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Subdiffusion and localization in the one-dimensional trap model
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We study a one-dimensional generalization of the exponential trap model using both numerical simulations
and analytical approximations. We obtain the asymptotic shape of the average diffusion front in the subdiffu-
sive phase. Our central result concerns the localization properties. We find the dynamical participation ratios to
be finite, but different from their equilibrium counterparts. Therefore, the idea of a partial equilibrium within
the limited region of space explored by the walk is not exact, even for long times where each site is visited a
very large number of times. We discuss the physical origin of this discrepancy, and characterize the full
distribution of dynamical weights. We also study two different two-time correlation functions, which exhibit
different aging properties: one is “sub aging” whereas the other one shows “full aging,” therefore, two
diverging time scales appear in this model. We give intuitive arguments and simple analytical approximations
that account for these differences, and obtain new predictions for the asym(gtutit-time and long-time
behavior of the scaling functions. Finally, we discuss the issue of multiple time scalings in this model.
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[. INTRODUCTION number of times. In lower dimensios<2, the correlations
induced by the multiple visits of the walks to a given site is
Alot of efforts have been devoted to the theoretical studyexpected to lead to qualitative changes. It was for example
of aging phenomena in the past decaftes3]. Spin glass shown in Ref.[29] that some quantities exhibi&ubaging
models, which exhibit a very rich phenomenology, have beeffOPerties, 1.e., dec;dy on a time scale that scale with the
widely studied theoretically both using analytical techniquesVaiting time t,, as t, with »<<1. Because of the limited

for the mean field models, or by numerical simulations in the?Umber of accessible sites, one might also expect interesting
finite dimensional cases. Besides these microscopic spiffoPerties such aynamical localizationwhich means that

models, a simpler but phenomenological picture, the “trapthere is a finite probability that independent particles sit on

model,” has been proposed in order to describe the phas%1e very same site, even .afte_r avery ang waiting tige
uch a dynamical localization was first established by

space dynamics in a coarse-grained maiiérThis model . Golosov in the context of the Sinai mod&2] and extended

seems to capture, at least qqalitatively, some of the physi the biased case in Ref33], and more recently proven
involved in the aging dynamics of several systems beyon igorously for the one-dimensional trap model in RE&0].

spin glasses, such as fragile glasges7], soft glassy mate- In this paper, we present a detailed study of the one-
rials [8,9], granular material$10], pinning of extended de-  gimensional(nonbiasedl trap model, using both numerical
fects (such as domain walls, vortices, 8t¢11]. This trap  simulations and analytical approximations. In the first sec-
model has been studied mainly in its fully connected  tjon, we focus on the scaling form of the average “diffusion
‘mean field”) version [12-14, which has recently been front” (p(x,t)) in the subdiffusive, non-Gaussian phase, for
shown to describe exactly the long-time dynamics of thewhich no analytical results argo our knowledggavailable.
random energy model when the distribution of trap depth isve present some scaling arguments and approximation
exponentiall15]. This version of the mean field model al- schemes to account for our numerical data. We then discuss
ready exhibits a number of interesting features, such as the idea of partial equilibrium in this model, which can be
transition between a stationary, “liquid” phase, and an agingexplored in details through the distribution of dynamical
“glassy” phase, violation of the fluctuation dissipation rela- weights. The moments of this distribution are the usual “par-
tion [16], and dynamical ultrametricity17,18. In the glassy ticipation ratios” that characterize the localization properties
phase, the dynamics is strongly intermittent, since most obf the measure. Perhaps surprisingly, these localization indi-
the time nothing happens, whereas the active periods appeeators are indeed finitéas first shown in Ref[30]), but
in bursts which become less and less frequent as timdifferent from their static counterparts. We discuss in detail
elapses. Several recent experiments suggest that such an the origin of this difference, and try to characterize quantita-
termittency is indeed present in glassy systéd®-21, or  tively the distribution of dynamical weights. In the last sec-
in atomic physicg22-24. tion, we study the aging behavior of two different correlation
The finite-dimensional generalization of this model hasfunctions, which exhibit different scaling properties, mean-
already been studied many years 496—28§, but only one- ing that two different time scales;, andt,,, appear in this
time quantitiegnot well suited to study agingvere consid- model. We again develop intuitive arguments and simple
ered. These aging properties were addressed only recently émalytical approximations to understand these differences,
Refs.[14,29, and, from a more rigorous point of view, in and obtain new predictions for the asymptotic behavior of
Refs.[30,31]. One expects that in dimensiods-2, the trap  the scaling functions, which are found to be in excellent
model will have properties qualitatively similar to the fully agreement with the numerics. Finally, we discuss the pos-
connected case, since each site is visited by the walk a finitsible existence of multiple time scalings in this motss can
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happen in spin glass¢&7] or in a generalization of the trap dimensional trap model introduced above. In the following,

model[29)). we shall takea is the unit of length, as well aEgl as the
time unit. Roughly speaking, a typical random walk starting
Il. THE ONE-DIMENSIONAL TRAP MODEL: from a given initial site has visited, afthteps, of the order
ANOMALOUS DIFFUSION of VN sites(which implies a typical displacemegt- /N).

Each site is visited aroundN times. So the time elapsed
can be written as

Consider a one-dimensional lattice, and define on each -
sitei a quenched random variabie>0 chosen from a dis- .
tribution p(E). E; has to be interpreted as the energy barrier t~ ‘/Ni EN i
that the particle(the walkej has to overcome in order to )

leave the site. The dynamics is chosen to be activated withjnce the sum oM independent random variables distrib-

A. Definition of the model

@

temperaturel, which means that the escape rateof sitei  yted according to Eq1) grows asM ¥, we get
is given byw,=Tye &'T, wherel', is a microscopic fre-
guency scale. Once that particle has escaped the trap, it t~ \/N1+(1/,L)~§1+(1/M)_ @)

chooses one of the two neighboring sites, with probability
g_ for the left one andy, =1—q_ for the right one. The
“directed” caseq, =1 is quite simple to analyze analyti-
cally, since each is visited once—see Ré¢84,28,33. The
caseq, = 1/2 that we study in the following is much more
subtle since each site is visited a large number of times,
inducing long ran rrelations in the hopping r n . .
thzu\fvalgke(r).(l?lo?e ?r?afoasesi[oon ;+;f/2f)zﬁe %x%tee;sseéﬁe bP(Iote that the above argument holds only in the long-time

large time properties of the walk to be the same as in thgmit’ which is define_d by the conditior&(t)_>€h0p. This
fully directed casé33].) result was also obtained by Machia7], using real space

renormalization group arguments. The same behavior also

An important remark has to be done at this point, while all ) . P
numerical studies were done specifically with the model deholds for therandom barriermodel with a broad distribution

scribed above, where hopping is constrained to neare&f b_arrier heights which, in one dimensi_on, i_s expecteq to be
neighbor sites, both the analytical calculations and the Sim@quwalent to the trap model, as far as diffusion properties are

plified arguments presented in this paper are expected to a gncernec[zg]._For this model, the average probability of

ply to the more general case where hopping is only cont eing on the initial site can be exactly computed, and decays

strained to have a finite rangé as 1U#1+*W=1/g(t), in agreement with the above result.
op-

For the purpose of heuristic arguments and Monte Cark;rhe ex_polnenp/l(lzgﬂ) is also in very good agreement with
studies, it is interesting to study the trapping timef the numerical result$29].

particle on each site. Once the transition ratesre given,r The_ (t:asell‘:é Its sdpecwtltl] smge Iogarlthmlct (lsorzjec'ilons
is a random variable with dsite dependeitdistribution come Into play. £xtending the above argument feads 1o

pi(7)=w; e ™", of meanr,=w, 1 If we choose an expo-

nential density of trap depthp(E)=(1/Tg)e &', then the £(1)~ A [t (u=1) )
distribution of 7;'s over the different sites is a power law: Int '

Inverting this relation leads to the following subdiffusive be-
havior:

E(t) ~ /AT m), (4)

o
_ MTo

Tl+,u

whereas foru>1 one recoverg(t) ~ .

Calling P;(t) the probability to be on sité after timet,
starting from sitei=0 at timet=0, a spatial probability
densityp(x,t) can be introduced through the relatié(t)

— H ~ 71
\'/:vhe_rre>u T_T/t-rl;'g 'Z.t??br?ducﬁd ten}pgtrature, angFIO y =ap(ia,t). One expects the disordered average diffusion
or g» IS _'S ribution has a finite avgrag_e val(ie front (p(x,t)), to take for large times the following scaling
=179/(u—1). This corresponds to usual diffusion and sta-form:

tionary dynamics, with a diffusion constar=a?/(7),

(1) (1=70), (1)

wherea is the lattice spacing. On the contrary, foT,, 1 X
the first moment of the distribution diverges, diffusion be- (p(x,t))Tz—f<— , (6)
comes anomalous and aging effects are expected. A dynami- &(t) 1 &(1)

cal phase transition takes placeTgf, as in the fully con- o ) ) ]
nected model. However, new properties emerging from th&vhere&(t) is given by Eq.(4), f(-) is a continuous scaling

nontrivial spatial structure of the model are expected. function and(- - -), stands for the average over the quenched
trapping timesr; . However, the full scaling functiof(-) is,

to our knowledge, not known. Only the value fd0) in the
dual “barrier” model was obtained in Ref26]. Before

We first give a simple scaling argumeptroposed in Refs.  studying more subtle issues, we have investigated this ques-
[25,35,28) that yields a subdiffusive behavior for the one- tion both analytically and numerically.

