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Classical nucleation theory revisited
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A field-theoretic derivation of the correction to classical nucleation theory due to translational invariance of

a nucleating droplet is proposed. The correction is derived from a functional integral representation of the
classical partition function, where the two-body interaction potential is decomposed into a short-range repul-
sive part and a long-range attractive part. The functional integral is evaluated in the mean-field approximation,
and the spatially nonuniform density solution of the Euler-Lagrange equation is approximated by a physically
motivated hyperbolic tangent profile. Leading-order effects of the nonlocal attractive interaction are high-
lighted through a density-gradient expansion. The capillarity approximation to the droplet free energy of
formation is obtained by performing a density resummation of the uniform state, low-density expansion of the
Helmholtz free energy density, and by retaining the leading-order density-gradient term. The resulting
translational-invariance correction modifies the droplet free energy by an additive mixing-entropy term. The
additional contribution, which contains a logarithmic correction to the surface-energy term, defines a scaling
volume that depends on the range of the coarse-grained attractive potential.
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I. INTRODUCTION tinuum descriptions of nucleation phenometand other
systems such as microemulsi@riBhey argued that in phase-
The proposal by Lothe and Pound] that translational space representations of a physical system the natural scale
and rotational degrees of freedom of a nucleating embrydo distinguish different states, and hence to calculate the total
(dropley are not properly accounted for in classical nucle-entropy via an enumeration of distinct states, is Planck’s con-
ation theory has resulted in extensive investigations of classtanth (the scale of action In the semiclassical limit posi-
sical nucleation theory. The so-called translation-rotationtion and momenta become continuum variables and, thus,
paradox, a paradox closely linked to subtle issues in equilibthere is no natural length scale to distinguish distinct physi-
rium statistical mechanics, has triggered detailed studies afal states. The translation-rotation paradox may be resolved
the statistical mechanics of molecular clusters. Simultapy a proper determination of a length scale capable to distin-
neously, nucleation-rate measurement techniques have coguish different states. Such a length scale, a scale that nec-
siderably improved, see, for example, RE2], and refer-  essarily becomes dependent on the model adopted, leads to a
ences therein, as have careful analyses of the associated hpedper incorporation of the mixing entropy in the droplet free
and mass transfer processes in these devieesinar flow  energy of formation: this additional term has been called
diffusion chamber, thermal diffusion chamber, and expansiorireplacement free energy.” Recently, Reiss, Kegel, and Katz
chambe). The considerable improvements in experimental5] suggested that the volume scale for the mixing entropy
techniques and theoretical developments have only partiallfin particular, the positional entropypecomes the variance
improved agreement between theory and experiment. Thef volume fluctuations: a nucleating droplet may be identi-
additional term originally proposed by Lothe and Pound in-fied as a distinct physical object up to its volume fluctua-
creased theoretical predictions by approximately®1®ut  tions. This scale ensures that physical states are not over-
subsequent refinements and modifications resulted in lowaounted. A similar problem arises in cell theories of liquids
factors of the order of 13-1CP (see, e.g., Ref3]), factors  where a “communal entropy” is introducgd].
that are still relatively high. Theoretical developments have, The effect of center-of-mass fluctuations of a nucleating
on the other hand, removed inherent inconsistencies in clagluster on the nucleation rate has been calculated either via
sical nucleation theory and they have provided correctiongletailed analyses of the statistical mechanics of molecular
that are theoretically well founded. The work presentedclusters or via density-functional studies. For example, Reiss
herein provides an alternative approach to the theoretical baand co-workers and Forid] attempted to resolve the para-
sis of classical nucleation theory and the necessary modifdox via detailed analyses of the statistical mechanics of mo-
cations due to translational invariance. lecular clusters. On the other hand, Barf8&f following the
Reiss and co-worker8—5] have emphasized the impor- pioneering work of Langef9] on a field-theoretic descrip-
tant relation between a proper counting of translational detion of condensation, adopted such an approach. In the con-
grees of freedom and the mixing entropy in mesoscopic, cortext of a mixing entropy associated to the droplet’s transla-
tional degrees of freedom, his suggestion reduces to the
choice of the molecular volume in the liquid state as the
*Electronic address: ioannis.drossinos@jrc.it required volume scale. Classical nucleation theory, on the
"Electronic address: kevrekid@math.umass.edu other hand, implicitly assumes that the volume scale is the
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molecular volume in the vapor phals. Talanquer and Ox- the surface-energy term, it provides an additive free energy
toby [10] also adopted a density-functional approach to calcontribution, and it gives a length scale for incorporation of
culate the correction due to cluster translations to concludéhe mixing entropy. The appropriate length scale becomes
that the correction is relatively small. The paradox has alsdhe interaction range of the coarse-grained attractive poten-
been addressed in terms of nonequilibrium kinetics of thdial. Section VII summarizes our findings and presents our
nucleation procesgLl]. conclusions and suggestions for future work. A number of
In this work, we pursue further the approach developed ifféchnical details have been relegated to three appendixes.
Ref. [12], henceforth referred to as Paper |, to calculate The emphasis of our work is on the translational eigen-
modifications of classical nucleation rate due to the translaldes and their contribution to the nucleation rate, i.e., on
tional eigenmodes of a nucleating droplet. There we considthe calculat_lon o_f the mixing entropy. Other fluctuations, fc_)r
ered the physics of a classical first-order phase transitiof*@mPple, distortions of the droplet surface, that may be in-
starting from a quantum-mechanical many-body Ham”_corpprateq in the droplet free energy as an additional
tonian. The approach was based on a proposed analog peenfigurational-entropy term are neglected. A complete cal-

