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Controlling chaos to solutions with complex eigenvalues
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We derive formulas for parameter and variable perturbations to control chaos using linearized dynamics.
They are available irrespective of the dimension of the system, the number of perturbed parameters or vari-
ables, and the kinds of eigenvalues of the linearized dynamics. We illustrate this using the two coupled Duffing
oscillators and the two coupled standard maps.
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In 1990, Ott, Grebogi, and Yorke~OGY! first succeeded
in controlling chaos by applying a tiny parameter modulat
to dissipative systems@1#. They derived a simple formula o
small parameter modulation to stabilize the chaotic system
one of infinitely many unstable periodic orbits inheren
embedded in the system’s strange attractor. The OGY w
turns the presence of chaos into an advantage. The O
method has since attracted growing interest and has b
applied in various fields of science@2–4#.

Some works on the controlling chaos in cases where
eigenvalues of the linearized dynamics at some periodic o
points are complex numbers@5–7# were proposed in 1993
Complex eigenvalues appear commonly in high-dimensio
systems@5#, in Hamiltonian systems@6#, and when we use
generalized Poincare´ sections@7,8#. In dissipative and con-
servative systems, the complex eigenvalues of the linear
dynamics usually occur due to flow rotation and area con
vation, respectively.

Some methods have been proposed so far to treat
cases of complex eigenvalues. However, all these meth
are available generically only in cases where Poincare´ maps
are two-dimensional. The convergence of the minimal
pected deviation method@5# and the modified pole placemen
method @9# has never been proved@8# in more than two-
dimensional map systems. And the modified OGY meth
@6# and the singular-value decomposition method@7# use the
so-called unstable direction that can be obtained using
algorithm in Ref.@10#. The algorithm gives only the maxi
mally unstable direction, but all unstable directions a
needed, in general, to control chaos in high-dimensional
tems. In this paper, we propose formulas for parameter
variable perturbations to control chaos in high-dimensio
systems when the linearized dynamics has complex eigen
ues at some orbit points of the target periodic orbit.

We consider a chaotic system whose the Poincare´ maps
are d dimensional. If we will apply a control algorithmN
times a period of the target periodic orbit,N generalized
Poincare´ section Sn, n50, . . . ,(N21) and generalized
Poincare´ mapsFn:Sn→Sn11 should be considered. The tra
jectory and the target periodic orbit intersect each of th
surfaces at the coordinateszn andzF

n , respectively.

*Electronic address: kwon@pro.gjue.ac.kr
†Electronic address: hoyunlee@cnu.ac.kr
1063-651X/2003/67~2!/026201~4!/$20.00 67 0262
to

rk
Y

en

e
it

al

ed
r-

he
ds

-

d

e

e
s-
d
l

al-

e

We first consider the case of perturbingK parameters si-
multaneously at each control stationSn. Then the difference
vectorxn[zn2zF

n is mapped fromSn to Sn11 by

xn115Mnxn1gnpn, ~1!

wherepn is a K-dimensional vector representing the pertu
bation of the available parameters atSn. The d3d matrix
Mn5DzF

n(zF
n ,p0) represents the linearization ofPn around

zF
n , wherep0 is a vector of nominal values of system param

eters at which the system is chaotic. Thed3K matrix gn

5DpFn(zF
n ,p0) approximates the dependence of the m

Pn on the control parameters. It is natural that Eq.~1! is the
case only whenixni!1 andipni!1. Note that the periodic
orbit pointszF

n , the Jacobian matricesMn, and the depen-
dence of the dynamics on the parameter perturbationgn de-
pend on the control stepn, which has to be taken moduloN.
Note also thatxn11 generally depends on the values of p
rameter perturbation at previous Poincare´ sections if we use
a time delay coordinate embedding technique@11#. However,
if we use the state-plus-parameter system instead of
original one@12#, the linearized dynamics has the same fo
as in Eq.~1! @13,14#.