B. Disorder induced subdiffusion: A scaling argument
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C. The average diffusion front

For a system without disorder, or in the case 1 where
the average trapping timer) is finite, the central limit theo-
rem tells us immediately that the diffusion front becomes 1
Gaussian at large times:

A
1 X2 ) é 2
X,t)),= exp — 5=/, 7 V10
(POOD) = p( DI L/NNA
whereD =a?/(7) is the diffusion constang being the lattice 10°

spacing, so thaD«(u—1) whenu—1". In the caseu
=<1, a modified space-time scaling is expected, as argued ii
the preceding section, as well as a non-Gaussian diffusior 19*
front.

We have developed simple approximation scheitlest s
we expect to become exact in the limjis— 1 andt— ) to FIG. 1. Plot of&(t)(p(x,t)) versusx/&(t) for different tempera-
compute(p(x,t)), analytically. The calculations are reported tures and different times. Data were obtained by Monte Carlo simu-
in Appendix A. We find that p(x,t)), can indeed be written lations on the model with fixed trapping times. Upper curves—
as Eq.(6) with &(t) given by Eq.(4). The asymptotic shape =0.2, andt=10°(O), 16°(A), 10'%+); middle curves—=0.5
of f[{=x/£(t)] can furthermore be computed in the limits and t=10%0), 10%(<1), 10°(X); lower curves—x=0.9 andt

{—0 and{—». We find =10°%(>>), 10°(©), 10°(V).
H(O~f.lg["exp—=b[¢|?), [£]—e, ® shown are the analytic predictions, with the computed nu-
F(O ~fae ol 1ol 2] merical values of the constants, and b. We see that the
(O=fo—fulg|*=Fal ", [Z[=0, © agreement is quite reasonable, and actually suggests that the

value B=1+ u is probably exact. Fop=0.9, critical cor-
rections become important and the predicted slope is not as
good as foru=0.8, but the exponent#u seems to be
correct.

_ ' . N Data corresponding taw=1 are shown in Fig. 3. It is
(errichhewCeaSr?év_v 16(;,;;:\)‘::(1’3u?;gx;ﬂi;agneisap;:/%ﬂmsyon actually necessary to take into account a finite-time correc-

tion in this case, replacing nby In(I't), whereI is an un-

xvIn x/t=x\/3Int/t, and thatf () is exactly Gaussian, as for known constant that has to be fitted. This correction is natu-
the normal casg.>1. More precisely, one finds for the dif-
fusion front, in the limitt—oo:

wherea=(u—1)/2, B=1+u and y=min(2,1+2u). The
constantd,f,,f,,f.., andb are u dependent numbers that
we can also compute in the Appendisee Eqs(A26) and
(A33)].

T T T T T
\W x2 o MCp=05
(p(x,1)) = 4wtexr{ 4tInt). (10 ° ﬁgﬁ;gzg ]
~- Th.u=0.5
We have tested numerically the validity of the scaling --- Th.u=038
relation Eq. (6), for several values ofu. The plot of & L[ & X% ™ %, [ Thu=09] ]
£(t)(p(x,t)) as a function ok/£(t), for different values of
shows a rather good collap$Eig. 1). The curves collapse
well for ©=0.2 and 0.5, even if fop=0.2 data is more °°<>o% _
noisy. However, finite-time corrections become strongeu as ! %600
approaches 1. This is expected: subleading corrections t | NN °°ooo °<>°°°o%
scaling can be shown to become negligible only in the limit, " LN\ % o0y, |
where t&~#/A 1)1 For x=0.9 andt=10°, however, O AN R e e
this parameter is only=1.8. Therefore, we expect that the A
u=0.9 data will actually be strongly affected by the vicinity 4

of n=1, which plays the role_of a crltl_cal point. FIG. 2. Plot of |£|#2f(Z) versus|¢|M*# for p=0.5(%),

In Fig. 2 we show the Scallr?g functions fWZ,O'S' 0.8, 0.8(0), and 0.9(\), obtained by an infinite-time extrapolation of
and 0.9 obtained by extrapolatingtte- the scaling curves  yhe \onte Carlo data. The analytical prediction, using the approxi-
obtained at finite. We actually plotf(£)/{* as a function of  mation valid foru close to 1, is also shown for the same values of
{# in a semilog plot, in order to test directly the asymptotic ;, (lines). The predicted exponeht|**# is in good agreement with
form given by Eq.(8). Note that the approximation is sup- the numerics, since data appear to be linear in this representation.
posed to be valid only fop. close to 1, but seems to work The prediction foro—see Eq.(8)—is in best agreement with the
well even for rather small values qf, like ©=0.5. Also  Monte Carlo data fop.=0.8.
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T ] partial equilibrium restricted to the region of phase space that
. 210 | it has explored up to timé see, e.g., Ref§36—38. This
o i=10* idea of partial equilibrium was introduced and used quanti-
s 10 tatively in the context of random walk models in REZ9].
— Prediction| 1 In this section, we want to discuss this issue in some
details. It turns out that the full statistics &° can be
worked out in the limit, where(t)—«, and can be com-
pared to the corresponding statisticsRy{t) that we deter-
mine numerically. Perhaps surprisingly, we find that these
statistics differ significantly even in the long-time limit,
meaning that the out of equilibrium problem never ap-
proaches a quasiequilibrium regime.

E.<p(x.n>

0 5 10 15 20 25 30 A. Participation ratios and localization

2
*x/8) In order to investigate the statistical property of a random
FIG. 3. Plot of £,(1)(p(x.1)}, versus[x/&(t) ]2 for w=1 and probability mea_sureésuc_h a_sPi(t) or P{¥], one can intro-
timest=10° (0 ), 10° (@), and 16 (A); &(t) is the critical  AUCe the following distribution:
coherence length, defined &g(t) =[t/In(T't)]*?2, whereT is fitted

on thet=10" curve. The data points seem to converge at large ¢(P):<E P5(P—Pi)> , O<P<1, (12
times towards the asymptotic Gaussian form predicted by(Hij. i
(line).

T

which is defined in such a way as to give a small weight to
ral, as can be shown by the structure of the subleading term#he very large number of sites with small energies, in order to
Fiting I" on data corresponding to=10* leads toT evidence the statistics of the deeper traps present in the sys-
=1.64. One sees that for largethe slope is then found to tem. This distributionp(P) is normalized, since
be the same for the three-times simulated. L

We have also tested the smgllregion. Foru=0.5, the f o(P)d p:<2 pi> =1 (13)

J[Z| singularity predicted by our approximation—see Eq. 0 ] B
(8)—is rather convincing. However, as increases towards
1, the coefficienf; of |g|ﬂ decreases towards zero. The next The moments of this distribution are related to the so-called
leading term becomes important and one indeed observes #iverse participation ratio¥), :
effective singularity with an exponent intermediate between

w and 2: we find this exponent to bel.6 for «=0.8 and flP"*lgo(P)d pP= 2 P!‘ =VY,. (14)
~1.8 for n=0.9. 0 i T
IIl. PARTIAL EQUILIBRIUM AND LOCALIZATION These participation ratios have an interesting interpretation:

) ) o o ) if Yy remains finite fork>1 as the number of terms in the

The one-dimensional diffusion problem is interesting be-sym diverges, one speakslotalization since a finite frac-
cause, as mentioned above, each site is visited by the walkiyy of the number of particles remain concentrated on a
large number of times. A natural idea is therefore that at timginjte number of sites, even in the limit of an infinite number
t, the probabilityP;(t) to find the particle at siteshould be  of gyailable sites. Ther, were introduced in the context of
very similar to theequilibrium distribution restricted to an  gjectronic localizatioi39] and in spin glass theoifyt0], and
interval of finite lengthe- £(t). More precisely, we can expect sydied in several other probleri$1,42. Note that in the
that Pi(t) can be written on the following “quasiequilibri- |imjt k—1, (Y,—1)/(1—k) becomes the statistical entropy

um” form P{%(t): of the measure®; .
ai(t) _ In equilibrium, and for integer values &, Y, can be
Pi(t)~PI(t)= T-—~efi/T, interpreted as follows. Suppose one chooses at ranklom
z particles with their corresponding equilibrium weight, is

. the probability to find them all at the same site. Correspond-
-3 £ /T ingly, for the out of equilibrium situationy is the probabil-
Z_i:_w gi(ve=, (1D ity to find k particles(that all started at the same sitglus-
tered together on the same site at tim®bviouslyY, can
where the “form factors’g;(t) are slowly varying and decay only be nonzero if some effective attraction exists between
on the scale of(t). (Note that the energy barrié;>0 is  the particles. In the case of disordered systems, this attraction
the opposite of the energy of the sjt&his idea of “partial  is induced by the disordered environment, whéreninter-
equilibrium” is actually quite general and is often advocatedacting particles condense into particularly favorable sites.
in the context of glassy dynamics. Although the system is out For the problem at hand, the quasiequilibrium vaxf§
of equilibrium, one may think of its state at tinteas of a  of the participation ratios can be computed, using for in-
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stance auxiliary integralgtl] (see also Ref§43,44). Inter-
estingly, the detailed shape of the “form factorg/" in Eq.
(11) does not matter, and the quasiequilibrium resif§
coincide with the equilibrium value¥}9. For u=1, Y4
tends to 0 wherg(t) goes tow, whereas foru<<1l it con-
verges for large(t) to a finite value,

eq_ D(k—p)
T Tmra- e "

identical to that found in the random energy model. Note that
Yg9—0 whenu—1", so thatYy%u) is continuous atu