tween a(classical cluster of condensed molecules forming g culation of the nucleation rate requires the incorporation, or
liquid droplet and a(quantum-mechanicalground state an estimate, of the effect of these additional fluctuations at

“droplet” of condensed bosons. Such a description of a clusleastin a Gaussian approximation. This calculation, however,

ter of condensed molecules is implicit in field-theoretic de-'S Peyond the scope of the present work.
scriptions of condensation.

The quantum partition function for a system of pairwise Il. FUNCTIONAL-INTEGRAL MEASURE
interacting Bose particles is presented in Sec. Il. The inter- ) ,
action potential is decomposed into a short-rafvgeich will In Paper |, the quantum-mechanical grand-canonical par-

be taken to be localrepulsive term and a long-rangeon- t?tion function was derived under a number of approxima-
local) attractive term. We explicitly introduce the symmetry fions. The many-body wave function was decomposed ac-
property of the many-body Bose wave function and the Cording to the Bogoliubov prescriptiori14] into the
normalization of the partition function in the functional- eXPectation value of the field operator, which becomes the
integral measure to obtain the classical partition function as rder parameter for quantum phase transitiongparticular,
functional integral. The extremal Euler-Lagrange equation i&0Se-Einstein condensatipnand a (quantum fluctuation
shown to contain leading-order terms in the low-density ex!€rm, which was assumed to be small. Only two-body inter-
pansion of the chemical potential. We argue that this is &ctions were considered by introducing the two-body inter-
consequence of keeping only two-body interactions in théxction potentlal\/im. The interaction potential was decom-
original microscopic Hamiltonian. The strength of the repul-PoSed into a short-range repulsive part and a long-range
sive interactions is specified in terms of an effective hard-&ttractive part. As in treatments of Bose-Einstein condensa-
sphere diameter by comparing the second virial coefficient 160N, the short-range repulsive interaction was replaced by an
that of a van der Waals fluid. Similarities and differenceseffective local repulsion characterized by a strength
with density-functional theory conclude the analysis of Sec\hereas the attractive part was assumed to be nonlocal and
1. spherically symmetric,

In Sec. lll, we show how the droplet free energy of for-
mation is obtained from the saddle point evaluation of the Vi r=r")=Va[r=r"[)+g8(r—r"). (1)
partition function. The droplet free energy is expressed in the
form expected from classical nucleation theory in the capili\When the partition function is regularized on a lattice, the
larity approximation, namely in terms of a volume and aapproximation of a local repulsive interaction will be effec-
surface term. Thus, a heuristic justification of classical nucletively relaxed. Later in this section, we show the relation of
ation theory starting from molecular considerations is pro-g to the hard-sphere diameter of a reference fluid.
vided. The derivation is based on a physically motivated an- For a time-independent order parametr), the parti-
satz for the nonuniform density profile that allows us totion function was expressed as a functional integral over field
express the saddle point free energy in terms of a local terraonfigurations
and a nonlocal term. A judicious resummation of the local
part of the free energy density gives the Helmholtz free en-
ergy for the uniform states, whereas the gradient expansion Egmzf D[ ¢le P4, (2
of the nonlocal attractive parts leads to the surface-energy
term.