We requirex50 by control @15#. This requirement im-
plies d equations and therefored unknown variables are
needed for the equations to be solved uniquely.
the d unknown variables, we takeP5(pn pn11

•••

pn1Q21p1
n1Qp2

n1Q
•••pR

n1Q), wherepi
n is the i th element of

K-dimensional column vectorpn. Here, nonnegative integer
Q and R are quotient and remainder satisfyingd5KQ1R.
In specific, we require thatxn1Q1150 after Q11 succes-
sive controls. The solutionP of xn1Q1150 is given by

P5~A21C!xn, ~2!

where the d3d matrix A5(anAan11A•••
Aan1Q21Aa1

n1QAa2
n1QA•••AaR

n1Q) and thed3d matrix C
52) i 50

Q Mn1 i @16,17#. Here, the d3K matrix am

5(a1
mAa2

mA•••AaK
m), where the d31 matrix ak

n1 i

5) j 5 i 11
Q Mn1 jgk

n1 i and thed31 matrix ak
n1Q5gk

n1Q .
We next consider the case of perturbingK variables si-

multaneously at each control station. Thenxn is mapped
from Sn to Sn11 by

xn115Mnxn1hnvn, ~3!
©2003 The American Physical Society01-1
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where theK-dimensional column vectorvn represents the
perturbations of available variables atSn and thed3K ma-
trix hn5DvFn(zF

n ,p0) approximates the dependence of t
mapFn on the control variables. The control requirement
the same as in the case of parameter perturbation discu
above. Thed unknown variables of the equationxn1Q11

50 areV5(vnvn11
•••vn1Q21v1

n1Qv2
n1Q

•••vR
n1Q), where

v i
n is thei th element of theK-dimensional column vectorvn.

The solutionV of xn1Q1150 is given by

V5~B21C!xn, ~4!

where the d3d matrix B5(bnAbn11A•••
Abn1Q21Ab1

n1QAb2
n1QA•••AbR

n1Q). Here, thed3K matrix
bm5(b1

mAb2
mA•••AbK

m) where the d31 matrix bk
n1Q

5hk
n1Q and thed31 matrix bk

n1 i5) j 5 i 11
Q Mn1 jhk

n1 i .
Note that there are no solutions in Eq.~2! and ~4! if

det(A)50 and det(B)50, respectively. This gives the con
trollability condition of our method. We also put a physical
sensible restriction such that control is applied only when
elements ofP or V are in between2d andd, a small num-
ber. Note that, atSn1Q, P andV give the values of the firs
R available parameters and variables, respectively, but
information on the lastK2R ones, which are set zero.

To illustrate the availability of our formula~2! and~4!, we
control chaos in the two coupled Duffing oscillators@18# by
perturbing two variables@19# simultaneously at multistation
and next in the two coupled standard maps@20# by perturb-
ing two parameters. The system of two coupled Duffing
cillators is described byj̈1aj̇1j35h1b cos(gt) and ḧ
1eḣ1h35j @18#. Heret is time and dot over the variable
j and h represents time derivative. The first oscillator
driven by an external periodic force, and the two oscillat
interact with each other byj andh. When the parameters ar
fixed ata50.2,b510,g51,e50.45, the two coupled Duff-
ing oscillators behave chaotically in the four-dimension
phase space. Figure 1 shows the projection of the cha
attractor into j-h plane and, as target periodic orbit
period-1 and period-3 ones that are represented by a s
circle and solid upper triangles, respectively.