=1, and the participation ratios indeed converge to O in the
critical case, although rather slowly. This means that in the

low temperature phasé<T,, the equilibrium measure lo- t
calizes over a finite set of sites. The corresponding equilib-
rium distribution of weights is given by FIG. 4. Test of the convergence &f,(t) towards an out of

equilibrium value, foru=0.5: Y,(t) is plotted for different small
sizesL=2N+1 of the system, so that equilibration can be reached
<Peq(P) = W P #(1- P)”_l- (16) within simulation time. One can see the onset of a plateau at a value
KT lower thatY%=0.5 (the equilibrium value folL—). The inset

In order to test the partial equilibrium idea, a relevant ques§h0w§ that the clurve/s collapse if time is rescaled by the equilibra-
tion is whether or not the dynamical(t) approach, in the tON time teg=Nt %%, so that the plateau corresponds to a true
long-time limit, the equilibrium(infinite size YEq_ This can out of equilibrium effect, and not to an initial transient.

be also seen as a question about the commutation of the tW@ther well, at least in the crossover region. This shows that
limits t—c andL—c (see, e.g., Ref3]). The equilibrium  the plateau indeed corresponds to the onset of an out of equi-
case corresponds to taking- first, at fixedL, and then |iprium steady state regime, when the diffusion length is
takingL to |nf|n|ty The out of equilibrium case, on the other much smaller than the size of the System_ The crossover
hand, corresponds to takirig=c from the outset and let appears when the two lengths become comparable.

t—oo. In order to study the asymptotic values’"=Y3’"(L
—), we have simulated systems of very large sites
B. Dynamical localization and weak ergodicity breaking However, the temporal convergence Yj(t) is very slow
Let us now turn to the dynamical localization properties,f"‘nd some i_nfinite—_time extra_polation procedure is needed. As
starting from a localized initial conditioP;(t=0)=5, . It  llustrated in the inset of Fig. 5 fok=2 andx=0.5, we

has been shown by Fontes, Isopi, and Newfigdj that the ~ nave assduLned a power-law convergence(p,g ?f the form
. . . . — —a T 1+

random walk process with a diverging local mean trapping k(1) = Yi’"+ At with 3 fitting parameter¥;”", A anda,

time converges, up to a space-time rescaling, to a stationatyhich was found to work rather well. However, fpr close

process. Consequently, all spatially integrat@he-time to 1, the fitting parametéf‘ﬂy“ becomes very sensitive to the

quantities like participation ratios converge to asymptoticchoice of the time interval used to fit the data, and as a result,
values at large time, which am priori different from the  error bars become larger.
equilibrium ones. Unfortunately, this mathematical approach Figure 5 shows the extrapolat¥@*" andY$" as a func-
has not been yet able to predict the corresponding numericéibn of w, and compares it to the equilibrium relation
values. We have computed numerically, using a simpler5%u)=1—pu, and Y5%(u)=(1—u)(1—u/2). It appears
Monte Carlo method, the time dependenceYpft) for sev-  that the dynamical localization is weaker than in equilibrium.
eral values ok (k=2,2,3%,4); seeAppendix B for techni-  In particular,Y$’" and Y$'" converge to a value smaller than
cal details. Our simulations confirm the convergence ofl whenu goes to 0. We shall argue below thef”"(u
Y, (t) towards a limiting value for large, and show that =0)=2/(k+1), whereasr;{u=0)=1. In the other limit,
these asymptotic values are indeed different from the equix— 1, it will also be argued in the following section that
librium ones. Yﬂy” vanishes linearly withu. This is indeed compatible

In order to evidence the convergence of(t) towards with the numerical data, although other functional depen-
different asymptotic values depending on the order of limitsdence might also be compatible, since the error bars are large
t—oo andL—, we have first studied small systems for in this range ofu. We have also shown in Fig. 5 the predic-
different sizesL=2N+1, in the caseu=0.5. Figure 4 tion of a simple argument given in Sec. IV D below, which
shows the onset of a clear plateau at a varlgl\é“(L) smaller  suggestsY2"(u)=2Y% )/ (k+1), which is in rather
than the value predicted by E(L5), Y59=0.5 (for L—),  good agreement with the numerical results.
before a crossover towards the equilibrium regime. Rescal- Therefore, all the dynamical patrticipation rati‘afSy“ are
ing the time coordinate by a factd**#)/# (corresponding  different from their static counterpart. The relative weights of
to the equilibration time, of the systen the data collapse the different visited sites are not given by the ratio of their
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1 ' ' time a given particle spends on different sites has not the
same statistics as the relative fraction of particles that are
found on the different sites at a given instant of time. Such a
0.8+ . . SO
difference between individual and ensemble measurements
i have been emphasized in a different context in 2], and
06F e recently observed experimentallg4].
Y, 4 S
: Se C. Analytical calculation of the participation ratio
04 T .
== Using the same procedure as {@(x,t)) ., one could try
= to computeY,(t) that is given by
02+
Yk(t)=f dx(p(x,t)%) .. (17
| — o0
% 0.2
u However, this calculation reveals to be much harder than for

the case ofp(x,t)),. In Appendix C, we report a simplified

versusy. The equilibrium function&/2%( ) (full ine) andy$%(,)  Calculation in the caske=2, which aim is to argue that;""
(dashed ling are shown for comparison. One clearly sees that lo-1S dlfferer_n from 0 in the low temperat_ure phage<1,
calization is weaker than in the equilibrium situation. In particular, Whereas it vanishes fgn>1. Although this last result has
the participation ratios seem to converge to a zero temperature limR€€N rigorously proven in Ref30], we want to introduce
which is less than 1. The stars and the dotted lines correspond f€re a general method that could, in principle, yield bounds
the prediction of a simple model given below, E89). Inset: fit of ~ and approximations fol, for any w, and not only foru
Y,(t) using the functional formy,(t)=Y®"+At"2, for 4=0.5. <1. We obtain the behavior ngy” for u— 1~ and find
Only 1 Monte Carlo point out of 12 is shown, for clarity. how Y,(t) vanishes as a function offor «>1. To do this,
we introduce a functiofR(t,t") through

Boltzmann weights. This result is important, since it was
shown that, in the Sinai model, equilibrium and dynamical ®
participation ratios indeed coincidé5]. An interesting pos- R(t,t")= J'iwdx<p(X,t)P(X,t')>T (18)
sibility, discussed in the context of glassy systems, would be
that theYEV“ C(_)rrespond to an eqwhpnum measure but at %so thatY,(t)=R(t,t)], as well as its Laplace transform
different effective temperature. We will show below, that this - ,
is not the case. R(s.s"),

Note that for walks in higher dimensiond>2, one can . .
show rigorously thaty?Y"=0 [31], whereasY{9 are still ﬁ(s,s’)=J dtJ dt"e SUSUR(t,t). (19)
given by Eq.(15).1 However, in this case, each site is visited 0 0
a finite number of times, and therefore it could have been
expected that the idea of partial equilibrium over the set ofUsing rather crude approximations, we obtain that, in the
visited sites would be quantitatively incorrgeithough it is  particular case where=s" and u<1:
able to reproduce, at least qualitatively, some nontrivial dy-
namical correlation functions—29] and see beloy An- . Ro
other solvable case is the one-dimensional directed walk, R(s,s)=—, s—0, (20
where each site is visited once. In this ca¥§’" can be S

computed exactly33] and is found to be close to, but dif- with a finite coefficientRy. In order to interpret this result,

ferent from, the equilibrium value 4 w. ; , )
The surprising aspect of our result in one dimension .Srtvivoenaci‘stl;]rgiotrf(t’t ) obeys, for largd,t’, a scaling rela-

that each site is visited, asymptotically, an infinite number o
times—a feature that, at least naively, should lead to partial
equilibration. 1y —dy

A different, but related, issue concerns the fractfoft) R(LE)=Y2""R
of the total timet a given particle has spent in thigh trap,
and study the participation ratios of this quantity. In this casewhich we have confirmed using numerical simulations. Then
we have found numerically that the differéfit aregiven by gne gets
the equilibrium formula, Eq(15). Therefore, we are in a
situation where ergodicity isweakly) broken: the relative 2ng”

. o R
R(s,s)~ 2 J’du(lit))z, (22

FIG. 5. Plot of Y?¥" (filled circles and Y3" (empty circles

]
=1, (21)
t!

1

The casal=2 is marginal, but one still finds thmﬂynzo in that
case[31]. or, using Eq.(20),
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---- Predicted exponents
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t 1
FIG. 6. Plot of Y,(t) for ©=1.3, 1.5, and 1.7full lines, from FIG. 7. Plot ofAY,(¢,t) versust for w=0.5 andt=10°, 10",

top to bottom, showing a power-law decay compatible with the 1P, 1¢F, and 10, so thaté(t) ranges from 10 to 215. Inset: the
predicted behaviot!*~#)? (dashed lines Note that the subleading  gjze ¢ of the window is rescaled bg(t), and the resulting collapse
corrections become stronger whgnis close either tqu=1 orto o the curves shows that the equilibration length scale is of the order
n=2. of a fraction of£(t). The strong increase &Y ,(¢,t) for small¢ is

due to small size effects.