As shown in Paper I, the droplet’s translational eigen
modes modify the nucleation rate by the Jacobian for th
change of variables to collective coordinates. We evaluat
the correction in Sec. IV and we relate it to a general expres-
sion for the nucleation rate in Sec. V. In the spirit of the BL=—In(E). 3
general formula proposed by Dillmann and MejéB] for
the droplet free energy, we show in Sec. VI that the proposeth the partition function the “Euclidean action” was shown
modification introduces three additional terms. It modifiesto be

with 8=(kgT) "%, T the absolute temperature, akg the
éBoItzmann constant. The appropridggand-canonicalther-
gwodynamic potential becomes

026127-2



CLASSICAL NUCLEATION THEORY REVISITED PHYSICAL REVIEW E67, 026127 (2003

h? 1
E(V@z—{u—if(r)

g where A=A/a with A=h/(2mmksT)"2 the thermal de
$*+ 584 @ - i

2 ' Broglie wavelength. The square root of the local dengijty
comes from the change of variables frapnto p;, N; is a

where . is the thermodynamic chemical potential, and theNormalization constant, and the product is over all configu-

attractive, nonlocal ternfi(r) was defined as follows: rations{n;}. The exponeng,[ p;] is the discretized version
of Eq. (4) without the kinetic energy term that drops out to

leading order irh.
f(r):f dr'Va([r—r']) ¢?(r')<0. (5) If the measure prefactor in Eq7) is expressed as an

exponential, the factorial terms are expanded according to
the Stirling approximation, and leading-order terms are kept
(the Jacobian of theé; to p; change of variables drops out to
leading ordey, we obtain

S[¢]=de

The local number density(r) = ¢(r) , and the total num-
ber of particlesN in a volumeV is

N=Jvdrp(l’). (6) exq’ aSEi [piln(piA®) —pil}. ®)

In Paper |, the properties of the Euler-Lagrange equation thah careful inspection of the measure prefactor of Ef.ren-
arises in the saddle-point evaluation of the functional integraflers intuitively clear the origin of the entropic term in Eq.
were analyzed; in particular, the functional form of the trans-(8). It is, in essence, the indistinguishability of the classical
lational eigenmodes of the nucleating droplet was related tparticles (their “bosonic” naturg which is responsible for
the order parameter. Herein, we concentrate on the classictile existencgand relevanceof such an entropic contribu-
partition function and we provide a heuristic derivation of tion in the (effective) action. Recent related discussions on
the droplet free energy of formation as described by classicdhe origin of such a contribution can be found in Refs.
nucleation theory. In doing so, we will provide an explicit [16,17.

correction to the nucleation rate that arises from translational As discussed in Ref16], the properties of the interaction
invariance of the nucleating droplet center of mass, namelpotential, and, in particular, the interaction potential decom-
that the droplet may nucleate anywhere in the system volposition, have to be analyzed carefully when taking the con-
ume. tinuum limit of the classical expressions, E@g) and (8).

The interpretation of the functional integifdq. (2)] be-  The decomposition into a short-rangecal) repulsive term
comes unequivocal in its discretized form. This discretizatiorand a long-rangénonloca) attractive term implies the exis-
(which is a lattice regularizatioralso eliminates ultraviolet tence of an effective hard-sphere diamederTwo distinct
catastrophes by introducing a high wave number cuto¥ in length scales have to be considered: the lattice spacarnyl
space. In the classical limit, the Euclidean action becomes the hard-sphere diameter. Fora< o, the occupation num-
functional of the local number density and the gradient ternber of a given lattice site can be only 0,1, and the partition
is eliminated. It is well known[15] that two essential function becomes the lattice-gas partition function. feor
guantum-mechanical aspects remain in the classical partitior®a, multiple site occupation is allowed, but a coarse grain-
function: the symmetry property of the many-body waveing over microscopic length scales is implicitly made. Thus,
function and theh normalization of the classical partition the strength of the repulsive interactiglhecomes a measure
function. The latter gives the limit of accuracy due to theof an effective hard-sphere diameter and the nonlocal attrac-
uncertainty principle in assigning particle coordinates andive interaction is interpreted as a coarse-grained attractive
momenta to a particular phase-space point. potential.

