attractor of the two
Ing to the number of control stations. Here the crilical noise leve Iscoupled standard maps into thed plane. As target periodic orbits,
the maximum value of in Eq. (5) at which initially stabilized

traiectori ) bursts in 1000 forci iod period-2 unstable and period-9 elliptic periodic orbits are repre-
rajectories experience no bursts in oreing periods. sented by plus signs and circles. Hdrend ¢ have arbitrary units.

controlling regions of the period-1 orbit. Then, we turn on : .
the control and the trajectory is stabilized to the period-1WheréWm, Xm, Ym, andzy are the values of, ¢, 7, andz
orbit again. att=mh, respectively. Herg"', x*, x¥, andx* are random

An advantage of controlling chaos using a number of confunctions which are independent of each other, and the val-
trol stations is that robustness of the control to noise inl€s are chosen from a normal distribution with mean zero
creases exponential[y]. The current state of the system can @nd variance one. In our calculation we set10"°.
be measured only within an uncertainty due to noise. This In order to illustrate the availability of our formuia), we
error is magnified by a factor exglT) if we use only one  {réat the two coupled standard md@s]. Standard map is a
control station. Here\; is the effective Lyapunov exponent typical Hamiltonian system. In Hamiltonian systems, the

of the target periodic orbit and is its period. If we useN Jacobian of the linearized dynamics u;ua!ly has complex ei-
control stations, the error is magnified by a factorgenvalues due to the area conservation in the phase space.

expA\lAt) betweers" andS ™. HereAt=T/N. Note that The two coupled standard maps are given lby =1,
n ; _ n ; ; +KisinOy+usin(htén),  Ohe1= 0+, Inr1=dn

experAt) is the N-th root of explesT) in average. This K Sind -+ 12 Sin@,+ ), and g, 1= ot Jp 1 1 [20]. Here

means the influence of noise decreases exponentially accord- oSN et 1 n%nh N+l Pn Yl LA

ing to the number of control stations.

To illustrate above discussion, we calculate the critical 270
noise levels at which bursts start to appear at various nurr
bers of control stations. The critical noise level is defined by
the maximum at which an initially stabilized trajectory expe-
riences no burst until it passes through 1000 forcing periods
Figure 3 shows the result when the noise has a normal dis
tribution with mean zero and variance one. The horizonta
and vertical axes represent the number of control stations ar .02+
the corresponding critical noise level, respectively. In Fig. 3,¥—
we can easily see that the critical noise level and, thus, th P 0 ‘

robustness of the control to noise increases as the number
control stations increases. To obtain this result, we shoul.() Q2+t
solve the equations describing the two coupled Duffing os
cillators under noise, which are stochastic differential equa , i
tions. If we use the so-called Euler-Maruyama meth2#], 0.021 1
the stochastic differential equations are approximated by fol, ™

lowing difference equations: i ‘
Wm+1:Wm+th+r\/ﬁer¥n —0.02' \ ) 1
\ ) 0 1000 2000
X+ 1= Xm+ W[ — aXm =Wt ym+ B cogmh) 1+ rvVhy,, number of iterations
Vi 1=Ymt NX+ T \/HXY FIG. 5. The controlled trajectory and controlling parameter per-
m?

turbations of the two coupled standard map&, and AK; repre-

3 . sent controlling perturbations ¢f, andK, respectively. Chaotic
Zor 1= Zm+ N(— €2n—y 3+ W) +1Vhy 2, (5)  transients are very long, in general.
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both actionsl, J and angles, ¢ are periodic,u is the after two successive controls irrespective of the period of the
coupling constant. The one-dimensional Kolmogorov-target periodic orbit sinc€@=2 andR=0 in this example.
Arnold-Moser(KAM) curves in the single standard map be- Figure 5 shows that the trajectory is initially chaotic and
come two-dimensional KAM tori in the two coupled stan- stabilized to the period-2 unstable orbit, and the control is
dard maps. Since a two-dimensional torus cannot divide aaintained for 300 iterations. Next, we turn off the control to
four-dimensional phase space, there can be the Arnold diffumake the trajectory move freely. After some time, the trajec-
sion of particles around the KAM surfaces in the coupledtory come into one of the controlling regions of the period-9
maps. elliptic orbit. Just at that moment, we turn on the control and
When the parameters are fixed Ki=1, K;=1, u the trajectory is stabilized to the period-9 elliptic orbit after
=0.01, the two coupled standard maps behave chaotically itwo successive controls.
the four-dimensional phase space. Figure 4 shows the projec- We note that the phase space shown in Fig. 4 has very
tion of the chaotic attractor intb— @ plane and, as target complex structure divided by large numbers of KAM layers
periodic orbits, unstable period-2 and elliptic period-9 onesand the chaotic transients for most initial conditions are very
represented by plus signs and circles, respectively. Note thédng. Thus, a targeting technique is needed to control chaos
all orbit points of the unstable period-2 orbit have the sameoractically. No targeting technique has been proposed, which
positive real eigenvalues: 1.6266, 1.5979, 0.6258, 0.614&re available in high-dimensional Hamiltonian systems.
On the other hand, three of nine orbit points of the elliptic In conclusion, we have derived formulas of parameter and
period-9 orbit have complex eigenvalues. variable perturbations to control chaos. These are available
We control chaos by perturbing two parametérsandK;  even when the linearized dynamics has complex eigenvalues
simultaneously at each iteration. Note that more than twan high-dimensional systems. They also admit multiparam-
parameters should be perturbed due to symn{@8y24]. In  eter or multivariable perturbations. We have shown the avail-
this control, we set the maximum available parameter perturability of our formulas by controlling chaos in the two
bation §=0.03<XK,. Only when the trajectory comes into coupled Duffing oscillators by perturbing two variables si-
the controlling region of a periodic orbit point, we perturb multaneously at multistations and in the two coupled stan-
the parameters and it is stabilized to the target periodic orbitlard maps by perturbing two parameters simultaneously.
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