R
ng”=#. (23 D. Partial equilibrium in a finite region
0 u
2 J du 5 We have seen that the dynamical participation ratio never
1 (1+u) reaches the static equilibrium value. Can one, however, iso-

late a region of space, of sizqt) possibly much smaller
Since the integral appearing in the above equation is convethan &(t), such that inside that region equilibrium is reached
gent [becauseR(u)<1], this result suggests thaf’" is 2 In order to test this idea, one can define a spatially re-
finite whenu<1. Since we find thaR, vanishes linearly stricted participation ratier, (€,t) in the following way as
whenu—1", we conjecture that

_ B 01k
YPMxl-p (u—1), (24) e \Ef P (20

which is compatible with the numerics and also comparabl@vhereﬁi(t) is the probability that the walk is on sitecon-
with the equilibrium behavior. The same level of approxima-ditioned to the fact that it is within the intervat-¢,€]
tion on Y5 also leads to a finite limi¥$’", and to a linear

temperature behavior§¥"«1—u (u—1), so that one can B.(t)= Pi(t) 27
reasonably guess that this linear dependence is valid for all : '
k>1. PR
The caseu>1 has also been studied; we find fork
<2 the new predictions, Figure 7 shows the numerical results for the following res-
caled quantity:
. 1
R(s,8)~—+ (1<u<2) _ydyn
(s~ #/2) AY, (€)= M' (28)
Y§a—ygrn
ﬁz(s,s)~% (u>2), (25)  such thatdY,=1 for an equilibrated region, and 0 by con-
S struction for¢> ¢&(t).

The results are obtained withranging from 16 to 10,
which predicts thatY,(t) tends to zero as*"#"2 when 1  andu=0.5. Whent goes to» at fixed€, Y,(¢,t) is seen to
<u<2, and ag~Y? wheneveru>2. The last result is in- converge to the corresponding equilibrium vaJuénich de-
deed expected: when the second momenk(af) exists, dif-  pends slightly on¢: Eq. (15) is only valid in the limit of
fusion is normal with no anomalous corrections. The prob4arge size$ In the inset we show Y,(€,t) as a function of
ability that two particles starting at time O at the same sitef/&(t). The collapse is rather good, showing that the size up
happen to be again on the same site at tin#ecays as to which the system is equilibrated grows &$), which is
£(t) X 1/€(t)%1/\t. The result for ku<2 has been thus the only dynamical length scale of this model. That
checked numerically for=1.3, 1.5, and 1.7see Fig. 6. Y,(¢,t) is equal to the equilibrium value fof<@é&(t),
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° MC data // 1 o u=0.3
oal |7 Equilibrium (n = 0) Py 25 — Fit of p=0.3 data [+
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— Prediction / | --- Fit of p=0.1 data
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Y, . 1.5
02l i L e -
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0 ] 0.6 0 0.2 04 0.6 0.8 1
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FIG. 8. Plot of Y&"(1) versusY3"(u), parametrized byu. FIG. 9. Fit of ¢(P) with then=—1 ansat4Eq. (32)] usingu

The equilibrium relation, corresponding to=0 in the replica lan- @S @ free parameter, for=0.3 andx=0.1. The fit is worse and
guage, is shown for compariscdotted ling. A rather good account WOrse asu is decreased. Note that for higher valuesuofthe fits
of the data is obtained using= — 1 (dashed ling However, as we aré better. Insetp(P,t) is plotted for different timeg=10° (full
show below, a better description is obtained using a mixtura of in€), 10° (dashed lingand 16 (dotted ling in order to evidence
= —2 cases, see Eq39) (full line). the convergence towards an out of equilibrium distributigp.(P)
(u=0.5).
where ¢ is a small number, means that only the “contempo- . .
rary” processes concerning the largest scg(8) are out of wheren is the number of replica@hat must be set to=0 to
equilibrium. In the sense, this could have been expected€CcOver EQ.(15), see Refs[41,44)). We can then express
However, let us emphasize again that a simple description kn @S @ function ofY, for arbitraryn. We found that the
such as Eq(11), which describes the lack of equilibrium on valuén=—1 gives a reasonable account of the data fo.all

the scale oft through the form factors;(t), cannot explain  Values. Interestingly, this value=—1 was found to de-
the observed difference betwe¥? andng”. scribe exactly the “area preserving random map model” con-

sidered in Ref[41] (where other models, corresponding to
different negative values of, where also studigdHowever,

as we discuss now, a more precise investigation of the prob-
lem shows thah= —1 does not fully describe our results.

IV. GENERALIZED EQUILIBRIUM AND HALF SPACE
EXCURSIONS

A. A functional relation between theY,’s

. L . B. The d ical distributi f weight
We have seen that the dynamical participation ratios do © dynamical cIStTbution ot weights

not take their equilibrium value. Would it be possible to re- Instead of studying all the differet,’s, one can analyze
define an effective temperatuge such that allY, can be directly the time evolution of the distribution of weights,
expressed as equilibrium values with this effective tempera¢(P-t), defined agsee also Eq(12)]:

ture? In order to test this idea, one can eliminatérom the

relation Eq.(15), and reexpress al, as a function ofY5, (p(P,t)=<E P5(P—Pi(t))> , O<P<1. (31
which yields the following relation: [

T

'k=1+Y,) For long times in an infinite system, this distribution is ex-
Yi=fi(Y2)= THRT(Y,y (29) pected to reach a stationary distributipg, (P). The inset
of Fig. 9 showse(P,t) for three successivéarge times:t
In Fig. 8, we have plottett®¥" versusY®'" for several val- =10, 10%, and 10. All three curves collapse rather well, at

ues ofu. It appears clearly that this relation is different from 1€@st not close to the “edges?=0 andP=1, showing that
the equilibrium one, shown for comparison. This rules outVe are close to the asymptotic distributidhlowever, since

the possibility of defining a meaningful temperature fromth€Yi's are sensitive to the region arouRd- 1, the discrep-
yan, ancies at the edges explain why these moments converge

The above relation between thg is known to be incor- more slowly) ) . o
rect in other models, such as in the random map, for example ON€ can define a generalized distributiopy;(P) as the
(see Ref[41]). Inspired from the replica method, one can©ne generating th& ,(u), which leads to the following
formally generalize Eq(15) to beta distribution:
— — I'(l—n ~ ~
_ L=k p) (30 enn(P)= £ ~) P #(1-P)» "1 (32
F(1=p)I'(n—n)

YT k—n) T (1—p)"
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Following the same line of thought as in the preceding sec- 2
tion, we want to check more precisely if the data are com-
patible withn=—1.

The parametric plotY3"(Y$’") was just a convenient 1.5
way to test whetheY3Y" andY$" obey a relation of the type

Eq. (30), with u replaced by an unknown parametgr

Turning to ¢4yn(P), one can then consider as a free pa-
rameter, and try to fit the numerical data, fixingp the value
n=—1 found in the preceding section. Fpr=0.5 the fits
obtained are correddata not shown On the contrary, for
n<0.5 the best fits appear to be quite unsatisfactory, in par-
ticular, for u=0.1 (see Fig. 9, showing that then=—1
ansatz does not fully account for the numerical data. Thisis % %5 o1 o085 o0z 1
due to the fact thap,, ,(P) is a monotonous function what- P

e e ol TSt ) peComes 10NN FG.10 o) or sl sl e -2l
K . 0.1 (dot-dashed lineand 0.05(dashed ling The curves seem to

rectly_the latter. As a result, the numerlcal_data (_:annot b%onverge towards the asymptotic distributiog(P) (dotted ling

described by a formula of the type of E2), in particular, ¢ ,,_ 0, but the convergence looks quite slow. Note tRat0

in the very low temperature case, although this ansatz wWagngp=1 are presumably singular points in this convergence pro-
rather correctly accounting for the parametric plotcegs.

YP(YPM. In order to get a better understanding of this
dynamical localization phenomena, we shall now focus on 1
the caseu—0, where simple arguments can be proposed. oo(P)= Pfo dp[d(pi—P)+6(1—p,—P)]=2P,

(33

oP) 1

0.5+

C. A simple analytical argument in the limit p—0 which leads forY, to

Although the out of equilibrium localization problem
seems to be hard to tackle at finite temperature, a simple o [tooq
argument can be given in the limit—0. This argument Yk:fo P ¢o(P)dP=1—~.
accounts for the nontrivial limit¥3Y" andY$", which were
found to be less than 1 fqu—0 (see Fig. . If u is very  For the particular casds=2 andk=3 presented above, this
small, then the largest trapping times accessible after a givegivesvg:§ andYg):%, which agrees rather well with what
time t are strongly separated from each other. One can, fogan be extrapolated from the numerical data on Fig. 5. More-
example, show that the distribution of the ratbof the  gyer, Fig. 10 confirms thap(P) converges towards(P)
second largest time over the largesp{®) = uR*~*, which  \when 0, although rather slowly. Note also thap(P)
tends tod(R) whenu—0. Therefore, in this limit, one can can be written in the general form Eq32) given in

assume that the time elapsed before finding the deepest trge preceding section, for the special choite —2 and
i occupied at time is negligible compared to the time spent =—1

inio.?