We present a heuristic derivation of the discrete functional With these provisoes and with the correspondeat®
measure: the two quantum-mechanical effects are incorpo-[ dr andn;/a®—p(r) (see, for example, Ref18]), the
rated in anad hocmanner in the classical partition function continuum limit is taken to obtain the functional-integral rep-
by considering the occupation number representation of theesentation of the classical partition function
field operator. A formal derivation of the limiting procedure
Ee?.eé%?f the scope of the present wgske, for example, ECFJ Dp exl— Sy [p]). )

In the lattice regularization, the system volume is divided
in M cells of linear sizea. Let n; be the number of particles where
within cell i; then the local density becomgs=n;/a>.
Symmetry requirements for indistinguishable particles intro-
duce a factorial term;!. The h factor arises from integration
over the particle momenta to give the following discrete ver-

1 1
ﬁScu[p]=f dSr[ —Bup(r)+ 5 BT ()p(r)+ 5 Bgp*(r)

sion of the functional integral: +p(r)ln[A3p(r)]—p(r)}. (10)
_ ) 111 1 s o .
=q= lim H dpj—= = — — e PSleil (7)  The normalization constant has been absorbed in the mea-
Moo {ni} \/E Ni it A3 sureDp. This representation of the classical partition func-
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tion is similar to the functional integral presented in Ref. Itis instructive to rewrite the uniform-density limit of Eq.

[16], apart from a different treatment of the hard-core repul<(11) in terms of a hard-sphere reference fluid with packing

sive interaction. The last two terms in H40) are the Helm-  fraction 5= wpo°/6,

holtz free energy density of an ideal monoatomic classical

gas. The first term may be identified as an external field Bu—In(A®)=Inp+87n—aBp+0(p?), (18

coupled to the densityor the corresponding Lagrange mul-

tiplier), and the remaining two terms are nonideal correctionsvhere we have used the relation gofto the hard-sphere

arising from intermolecular interactions. They are recognizedliameter of the reference fluid, E@.7). The first two terms

as the first terms in a density expansion of the nonideal paire the low-density terms of the hard-sphere chemical poten-

of the classical free energy densitfpr an inhomogeneous tial (in, for example, the Carnahan-Starling hard-sphere

system. equation of stat¢19]). Thus, a density resummation of Eq.
For a spherically symmetri¢coarse-grainedattractive  (18) gives

potential, the Euler-Lagrange equation that determines the

mean-field(inhomogeneoysdensity profile is Bu—In(A®)=Buns(T,p)— aBp+0(p?), (29

Bu=Bf(r)+Bgp(r)+In[A3p(r)]. (11)  whereuys is the chemical potential of a hard-sphere refer-
) ] ence fluid. Explicit calculations with it require, of course, an
The nature of the low-density expansion becomes morgpproximation for the reference hard-sphere fluid. The re-
transparent by considering a uniform fluid of dengitythe  symmed equation Eq19) is the uniform-fluid, extremum

extremum equation becomes equation used in density-functional thedsgee, for example,
Ref. [21]). It differs from (12) in that only the hard-sphere
— 2
Bu=Bridea T.p) +2Bo(T)p+0O(p7), (12) (repulsive part of the free energy has been resummed and

he attractive part is treated perturbatively. On the other
and, Eq.(12) is a proper low-density expansion: both the
attractive and the repulsive parts of the interaction potential
contribute at every order in the density expansion. If higher-
order terms in the attractive potential were incorporated in

where we have used the ideal gas chemical potential
Bigeal T.p) =IN(A%p). The coefficient of the linear term
B,(T) is the second virial coefficient since the density ex-
pansion of the chemical potential [i$9,20

K+ 1 the density-functional expansion, then the two equations
Bu(p,T)=Burigeat 2 TBk+1pk. (13)  would become identical order by order in the perturbation
k=1 expansion.