FIG. 1. The projection of the chaotic attractor of the tw
coupled Duffing oscillators into thej-h plane. As target periodic
orbits, period-1 and period-3 orbits are represented by the s
circle and triangles, respectively. Herej andh have arbitrary units.
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We will control chaos by perturbing two variablesj andj̇
simultaneously at each control station. Note that the chao
controlled even if we perturb only one variable at each c
trol station@12#. But the chaotic transient before stabilizatio
is much longer than that of perturbing two variables sim
taneously@21#. If we useN control stations,N Poincare´ sec-
tions along the target periodic orbit are needed. We cho
Poincare´ sectionsSn(0<n<N21) with the phase of the
external periodic force,un5n(2p/N). Mn andhn in Eq. ~3!
at eachSn are calculated numerically using the least squ
method@11#. In this example,d54,K52,Q52,R50. Thus,
Mn,hn,vn in Eq. ~3! are 434,432,231 matrices. The ei-
genvalues ofMn are usually complex numbers. For examp
when N51, the eigenvalues of the period-1 orbit depict
by solid circle in Fig. 1 are 4.1191,20.059610.1574i ,
20.059620.1574i ,0.1441.

Figure 2 shows the controlled trajectory when we use
control stations. Although we use 50 control stations,
sample the data only at the first Poincare´ section u0 to
present the result clearly. In this control, we set the ma
mum available variable perturbationd to 5% of the range of
the activity of j. That is,d50.053(3.622.1). The trajec-
tory moves freely unless it comes into one of the controlli
regions of the periodic orbit points in the Poincare´ sections.
As soon as it comes into the controlling region, we pertu
the variables and the trajectory is stabilized to the target
riodic orbit after two successive controls irrespective of t
period of the target periodic orbit sinceQ52 andR50 in
this example. In Fig. 2, the trajectory is initially chaotic an
stabilized to the period-1 orbit and the control is maintain
for 300 forcing periods. Next, we turn off the control t
make the trajectory move freely. After some time, the traj
tory comes into one of the controlling regions of the period
orbit. Just at that moment, we turn on the control and
trajectory is stabilized to the period-3 orbit after two succ
sive controls. We maintain the control for 300 forcing pe
ods. Last we cease the control to make the trajectory m
freely. After some time, the trajectory comes into one of t

id

FIG. 2. The controlled trajectory and controlling variable pe
turbations of the two coupled Duffing oscillators, which is samp
at integer times of forcing period.Dj andD(dj/dt) represent con-

trolling perturbations ofj and j̇, respectively.
1-2
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controlling regions of the period-1 orbit. Then, we turn
the control and the trajectory is stabilized to the period
orbit again.

An advantage of controlling chaos using a number of c
trol stations is that robustness of the control to noise
creases exponentially@7#. The current state of the system ca
be measured only within an uncertainty due to noise. T
error is magnified by a factor exp(leff

n T) if we use only one
control station. Here,leff

n is the effective Lyapunov exponen
of the target periodic orbit andT is its period. If we useN
control stations, the error is magnified by a fact
exp(leff

n Dt) betweenSn andSn11. HereDt5T/N. Note that
exp(leff

n Dt) is the N-th root of exp(leff
n T) in average. This

means the influence of noise decreases exponentially acc
ing to the number of control stations.

To illustrate above discussion, we calculate the criti
noise levels at which bursts start to appear at various n
bers of control stations. The critical noise level is defined
the maximum at which an initially stabilized trajectory exp
riences no burst until it passes through 1000 forcing perio
Figure 3 shows the result when the noise has a normal
tribution with mean zero and variance one. The horizon
and vertical axes represent the number of control stations
the corresponding critical noise level, respectively. In Fig.
we can easily see that the critical noise level and, thus,
robustness of the control to noise increases as the numb
control stations increases. To obtain this result, we sho
solve the equations describing the two coupled Duffing
cillators under noise, which are stochastic differential eq
tions. If we use the so-called Euler-Maruyama method@22#,
the stochastic differential equations are approximated by
lowing difference equations:

wm115wm1hxm1rAhxm
w ,

xm115xm1h@2axm2wm
4 1ym1b cos~mh!#1rAhxm

x ,

ym115ym1hxm1rAhxm
y ,

zm115zm1h~2ezm2ym
3 1wm!1rAhxm

z , ~5!