So the problem becomes equivalent to that of a random
walk with no random potential, but with two absorbing
boundariedi.e., the traps with trapping timet to the right The above argument can be reinterpreted in the following
and to the left of the initial sifeat random positions. If these way. In equilibrium, the zero temperature limit means that a
absorbing sites are at distances, respectivglgndx, from  single site dominates and contains all the probability weight.
the initial position of the walk, then the probability to be This is whyYg%— 1 whenu—0. On the other hand, in one
absorbed by(say the left boundary isp,=x,/(x;+X,). dimension, the time needed to explore an interval of ki
Since the initial site can be anywhere between these two sitas’* "4/~ which grows much faster than the time to exit the
with equal probability, one finds tha is a random variable deepest traps~LY*) found in the interval. Therefore, if a
uniformly distributed ovel{ 0,1]. Coming back to the trap deep trap is encountered in say the left region of the line,
model, it means that only two sites can be occupied, and ththere is a substantial probability that the particle will not
corresponding occupation rates are uniform random varihave time to explore the right region and equilibrate with a
ables. More precisely(P) can be written as trap of comparable depth. This is the essence of the above

argument: at zero temperature, the fractmrof the weight
captured by the left trap is uniform between zero and one,
2The time spent on sitk, is actually much greater than the trap- independently of the relative depth of the two traps. A simple
ping time 7; , since the particle comes back to it a large number ofway to generalize this argument for finite temperature is to
times before finding a deeper trégee Sec. V. assume that each half space is independently equilibrated,

(34)

D. Generalization of the argument to finite temperature
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FIG. 11. Comparison betweea(P) obtained by numerical
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the probability weighp, carried by one half space, for different
This distribution appears to be nonuniforf@xcept foru—0), at
variance with the hypothesis underlying Eg6).
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rameter is used here. We note that the participation ratjos
obtained usingp* (P) are simply proportional to the equilib-
rium values

2 o
= vea,

*
Y k+1

(39

As shown in Fig. 5, this relation accounts quite wllit not
exactly for the data. However, the distributiofi(p,) of the
weight pyj=1—p, carried by one half space is not found to
be uniform as we assumed, except for-0—see the inset
of Fig. 11. Surprisingly, if one redo the above computation
with a humped shaped distributio(p,)=A[p;(1—p)) ],

the resultingp* (P) does not fit the data as well as the above
form, which corresponds to=0.

E. Discussion

The physical picture emerging from the last sections is the

?ollowing. For the purpose of understanding global localiza-

tion quantities, one can reasonably consider that space is
split into two half lines, and that each one behaves as if it
was independently equilibrated, but out of equilibrium with
respect to the other. On the other hand, we have seen in Sec.

and carries a total weight uniformly distributed between zerd!l D that length scales much smaller th&ncould be con-

and one, as in the zero temperature lifiitctually, as no-

sidered as equilibrated, and that departure from equilibrium

ticed above, we only need to assume that in each half spag@mes from the largest length sc@¢= . The equilibration

the probability distribution has the form given by HdJd)

of the small scales cannot be accounted for by the previous

with arbitrary factorsy; : this does not affect the asymptotic argument. All these observations suggest, in order to get a

shape ofp(P) = ¢¢4(P).] Denoting bye(P,p,) the distribu-
tion restricted to the left half space, normalizedpig one
has for 6<P<p,,

P _ _
@(P,D|)=mp H(p—P)#

Averaging overp, with a uniform weight, and taking into

(39

consistent picture, that space may be actually divided into

three regions, an equilibrated domain centered on the origin

and two quasiequilibrated regions on each side, and that each
part of space is not equilibrated with the others.

An artificial remedy to this lack of equilibration between
the different regions is to allow the particle to make long
jumps. We have therefore added links between the sitesl
—X, such that the probability to hop directly fromand

account the right half space, leads to the following prediction—X decays ax™*. Whenp is large enough, the dynamical

for o(P),
1
cp(P)ch*(P):zfodp|<p<P,p.>a<p|—P>, (36

2
(1=pw)(1+p)

+ 24
F1-wl'(2+u)

¢*(P)= 1 P #(1-P)"

P #(1-P)t*#. (37

Although we do not have any interpretation for this, one can
notice thate* can be written as a superposition of distribu-

tions ¢ _,7,, with two different values ofe,

e*(P)=(1—p)e_5,-1(P)+ue_5,(P), (39

participation ratioY,(t) is a decreasing function of time, and
seems to converge ng”. Whenp<p. on the other hand,
Y,(t) is seen to reach a minimum and to increase back to-
wards the equilibrium valu&/$. We have, however, not
checked in details whethéf,(t) indeed converges towards
Y59 for all p<p., but only wanted to illustrate that the
difference betweery9’" and YS9 is due to the scarcity of
the links between the different sites for the one-dimensional
lattice.

V. CORRELATION FUNCTIONS, AGING AND SUBAGING

A. Motivation

Let us now turn to different correlation functions that one
can define in order to probe the peculaging properties of

this model. Since the largest encountered trapping time dur-

ing t,, scales ag,, with v=1/1+ u<1, one would naively

with ¢, 7 defined in Eq.(32), and in agreement with what expect that two-time correlation functions vary on a time
was found foru—0. This prediction is compared with the scale~t,,. This would correspond to “subaging” behavior,
numerics in Fig. 11, for several values af (u=0.1, 0.3, where the effective relaxation time grows less rapidly than
0.5). The agreement is rather good; note that no fitting paitself.
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This is indeed the case for the probabilli(t,,+t,t,,) of  duce the dynamical distribution of trapping timpér,t,),
not having jumped at all between timgg andt,,+t. This  assumed to behave as
correlation function was computed numerically in R&9],
and was found to scale very accurately Hgt,, +t,t,)
and wa . . P(7,ty) = —¢>( )
= (t/t,). The shape of the scaling function was compared t?
to the prediction of an approximate calculation where one
assumes “partial equilibrium,” i.e., that the probability to This encodes the fact that typical trapping times are of order
find the particle in a trap of depth after timet,, is equal to  t,. If one assumes that short-time scales(,,) are equili-
the equilibrium probability within a region of sizé(t,). brated, whereas large ones>(t,) are still distributed ac-
This approximation predicts a power-law behavior #6(s) cording to thea priori distribution (this can be rigorously
both for small and large, with exponents that agree with proved in the fully connected trap modebne obtains the
their numerical determination. The detailed shaper¢$),  following asymptotic behavior fot(z):
however, departs from the numerical results, which is ex-
pected. The success of the partial equilibrium assumption Yo
here is due to the fact that(t, +t,t,) only depends on the b(2)= u z-0, (41)
average probability to occupy a site, and not on higher order
correlations such as needed to compute the participation ra-
tios Y. H(2)=
Perhaps surprisingly, different correlation functions may
exhibit a completely different aging behavior. Consider the
probability C(t,,+1,t,) that the particle occupies the same Using the relation
site at timet,+t and at timet. Obviously, C(t,,+t,t,)
=TI(t,,+1t,t,). Butin this case, it was shown rigorously in _ - —tlr
Refs.[30,3] that C(t,,+t,t,) scales as a function dft,,, Mty +tt _f drp(r.tw)e ", 43
and not as t/t,,. This means that even if the particle has
almost certainly jumped away from its starting point after aone can easily deduce from E@1) the short-and late-time
time t,<t,,, it has returned there even after a time of orderbehavior oflI(t,+t,t,),
t, so as to makeC(2t,,t,)=0(1), whereaslI(2t,,t,)
—0. This difference is not intuitive priori, in particular
because one knows that once the particle has left its initial
trap after a time~t,,, it takes on average an infinite time to
get back there, since the walk is one dimensional. But if
C(tw+t',.tw) is to (_jecay on the scaigv, it means t_hat the IM(t,+t,t)=7y.I(w)| —
probability not to find the particle on its starting point after a
time t much greater thatj,, but much less that, must tend
to zero whent,,—. The fact that the particle jumps back in agreement with the results of R¢29], and with the nu-
and forth a large number of times betweignandt,, could  merics(see below.
thusa priori lead to an interesting behavior 6f(t,,+t,t,,) Turning now toC(t,,+t,t,), one has to take into account
in the short-time regimé/t,,<1 (which was not investigated the fact that when a particle leaves its trap, it will come back
in [30]). For example, one could find, as in RE29)], differ- a large number of times before really escaping. We thus pro-
ent “time domains”t~t/%, t~t2, etc., where the correla- POS€ the following approximation. A particle will be consid-
ered to have truly left its initial trap if it has encountered a
deeper trap during its excursion out of the original trap.
Given a trapping timer, the probability thatr’ > 7 is given
by

(40)

Ve
T Z— + o, (42

1-n

M(t,+t,t,)=1— , I<ty,, (49

Yo
1- ty
—u

, >t (45)

w

tion function has a dlfferent analytlc behavior. This is the
issue that we discuss below.

B. Analytical arguments

The difference of scaling betwedh andC can be quali- wdr’
tatively understood as follows. F&(t,,+t,t,) to decay to P(7’' >T)—f REEAE (46)
zero, one has to wait until the region probed by the particle at T

timet,,+t is much larger than the initial region where it was - ) )
Iocated i.e., a timé such thaté(t,+t)> &(t,). But since So the probabilityp(€,7) that the first trap encountered with
£(t,)~ M/(1+,u) , the time needed fo€ to decay to zero is @ trapping time larger than is found at a distancé is

necessarlly of ordetW [Note that this argument does not . L\t
hold forII(t,,+t,t,), which only requires the particle to hop ~ D ' -1_ ~ [ 1_
once out of its initial trag. p(6, 1) =P(r"=7[P(7"<7)] v ! ™~ '

In the same spirit as Ref29] for T1(t,,+1,t,,), but using (47)
a slightly different method, one can try to give an approxi-
mate calculation ofC(t,+t,t,). The first step is to intro- For larger’s, one has
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o+

- 1
p(€,r)~ —Me* (48)

T
0.8

Note that we only give here a scaling argument, and tha@
corrections coming from the fact that there is a deeper trag’: 06
on both sides are neglected. Conditioned to the fact that th& =
deeper trap is situated at a distantethe particle has a *

probability 1# to reach it, once it has jumped out of its f»s 0.4

initial trap. Therefore, the escape rate can be written as =

1 0.2
W(7,€)—ﬁ. (49
. . . . 0 \ | L | L | \ | L | L | L | L |
The correlation functiorC(t,,+t,t,,) is then given by 0 1 2 3 4 5 6 7 8
t/tf
_ e (e ] —_ B Tyg
Clty+t,ty)~ L drp(7.ty) L dfp(€,m)e M or, FIG. 12. Plot of 1-TI(t,,+t,t,) (increasing curveversust/t},
p=v) andC(t,+t,t,) (decreasing curyeversust/t,, (p=1), for
(50) (p=v) andC( ) (d i Y Ity (p=1), f

w=1%, and v=1/(1+u)=3%. The scaling relations are very well
After a few changes of variables, and using the scaling relasatisfied, at least in this time window. Symbols refer to the same
tions of Eq. (41), one finds the following short-time and Waiting times for the two curves;,=10° (+), 10* (©), 1¢° (O),
late-time behavior foC(t,,+1,t,), and 16 (>).