In the expansion Eq12), the second virial coefficient is
lll. PHENOMENOLOGY OF CLASSICAL NUCLEATION

Bo(T)=38(g— @), (14) THEORY

The free energy of formation of a nucleating droplet ap-
pears naturally in the saddle point evaluation of the partition
function, Egs.(9) and (10). It is the free energy difference
a= —f drVay(r). (15  corresponding to two solutions of the Euler-Lagrange equa-
v tion: the (spatially nonuniform solution and the uniform
metastable vapor state

with « the positive measure of the attractive interaction

The effective(renormalizedl strength of the repulsive inter-
actiong is determined by comparing,(T) with the second BAS' = BSyor S,
virial coefficient of a van der Waals fluid. A comparison of drop '
our expression§Eq. (11)] or (12) with those for a classical
(monoatomi¢ van der Waals fluid is appropriate since our
expressions have been obtained in the high-temperatur
low-density limit. The van der Waals second virial coeffi-
cient is

(20

The connection to classical nucleation theory is made by
erforming a gradient expansion of the nonlocal tdim).
he functionp(r’) is Taylor expanded about(r) to obtain,
assuming spherical symmetry, the square-gradient approxi-
mation to the free energy

2 372k > BMy(Vp)>= Bup(r)+By(T)p?(r)

BS[p]=f dr

A natural way to match the attractive and repulsive parts in
the virial coefficients of Eq914) and(16), as per our earlier +p(N)IN[A3p(r)] —p(l’)}, (21
discussion, yields

am wherem, is the second moment of the attractive potential,
BY= 730" (17)
1
- _ 2
whereo is the diameter of the effective hard-sphere core. M2 GJ arr“Valr). (22
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Details of the gradient expansion and the derivation of Eq. Our analysis up to here has been fairly general under
(21) are presented in Appendix A. As usual, the gradientwell-defined approximations. Further developments require
expansion assumes that the average density varies slowllje use of the ansatz. The previous arguments suggest that
over microscopic distances. Then the critical droplet free enthe postulated droplet profile captures the essential character-
ergy becomes istics of the density profile of a droplet. The effect of differ-
ent density-profile choices on our main results is briefly dis-

1 cussed in Sec. IV.
,8AS*=J dr{iﬁmz(Vp)z—(,B,qu D pdrod ") —py] Given the ansatz for the nonuniform density the free en-
ergy expression, Eq23) is evaluated in the limit of classical
+Bz(T)[Pgrod(r)—P5]+Pdrop(r)|n[/\3pdrop(r)] nucleation theoryR.>¢ (R./é—<). The limiting proce-

dure is divided into two parts: the calculation of the local

o InfAG 23 terms(volume contributiop and the nonlocal termsurface
puIn[AZp, ] 23 contribution). For completeness we present some results for

the volume part obtained withathematica[23]: an exten-
gsive discussion of the limiting procedure is given in Appen-
dix B. In particular,

‘f 2

3

g 2n
e

Its evaluation requires the solution of the correspondin
extremum equation for the nonuniform droplet-density pro-
file: if the nonlocal attractive potential is specified, the den- A
sity profile can be obtained numerically. Instead, we follow |im f dr[ pgrogr) — py1= ?Rg(pl—pu)
the approach taken in Paper I: since detailed information on R.>¢
the intermolecular interaction potential for an arbitrary sys-
tem may not be available, physical intuition will be used to +0
postulate a functional form for the density profile.