FIG. 3. Critical noise level for bursts to appear increases acc
ing to the number of control stations. Here the critical noise leve
the maximum value ofr in Eq. ~5! at which initially stabilized
trajectories experience no bursts in 1000 forcing periods.
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wherewm , xm , ym , andzm are the values ofj, j̇, h, andḣ
at t5mh, respectively. Herexw, xx, xy, andxz are random
functions which are independent of each other, and the
ues are chosen from a normal distribution with mean z
and variance one. In our calculation we seth51025.

In order to illustrate the availability of our formula~2!, we
treat the two coupled standard maps@20#. Standard map is a
typical Hamiltonian system. In Hamiltonian systems, t
Jacobian of the linearized dynamics usually has complex
genvalues due to the area conservation in the phase sp
The two coupled standard maps are given byI n115I n
1KIsinun1m sin(un1fn), un115un1I n11 , Jn115Jn
1KJsinfn1m sin(un1fn), andfn115fn1Jn11 @20#. Here

d-
s

FIG. 4. The projection of the chaotic attractor of the tw
coupled standard maps into theI -u plane. As target periodic orbits
period-2 unstable and period-9 elliptic periodic orbits are rep
sented by plus signs and circles. Here,I andu have arbitrary units.

FIG. 5. The controlled trajectory and controlling parameter p
turbations of the two coupled standard maps.DKI andDKJ repre-
sent controlling perturbations ofKI and KJ , respectively. Chaotic
transients are very long, in general.
1-3
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both actionsI, J and anglesu, f are periodic,m is the
coupling constant. The one-dimensional Kolmogoro
Arnold-Moser~KAM ! curves in the single standard map b
come two-dimensional KAM tori in the two coupled sta
dard maps. Since a two-dimensional torus cannot divid
four-dimensional phase space, there can be the Arnold d
sion of particles around the KAM surfaces in the coup
maps.

When the parameters are fixed atKI51, KJ51, m
50.01, the two coupled standard maps behave chaotical
the four-dimensional phase space. Figure 4 shows the pro
tion of the chaotic attractor intoI 2u plane and, as targe
periodic orbits, unstable period-2 and elliptic period-9 on
represented by plus signs and circles, respectively. Note
all orbit points of the unstable period-2 orbit have the sa
positive real eigenvalues: 1.6266, 1.5979, 0.6258, 0.61
On the other hand, three of nine orbit points of the ellip
period-9 orbit have complex eigenvalues.

We control chaos by perturbing two parametersKI andKJ
simultaneously at each iteration. Note that more than
parameters should be perturbed due to symmetry@23,24#. In
this control, we set the maximum available parameter per
bation d50.033KI . Only when the trajectory comes int
the controlling region of a periodic orbit point, we pertu
the parameters and it is stabilized to the target periodic o
e,

B

si
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after two successive controls irrespective of the period of
target periodic orbit sinceQ52 andR50 in this example.
Figure 5 shows that the trajectory is initially chaotic a
stabilized to the period-2 unstable orbit, and the contro
maintained for 300 iterations. Next, we turn off the control
make the trajectory move freely. After some time, the traj
tory come into one of the controlling regions of the period
elliptic orbit. Just at that moment, we turn on the control a
the trajectory is stabilized to the period-9 elliptic orbit aft
two successive controls.

We note that the phase space shown in Fig. 4 has v
complex structure divided by large numbers of KAM laye
and the chaotic transients for most initial conditions are v
long. Thus, a targeting technique is needed to control ch
practically. No targeting technique has been proposed, wh
are available in high-dimensional Hamiltonian systems.

In conclusion, we have derived formulas of parameter a
variable perturbations to control chaos. These are availa
even when the linearized dynamics has complex eigenva
in high-dimensional systems. They also admit multipara
eter or multivariable perturbations. We have shown the av
ability of our formulas by controlling chaos in the tw
coupled Duffing oscillators by perturbing two variables
multaneously at multistations and in the two coupled st
dard maps by perturbing two parameters simultaneously
.
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