Clty+tt,)=1—c L)(l“)/(“’” t<t 51) multiple time regimegas was the case in RegR9], where
whtw S\ ty ’ wo similar “nonscaling” features actually suggested such re-
gimes. A way to investigate this issue is to study the func-
t) #Qtw) tion g(a,t,,) defined as
C(tw+t,tw):c.(t— , >ty (52
W _ o
| olat)= - IN[1-C(t,+ty,tw)] 55
where the constants; andc, are given by Int,
Yo 2u 2 ) ) o )
Cs= T-u \Tru) (53 If this function has a limig..(a) whent,,—, it means that
in the time domain, wherée~ty,, the probability - C that
2 the particle has escaped from its starting site decays as
c,=L°°2F(1% (54 t;g”(“) for larget,,. From thet/t,, regime established by
(1+p) # Ref. [30], we already know thag..(1)=0. If 1—C(t,

A _ta :
These values for the short-time and late-time singularity ex-H’tW) behaves ast(t,)" even fort~t,, with a<1, then
ne should obseng..(a) =\(1— «a). Any departure from a

ponents, have, to our knowledge, not been reported beforg, ¢ . Id sianal multiole ti : .
although they should, in principle, be contained in the analy—'near unctiong..(«) would signal multiple time regimes; in

sis of Ref.[30]. We now turn to a numerical investigation of particular, for thg model considered in R¢29] in d:,1
these asymptotic predictions. where two subaging exponenis<v; <1 appear, one finds

that the functiong..(«) is piecewise linear in the intervals
[0,v,] and[ v,,v4], with different slopes. One also finds that

C. Numerical results and multiple time scales

Figure 12 displays #*II(t,+t,t,) as a function of
t/tYA* 4 andC(t,+t,t,) as a function ot/t,,, for differ-
ent waiting times {,=10°, 10, 1¢°, and 16) and at tem-

peraturew = 3. The collapse is very satisfactory, confirming

the validity of the predicted scaling relations.

9-(v5)=0-(v5), and g.(e>v,)=0. In this case, the
change of slope indicates the presence of a characteristic
time scale. One could imagine more complicated “multiscal-
ing” situations, whereg..(«) is a nontrivial curve.

We have first tested this procedure Bi{t,,+t,t,), de-
fining in the same way a functiog* («,t,,) associated with

Let us analyze in more details the short-time behavior oflI. In this case, a single subaging scaling is expected, with

these correlation functions. When plotting Ia(ll) as a

v=1/(1+u), and A=1—u, which leads tog..(a)=(1

function of Ing/t;), the scaling is still quite well obeyed and — u)(v—a). The functiong* («,t,,) is plotted for different

in good agreement with the theoretical prediction- I
~(t/ty)t~#, obtained in Ref[29], up to small-time correc-
tions that vanish only whehgt>1.

On the other hand, a similar plot of I{IC) as a function

values oft,, (namelyt,,=10% 10°, 1¢%, and 10) in Fig. 13,
for u=3%. On general grounds, one expects finite-time cor-
rections tog;(a) that decays as 1/ky, and 1f),. Using
these corrections, one can very satisfactorily extrapolate

of In(t/t,) is less convincing, which could be the sign of gZ(a,t,) to a function which is very close to the expected
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, : . FIG. 15. Plot of the late time behavior &f(t,+1t,t,) versus
! tiong™ (a, L), lated l(t, tt,), with t/ty, and C(t,+1,t,) versust/t,, for t,=10° and 18, respec-

=1 = e e
/_L Z'and ty=10% 16°, 16, arld 216' The functlongw(c.y) .(f.uII tively, and . =0.5. Both correlation functions exhibit a power-law
line) is expected to b@k(a)=35(5—a) (see text The infinite-

: - | " behavior at large time, and the exponents agree well with the pre-
time extrapolatiorg* (a,t,) (<) agrees very well with the predic- jicteq values—% and— % [see Eqs(44) and(51)]. The correspond-
tion, with small discrepancies near=0 anda =2, where finite-

' ing slopes are shown in dotted lines, as a guide to the eye.
time effects are stronger.

. 1o ] -~ One can now apply the same procedureCid,,+t,t,,).
resultg: (a)=3(5—a) (see Fig. 1B To be more specific, The results are shown in Fig. 14, using the same convention
we used the fO”OWing functional form for the eXtrapOlation: as for F|g 1319(a1tw) is represented for the same Wa|t|ng
times agy* («a,t,,). Interestingly, although finite-time correc-
tions are strong, the extrapolated results are in good agree-
ment with our analytical predictiog..(a)=\(1—«), with
N=(1—w)/(1+u)=1/3, at least wherre[0.2,0.§. This
whereg* («), c(a), andy(a) are fitted for each value af, suggests that a unique time regimet,, is relevant for
and b is a fitting coefficient independent af, since the C(t,*t,ty), although we know that the time scalg<t,,
1/Int,, correction is expected to come from the prefactor ofgoverns the evolution dfl. Note that the 1/In, corrections
(t/tvvv)l—u in the short-time expansion of the correlation are weaker than in the previous case, and one is almost domi-
function. Therefore, the value @fwas fixed from the direct nated by power-law corrections. This is due to the fact that
power-law fit of the short-time regime of-411. the prefactor of {/t,,)" in the short-time regime happens to
be close to 1 heréand hence the parametbris smal),
whereas the prefactor of/¢)" was about 0.57 fofl.

So, what happens to the particles that have left the initial
trap after a short-timé], and took a very long time to come
back? The probability that a particle leaves the trap exactly at
t'is o[ 1—TI(ty, ty,+t")]/at’' ~t' ~#/tX1~#) If the sample
was not disordered, the probability that it has not returned to
the origin after timet—t’ decays ast(—t’) "2, Because of
the long trapping times, this probability actually decays
slower, as {—t') " #/(1*#)_ These particles contribute to 1
—C, as

b
g*(a,tw)=gii(a)+m+C(a>t"(“>, (56)
w

0.4

0.3

0.1

t t/
l—C(tW+t,tW)~J dt' ——(t—t") " #/(1*»_ (57)
0 ( /’L)

tw

o
FIG. 14. Functiong(«,t,), associated withC(t,,+t,t,), for C.hoosmgt—tw,.we find that th? Cg/r:irlbL)Jthﬂ of these "early
=1 and with the same waiting times as fgf (a,t,). The argu-  irds” to 1—C is a factor oft,,“* "*"# smaller than the
ment developed in the teXEq. (51)] predictsg..(a)=1(1—a) contribution computed above, E(p1), and are thus negli-
(full line). Although finite-time corrections are stronger than in the gible in the larget,, limit.
previous case, the infinite-time extrapolatigp,(«) (<¢) agrees This simple estimate shows why finite-time corrections
well with the prediction, at least for 02a<<0.8. become large whea— 0, (ii) that power-law corrections to
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g(a,t,), as the one used for our extrapolation, are indeedite is visited a very large number of times by the random
expected and finallyiii ) justifies why thet,, time scale does walk, one could have expected that a partial equilibrium sets
not appear irC(t,,+t,t,,). in within the limited region of space explored by the walk.
The late time behavior of the two correlation functions Our detailed study of the distribution of dynamical weights
can also be tested numerically. Fig. 15 shdwé,,+t,t,)  Shows that this is not the case. We have argued that this can
versust/t’, andC(t,+t,t,) versust/t,,, for t,= 10° and be interpreted in terms of an effective “fragmentation” of
10, respectively, ange=0.5. The two correlation functions SPace in two half linesor even three domaifswith a re-
behave as power laws at large timend the exponents are Stricted equilibrium within each region, independently of the
in good agreement with those predicted by Egl) and  others. . _ _
(51), shown for comparisortwith a arbitrary prefactor at ~ Finally, we have studied two different two-time correla-
least for this particular value gf. Note that since we do not tion functions, which exhibit different aging properties: one,

know the constants, and .., we cannot test the values HI(tw+t.ty), is “subaging” whereas the other on&(t,,
predicted for the prefactors. +t,t,), shows “full aging.” We have given intuitive argu-

Finally, an important point to mention is whether or not ments gnd simple analytical approximations that account for
this multiscaling behavior could be tested on mesurabldhese differences. We have obtained new predictions for the
quantities, in particular in a real system. Indeed, it would beasymptotic(short-time and long-timebehavior of the scal-
interesting to know if response functions could be associatedNd function associated t&(t,,+1t,t,), which are found to
in an unambiguous manner, to each of the correlation funcbe in excellent agreement with the numerics. Since two time
tions C andIlI, and in such a case, if responses and correlascales {;, and t,,) appear in this model, one can wonder
tions would scale in the same way withandt,,. Several Whether the short-time behavior @(t,,+t,t,) exhibits a
response functions could be proposed. One can, for instance@ntrivial, multiple time scaling. A careful numerical inves-
compute average probability current at tiogert, given that  tigation of this issue leads to a negative answer, although
a small bias in the probability to go, say, to the right has beegtrong finite time corrections are expected.
applied at timet,,. This response seems to have a well de- Since this one-dimensional model is currently of interest
fined physical meaning; however, the way to relate it to thef0 the mathematical community, we hope that the study pre-
correlationC or I is not obvious. Another definition of the sented here will motivate further rigorous research, and that
response function, already introduced in the context of théome of our results, in particular concerning asymptotic es-
fully connected trap moddL3], is to associate to each site, timates, can be proven to be exact.
in addition to the energy, a “magnetization” variabis; .