Specifically, the density close to the center of mass of the
droplet is almost constant and equal to a liquid dengsityln lim | dr[p2 p(l’)—pz]
what follows, we will assume that, is the metastable liquid Re> ¢ dro v
density, i.e., we will be neglecting nonclassical effestse,

e.g., Ref[21]). This is not necessary for our derivation, but am o 5, 3 (pi+p,)?
it simplifies the calculations and is consistent with classical :?Rc(m —py) —2 2
nucleation theory. Away from the droplet surface, the density

approaches exponentially fast the metastable vapor density £\3

p, (which is considered as an imposed boundary condition, +0 —) H (25b)
as is usually the case in nucleation experimenthe main Re

density variation occurs over a short interfacial length scale

¢, and is quite rapidtypically assumed to be exponential : 3 _ 3

Thus, following Langer's9] considerations for a Landau- FLIQJ dr{parol 1) INLA"paro 1) 1= P, IN(A"p, )}

Ginzburg ¢* free energy with a hyperbolic-tangent density ¢

profile, and accepting his arguments about universality fea- 4

tures of the transition, we make the following density-profile ~ ~ ?Rg[Pl'”(A3P|)—pu|n(A3Pu)]+O[eXIi -R./9)].
ansatz:

1
4

(250

1 o4 Hence the local terms contribute to the volume part of the
+§(pv+p')' 24 free energy as follows:

C

3

1 r
Pdrod 1) = E(Pv - p|)tanl‘(

The critical droplet radius iR, and ¢ is the interfacial cor- BAS\jommew%T R —(Bu+1)(p—p,)+BaT)(p?—p?)
relation length. The proposed profile is a reasonable approxi-

mation forR.> ¢, i.e., close to the coexistence curve and far +pIn(A3p) = p,In(A3p,)]+0(p3,p?

way from the critical point or the spinodal. Most of the re-

sults that follow may be obtained by postulating ottsmi- (26)
lar) functional forms that respect the previously mentioned
constraints(for example, the profile suggested in Papgr |
including a 6#-function profile. The choice of a
0-function-density variation corresponds to the capillarity
approximation of classical nucleation theory. However, the Bfu(p)=pIn(A3p)—p+By(T)p?+0(p%), 27
hyperbolic-tangent profile has the added advantage that it

depends on two length scales: the critical-droplet radius, andhereB,(T) is the second virial coefficient of the fluid un-
the interfacial correlation length. As will become apparentder consideration. Inspection of E(R6) shows that terms
later, the interfacial correlation length plays an important rolemay be regrouped to obtain the low-density expangion
in the final expression for the nucleation rate. order p?) of the Helmholtz free energy for theuniform)

According to classical thermodynamics, the low-density
expansion of the Helmholtz free energy dendityis [see,
also, Eq.(13)]
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liquid and the vapor phases. To the same order the low- The nonlocal free energy terif{r) leads to a(positive
density terms may be replaced by the free energy defteity  surface contribution to the droplet free energy. This may be
density series is resummpeand with the identification of the shown to leading order in the gradient expansion. Specifi-
two virial coefficients the full free energy density is obtained. cally, the gradient term becomes

Hence, Eq(26) is rewritten as 5

. 2 477 ZRC
. 4w _, 47 |IdeF(VP) =3 (=) z
BAS\/olume::B?Rc[fH(pl)_Mpl]_B?Rc[fH(Pu) Re>¢

¢ )2(n+l)

1 T8LE)
12 \R,

— up,]+0O(p,p3). (28) +0

Re

J . (34

But fi(p) — up is the density of the grand-canonical poten-
tial w(p)=—P(p) for a uniform system of density and
pressureP(p) (sinceQ)=—PYV). Therefore, the volume part
of free energy of formation becomes

The surface term may be reexpressed in termg©f the
macroscopic surface tension for a curved interface. In the
square-gradient approximation,
dp|?
dr

, o
BASqums= B RelLw(p) — w(p,)]+O(p°) em, | ar 39

At In the large-droplet limit, the surface tension becomes

=—B—5 RIAP(p)—P(p,)]+0(p*), (29
. _m2 2

where the term multiplying the pressure is the droplet vol- R“cr;gyR 3§(p' po)"+ Ol —R:/E)]. (36
ume (leading-order term in th&®.> ¢ limit). For a careful
discussion of the evaluation of the nucleation barrier in theHence, the correlation length may be eliminated from Eq.
canonical and grand-canonical ensembles see, e.g., Ref84) via Eq.(36) in favor of the surface tension to obtain
[21,24. Their analysis implies, as we have shown, that the
volume part of droplet free energy is the difference of the ) )
grand canonical potentials in the two uniform states. For an §5m2f dr(Vp)® = 27BygR;. (37)
incompressible liquid and an ideal gas vapor, the pressure

difference between the center of the liquid drop and theThus, the mean-field approximation of the functional integral

R.>¢

metastable bulk vapor can be calculated td ¥ with the proper resummation of the low-density terms, a
b square-gradient approximation of the nonlocal attractive

P(p)— P —pin| =21, 3 term, and a.phy3|cally motlvated_ ansatz for_the nonuniform
BLP(p)=Plp,)]=p) Psa) (30 density profile lead to the following expression for free en-

. ] ) ergy of formation of the nucleating droplet:
to give the final expression for the volume part of the droplet

free energy A 3 )
,8AS*=—?p,ln(S)RC+27rﬁyRRc. (38
41

ASoume=— —=-R3pIn(9). 31
AASoume 3 RepiIn(S) 3D As expected from classical nucleation theory, E88)

) ) ) ) splits into a negative volume term and a positive surface
The classical nucleation theory approximation for the saturaggrm_ The volume term is identical to the classical nucleation
tion ratio S=P, /Py Was used in EqQ(31), with Psy the  theory term, whereas the surface term becomes the classical
saturation pressure, arfel, the pressure of the metastable iorm if we identify ye=217.., an identification we will use in
vapor. As expected, the volume part is negafiez S>1).  gypsequent sections. Hence, we have rederived the classical
The critical radius may be replaced by the critical number ofycleation theory free energy starting from a molecular level,

molecules(monomers, as they are usually called in nucle-fig|q-theoretic action using the density as the relevant order
ation studiesin the liquid dropletN,, defined as parameter.

RC
Ncr=477f dr rzpdmp(r). (32 IV. COLLECTIVE COORDINATES JACOBIAN
0

In Paper |, we showed that the contribution of the trans-

In the large-droplet limit withp,>p,,, the critical number of |ational eigenmodes of the nucleating droplet to the nucle-
monomers becomes ation rate is related to the Jacobian of the change of variables
to the collective coordinates associated to these modes. As

A 3 2 . - . . . . o
lim Ncr:?leg[ 1- & In(2)+0 (Ré) H (33) discussed in Ref25], translational invariancén an infinite
C

R4 2 R, system implies the existence of a zero eigenvalue of the
second-order free energy operator that describes Gaussian
This follows from Eq.(B4) in Appendix B. fluctuations about the droplet configuration. Functional inte-
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gration over these zero-eigenvalue translational eigenmodesse, for example, Ref$8,10]. The calculations presented
leads to a divergence. This divergence is spurious and mayerein provide an alternative approach. Moreover, as argued
be eliminated by changing variables to collective coordi-in Sec. Il (see also Ref[9]), the functional integral appears
nates. Therefore, the origin of the Jacobian in the nucleatiormmaturally in field-theoretic descriptions of condensation. In
rate expression is the functional-integral measure correthe following section, we show how the saddle-point evalu-
sponding to the translational eigenvalues. ation of the functional integral leads to a correction to the
The Jacobian, expressed here in terms of the local densityucleation ratgdue to translational invariangé¢hat is con-

p(r) instead of the condensate wave functi¢(r) (as de- sistent with classical nucleation theory.

The determination of the nucleation rate from the

rived in Paper), is
T (@ 1 (dp\?
= J drrz—| -2
3Jo p(r)\dr
L : . functional-integral expression has been discussed extensively
'Sl'irtl)isdglflsi:q(:/r;rl;;)ép\sgurennesures that the Jacobian has dimen in the past[9,12,26—-28 Under some general assumptions

In the spirit of this work, and of classical nucleation (coars:_a-grained f_ree _energy, small §upers_aturation, and
theory, the Jacobian is evaluated in the hyperbolic—tangenC[;aUSSIan approximation of the functional integraihe

ansatz. Furthermore, if we assume tpatp,, the integral fucleation rate may be written as
may be evaluated, and in the linRt> £ [Eq. (B6)] becomes