Assuming thaim; is independent from site to site and from
the energyg;, C(t,+t,t,) appears to be the natural corre- ACKNOWLEDGMENTS

lation of the magnetization Fruitful discussions on this model with G. Ben Arous,

J.-M. Luck, C. Newman, P. Maass, M. d&rd, C. Monthus,

C(twﬂ,tw):<m(tw)m(tw+t))—<m(tW)><m(tw+t)>(’58) and G. de Smedt are gratefully acknowledged.

wherem(t) is the magnetization of the system at timee.,
My . But in this framework, the meaning &f is not clear. APPENDIX A: THE AVERAGE DIFFUSION FRONT
Therefore, a careful study of this point is required, which 1. Formulation of the problem

will be done in a separate publicatip#6]. o ] , , ,
The explicit calculation ofp(x,t)), is reported is this

Appendix. Note that all the computations developed in Ap-
VI. CONCLUSION pendix A and C are expected to be valid for the more general
In this paper, we have studied in details the one-model where hop.ping is only _const.rai.nec.j to have a finite
dimensional exponential trap model, which exhibit a phasé@ng€ €hop, and in the long-time limit, i.e., wher¥(t)
transition between a high temperature diffusive phase and & {nop- It iS not necessary here to restrict ourselves to the
low temperature subdiffusive phase. We have obtained ni?€arest neighbor hopping case. Two different averages will
merically and analytically the shape of the average diffusiorP€ introduced, the average over the random walks ) .
front in the subdiffusive phase. Although based on an apand the average over the quenched trapping tifnes) ..
proximation valid only near the dynamical transition, our We consider here a slightly modified version of the model, in
calculation provides several predictions on the asymptotievhich the particle stays on a site a time exactly equal(tQ
shape of p(x,t)), which are in excellent agreement with the (continuous notations are used, so as to facilitate the continu-
numerics. It would be interesting to see whether these presus space limjtrather than exponentially distributed around
dictions are actually exact. this value. We expect, and have checked numerically that this
The central result of this study concerns the localizationis irrelevant for the shape dfp(x,t)), at long times.
properties. We have found that the dynamical participation For a given sample of the disordégquenched trapping
ratios are all finite, but different from their equilibrium coun- timeg, we can decompose the probabilip(x,t) for the
terparts, even allowing for the existence of an effective, dywalker to be on site at timet into a sum over the number
namical temperature. This is surprising because since eadf steps
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o o0

* udr
p(x,t)= > P(x,n;t)= >, (& o (t,<t<tn,1)) , (e*aT>T=J’ PT emarm 1 _car=~e @ (A9)
n=0 n=o " w 1 gte
(A1)
J
wherel (t,<t<t,,4) is the characteristic function of the in- (€737 =— —(e ?") =cua* e %, (A10)

terval[t,,t,.1], equal to 1 oft belongs to this interval, and Ja

0 otherwise. In order to simplify the notations, we introduce A
1.()=1(t,<t<t,,). Now, averaging over the disorder, ~ With c=T'(1—x), so tha(l(s)). reads

(T(s)),= Cu[&/\/w(X)]“lexp| —cs*

Z NW(x’)“H.

(POSD)= 2 (8, (D)) (A2)
"o (A11)

The key point is that we can permute the two averages, an
perform first the average over the disorder for a given walk
Introducing the averagg - - ), x over then steps walks end-
ing on sitex, we get

Rlext, one has to average over all the walKending on site
X in n steps. Since this part is the hardest one of the calcu-
lation, one has to resort to a simple approximation scheme,
valid in the vicinity of some specific value qf, namely,u
® close to 1 in the following.

X)) ,= X[ n){((Ix(t , A3 I
(Px,D) ;= 2, aAxM({1(0) nx (A3) . An approximation for sl
A simple approximation consists in performing the aver-

whereq(x|n) is the standard probability for the random walk age(- - - ), of the right hand side of E4A11) by replacing

to be on sitex aftern steps Nw(X") with N (x",n) = (Nw(X'))n x:
1 A
Q(X|n): —%97X2/2n (A4) <<|n(s)>7>n,x: < Clu“[S'N‘W(X)]’Uﬁl
for | . Taking the t | Lapl t form of '
<%r(xir)g>?,n aking the temporal Laplace transforth o xexp{—cs“{% N~ J>

; ) .
(px,8)),= 35 a(x|m{(Ta() . (A5) =cu[SNy(x,n)]

X exp{ — csf‘{ > N(X n)#

] . (A12)

which requires the calculation tf)f,(s),

A theq 1 This approximation is expected to be correct, at large times,
In(s)zf e Sdt=—e Sh[1—e S(th+17t)] for u close to 1 u<1), since it is exact fou=1. Note
tn S however that foru=1, Eq. (A9) is no longer valid, and
logarithmic corrections come into play. TurningAg(x’,n),
Tn(s)zr(x)e‘S‘n, (AB6) it can be shown that for large, a scaling relation holds:
sincet,,, 1 —t,= 7(x), and7(x) is at most of ordes™ ” when x" X
s—0, so thats7(x) should be small. For a given waW N(X',n)= JﬁF(T?) (AL13)
ending on sitex aftern steps, the timé, can be decomposed nn

into a sum over the different visited sites, with E(u,2) given by the following integral:

t,= > Ny(x')7(x'), (A7) 1 fl du o,
x/ F Z)= —— (v—zu)*“/2 sinwu. Al4d
.2) \/ﬂ 0 \/sinqrue ( )

where My (x') is the number of visits of the site’ by the

walk W. Now T (s) can be averaged over the disorder The different factors in EqA12) can then be evaluated:

+ o0 X M
7 — (oSN T —sAy(x)7 Ny(x',n "=f ndv| VnF| v,—
(In(9)),= (7€~ MW >T)£{X (e~ (AB) ; x(X",n) - Jndv| Vn (v \/ﬁ)
Averages of the forn{e "), or (re~ "), are easily calcu- = JntteG i) (AL5)
lated, in the limita—0, Jn
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introducingG(z) :szp(v,z)ﬂdv, b. Asymptotic behavior of the scaling function f
w oy \#71 |42 Now we focus on the asymptotic behavior gf7) for
/\/’X(X,n)ﬂlz\/ﬁﬂlF(_’_) :\/ﬁﬁ-lH(_) large », which gives the spatial tails of the distribution
Jn'Jn Jn (p(x,t)),. Whenz—o, the above integral is dominated by

(A16)  the small\ region, which means that one needs to know the
asymptotic large behavior ofH(z) and G(z). After a few

with H(v)=F(v,v). From Eqg.(A5), a continuous space lines of computations, we finally find

limit can be obtained, introducing a continuous scaling vari-
able\ through the natural scaling relatiar= A x2,

1
120 H(z)=—, G(2)=z'"#, z—. (A23)
. = e
oo [
o LIx[v2m\ The larges behavior ofg(7) can be then obtained from
1\t
pn—1 7o Y | ®
X|cus (|X|\/X) H(\/x) 1 é(ﬂ): 24y 77M_1I+ dkx“—(s/z)e—(llzx)—cnﬁx“_
N2 0
e [esH|x| 1T KL HG (1] ’ (A17) (A24)

where the parity of5(z) andH(z) has been used. Grouping The inverse Laplace transform can be computed using a
together the factors, and introducing the scaling variaple saddle-point method. One finally finds for the lafgé be-

=|x|X*Wrs, we get havior [or large|¢|, with ¢=xt™#/(1+#)]
- _ Al
(p(x,5)) :lelfﬂ—ﬂc pA| A w21 f(Q)~ 1| ¢ el (A25)
T e 0
with
1\#t
< H _) e—(1/2>\)—cnﬂx(“#)’ze(l/m
' rai-
0 oM oo (A26)
"
(A18) 2k
Note that this expression is compatible with the expecte®ne can also look at the limif—0. Starting from Eq.
scaling form (A22), we have to calculate the smalbehavior ofG(z) and
H(z), which is simple here since these function have a finite
<p(x,t))7=%f(%), (A19) limit in O, denoted bygy(w) andhg, respectively as

o

. . N +oo 1 (1 du
where ¢ is the dynamical length scale appearing in the go(ﬂ):f dv( f exp?/(2 sinwu)
model,é~t#/(1*#) One can indeed rewrite the previous re- — V2mJo ysinmu

lation in the following way: (A27)

1 1 2
0o— - = .
V2 N 2m?
Taking the Laplace transform with respectttgields me s 4
(ﬁ(X,S))TZ |x|1’“§;(7;), (A21) So we have to compute the following integral:
where(j is the Laplace transform a, which is of the form PR S ST (w/2)—1
. N 9(n)= he 7 dAN
Eq. (A18). So one deduces that the scaling functigry) is N2 0
iven b
g y x @~ (U20) —cgo(p) pa 12 (A29)
~ MuC P _
g(n)= \/Eﬂ“ 1f0 da\ (A1 Forf77—>l?, fthids integral is dominated by the largeregion.
We finally fin
1 wot (1+w)/2 Ao
XH(K) e (TR, g(p)=An Yarm 5.0, (A30)
(A22)  with
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tion properties fluctuate more; for integrated quantities like

A= L 2—'“1“(1—M)1’(1*”)g0(u)*“’(1+“) the participation ratios, we tooK,,=10° and Ng=10* (ex-

V2 1+p cept for small size systems, whelg,=N,=2%10°> was
used instead which was a good compromise in order to

th,lr _H . (A31) obtain both a good standard deviatiless than 10%) and

1+p long enough timesfor instancet=10° for ©=0.5). For dis-

Taking the inverse Laplace transform, this term gives thetrlbutlons like (P) and(p(x,t)), one needs to average over

value of(p(x=04)), which is proportional I Ry R larger number of samples, in order to get smooth enough

order to get the spatial dependence. the next term of thcurves(with fluctuations between different runs less than 5
9 P P ’ §1072). So ¢(P) was simulated usingN,,=10" and N

expansion must be computed. After a few changes of vari- 10°, whereas(p(x.t)) was computed wittN,,=10° and
. . = y ’ w
ables and asymptotic estimates, we get N.=10°. Note finally thatY,(¢,t) was simulated usingy,,

f()=fo—f4||*, ¢—0, (A32) =10°, andN¢=10* (except fort=10° and 10, whereN,,
=5x10* and 10, respectively, since we need a good sta-
with tistics on the sites with small trapping times so as to avoid
large fluctuations at smadl.
_1 r(l_M)ll(HM)F(L
(= 2phg Gol )~ +R) 1+u APPENDIX C: CALCULATION OF THE PARTICIPATION
“arwizs " F( 1 | RATIOS
1+u The analytical calculation of ,(t) appears not to be eas-
(A33) ily tractable, and the aim of this appendix is to argue for the
existence of a finite limity3’" of Y,(t) whent—o for u
2(1—p)i2 . . .
o= he 1| 1— ﬁ)_ (A34) <1, and try to extract some information on the behavior of
Yooymr 2 Y™ as a function ofu, in particular foru close to 1.

The participation ratioY,(t) is given by the integral
The next subleading term can also be computed, and is founfi">(p(x,t)?),. The quantity(p(x,t)?), can be computed
to be of orderz? for u>1/2, and{**2* for u<1/2. following the same lines as fgp(x,t)),. It will be useful to
introduce a two-time quantit®(x,t,t’) defined as
APPENDIX B:

We give here some technical details about the numerical QOGLE)=(p(x,P(X,L")) - €Y

simulations. A numbem,, of independent “walkers”(or . N e ,
“particles’) are simulated one by one, for a given sample ofDefmmg R(t,t')=/".dxQ(x,t,t"), one has Y1)

the quenched energiég;}. A walk is simulated as follows: — R(t:t), and tuming to the Laplace transform

the trapping time on siteé is chosen randomly from an ex-

ponential distribution of mean, =exp(;/T), and the walker Ifz(s s')= jmdtfmdt’e‘St‘s/t'R(t t) (C2)
then chooses at random between the two neighboring sites, ’ o Jo o

with equal probability. Then the desired quantity is computed

for this particular sample, and eventually averaged over &jow a reasonable assumptigthat has been checked nu-

numberN;s of samples. Moreover, in order to facilitate com- merically) is that for larget andt’, t>t’, R(t,t’) becomes a
parisons between different runs, we took each time the sam@nction oft/t’,

disorder samples, by choosing the same set of “seed” num-

bers. For out of equilibrium simulations, where the number

of sitesL=2N+1 is supposed to be infinite, we used peri- R(t,t’)=Y‘2’y“R

odic boundary conditions, with usually=10® except when

long times were required, in which cable= 10* was instead

consideredfor instance in the computation o (t)]. This follows from the similar behavior of the correlation
Error bars are estimated by running several simulationgunctionC(t,t") studied in Sec. V. It is interesting to restrict

with the sameN,, and Ng, varying only the seed numbers. to the particular case=s’,

The fluctuations between the different runs leads to an esti-

mate of the standard deviation. The numbégsandN, were w , t

chosen so as to get small enough error bars, as far as pos- ﬁ(s,s)=2Y‘2‘V“f dt'f mdte—s(t“')R( —)

sible, taking into account the tintethat we need to reach as 0 t t’

well as the computational time. It should be emphasized that " "

the amplitude of the fluctuations depends a lot on the com- zzygynf dt’f dut’e‘St'(““)R(u) (C4)

puted quantity. Correlations functions are easy to compute, 0

andN,,=N¢=10 is enough to get a relative standard devia-

tion which is less than I%. Quantities related to localiza- or

t )
—. (C3
t!

=
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Rss= 212 | Ry (5
S,S)= u .

2 J1 (1+u)?
So a finite limit forY,(t) corresponds tdr(s,s)~s~ 2, and

this is what we shall try to show in the following. Coming
back to Q(x,t,t") and decomposing over the number of

steps, one has
Q(x,t,t")=>, p(x,n,t)p(x,n’,t"). (C6)
n,n’
Averaging over the disorder yields

(Qxt.t)),= > a(xima(xin’)

><<|(tn<t<tn+1)

XAt <t'<t), . ))rmx.x- (CD

For given walksw andW’, and a given sequence of, let
us introduceK , ,/(s,s’) defined by

Rn,n,(s,s')=f dtf dt/ I (t,<t<t,.,)
0 0
XI(t),<t’'<t/,, e st
= 7(x)2e St Sty (C8)

assuming again that,.;—t,=t,, ,—t,,=7(x) (i.e., trap-

ping times are fixed rather than exponentially distributed
and thatst(x) ands’7(x) are both much smaller than 1,
which means that the maximum trapping time encountered is
much smaller than the timésandt’ considered. Introducing

the following decomposition:

tn=§ N(y,n)=(y), (C9)

t;/:; N (y,n") 7(y), (C10

Rn,n’(sys,) reads
Rn n(s,s")= T(X)ze_[SNW(X'n)"'S’NW’(Xrn’)]T(X)
x [T e [Nty +5" Ay (v.n)) o).

y#X
(C11)

Averagingf(nyn,(s,s’) over the disorder, one has

PHYSICAL REVIEW E57, 026128 (2003

(Rnnr(8,8),= (2= p) X[sNiy(x,n)

+5' My (x,n")]# 2

x [T e clshnty.m+s'Agty.n 1%,
Y#FX

(C12

One can now writdR(s,s) as

R(s:9)=2uI(2=m) 2 2 ax|ma(xin)s 2

n<n’

x[NW(x,n)Jr/\/'W,(x,n’)]f‘ZeXp{ —cst
xgww(y,nHNWf(y,n')]“]. (€13

We now turn to continuous limit, and replace as in Appendix
A Ny(y,n) by its average valuenF(y/+/n,x/\n). At this
stage we drop order unity constants since we shall make
several rather crude approximations in the following. Intro-
ducing the new variabl@ throughn’= 8n, one gets

|32(s,s)~s"‘2fc dxjmdnfco d—’Be‘(XZ’Z”)(“l’B)
- J1 1 B
n—2

JnH

X

i)

y x|
g (FF) ] (19

Now, because of the factor I8, the integral overs is
dominated by the larg® behavior, which means that as a
first step one can neglect terms likgy//n,x/\/n) com-
pared to\BF(y/\Bn,x/\/Bn). Rescaling alsa andy using
the new variablex=x//n andy=y/\/n yields

ﬁ(s,s)~s#*2f d&fmdﬁﬁ(’**”’zfmdn =12
ux], )

n—2
Xe—(%/zxul/ﬁ)H(i) o s (BN 12 (i B)

(C19H

One can change variable in the last integral aveletting
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1 2/(1+ ) ;( #2
_ . . . (c19 H(_)
IBSZM/(l ) - i Ydyn 1 j d —(x/2)(1+1/,B)L
G 2 "T(1- mlgz G(X)
VB
(C18

Then the integral oves becomesf/jdve V=1 (for s—0),
andR(s,s) reduces to where we have used=T"(1—pu).

(s.9) Since lim_G(2)=go(x)—1 when up—1 and
lim,_oH(z) =hg is independent of., the only strong depen-
dence uporu comes froml'(1— ), which suggests that

X
~dg H \/__/3) YY"~ (1-p), u—0. (C19
R(s, S)N_f f dxe” (AW o This results is compati i i i -
X patible with numerical data, and is com
G| — parable to the corresponding result in equilibridim this
VB caseY5%=1—pu for all u<1). For 1<u <2, one can easily

(C17  show that under the same assumptiovig(t)~ 1/t(+~ 1)/
when t—o, whereasY,(t)~1/\t for x>2, which is the
expected result. Turning t&3, we have checked that the

So this simplified calculation is consistent with a firk§’"  same calculation also leads to a finite limit, and to a linear
given by behavior with respect tge whenpu—1.
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