3/2
V. NUCLEATION RATE
(39

Jiran=

3 2 _K ' a— BAQ*
I P R N T lue=5 =V Jarkd' € #4, (42
Jyar=| 3 7 R 1+ Rc+o R 2
\/— 1/2
_ ﬁ P (40) where AQ* is the free energy of formation of the critical
12 | g2 “ droplet, k the dynamical prefactor, and’ the contribution

of Gaussian fluctuations about tkeniform) metastable and

The Jacobian depends &wo length scalesthe critical ra-  the (spatially nonuniform saddle-point density profiles. The
dius and the interfacial correlation length, a dependence thagérm (', a generalization of the Zeldovich factor, may be
would have been absent had we used-function density viewed as the leading-order correction to the droplet excess
profile. free energy arising from the configurational entropy of the

The effect of the ansatz on the Jacobfigq. (40)] may be  droplet. The prime denotes that fluctuations corresponding to
estimated by comparing it with the Jacobian calculated irthe translational eigenmodes of the nucleating droplet have
Paper I. There a slightly different density profile was usedbeen excluded: they have been treated separately, as summa-
[¢§n;r)¢pdmp(r)], but the resulting Jacobian differs from rized in the preceding section. The complete expression for
the one calculated here only in the numerical prefactors. 1€’ may be found in, for example, Ref29], whereas an
fact, dimensional arguments and an estimate of the integraihtriguing suggestion to relate the nucleation rate to the
[Eg. (39)] lead to the same dependencelgf,on &, p;, and  imaginary part of the true system free energy is presented in
N, (up to numerical constants Ref. [27]. The dynamical prefactok, a quantity that de-

The numerical solution of the Euler-Lagrange equationpends on the dynamics of the system, is the initial growth
[21] usually starts with an initial guess for the critical radius rate of a droplet larger than the critical size.
R, taken from classical nucleation theory, and then an itera- In previous sections, we showed that the mean-field ap-
tion scheme is used to obtain the saddle-point solution with groximation of the classical partition function gives a droplet
(possibly new R., the interfacial correlation lengtli, and  free energy that may be cast in terms of a volume plus a
the liquid density at the origin of the droplgt,. In the  surface term. Hence, the exponggh Q* is identified with
absence of the numerical solution for the density profile, théhe critical droplet free energy as given by the capillarity
correlation length remains an unknown; the liquid density, asipproximation. The Jacobiady,,, becomes the consistent
mentioned earlier, is taken to be the metastable liquid densitgorrection to classical nucleation theory due to translational
neglecting nonclassical effects. It has been suggd§fetb  invariance. The lengthy derivations of Secs. Il and IV are
relate¢ to the liquid density. Instead it is eliminated in favor thereby justified in that they show thite Jacobian becomes
of the the surface tension, cf. leading-order term in ).  a correction to the nucleation rate that is consistent with
Thus, consistent with the approximations made in this workglassical nucleation theory (CNTYhe self-consistent deri-

the Jacobian becomes vation of this correction from an order parameter based,
field-theoretic point of viewat the level of molecular inter-
3V [ yr) 32 s actiong is one of the main findings of this work.
‘]tran:T m, P~ Ner (4D The remaining unknownsg and(}’, are determined by

comparing Eq(42) to the classical nucleation rate. The clas-
As mentioned in the Introduction, density-functional sical rate, without the factor $/frequently introducedad
theory has been used to estimate the effect of the transldrocto ensure consistency with the one-monomer litaée,
tional eigenmodes without introducing a functional integral,however, Ref[5]), is [30]

026127-7



Y. DROSSINOS AND P. G. KEVREKIDIS PHYSICAL REVIEW B7, 026127 (2003

2v.\¥?p, . to BAQcnT, We rewrite the nucleation rate as
lent= Pv( : ) Vet (43) pAfiot
mm 1/2
d 27\ "2p .
. o Inuc:( °°) ) (48
which for the purposes of the comparison is expressed as Tm/|  p
lent= Bo(No) Zey (Ne) Vp, e~ BAENT, (44)  Where the prefactor is the product of the classical growth rate
ont= Bg(Ne) Zer(Ned) VP, times the Zeldovich factofboth evaluated at the critical
The classical prefactor naturally separates into the product ohonomer numbelN,), and the other terms have been expo-
three terms: the growth rat@mpingement factor 84(Nc,), nentiated to give
the classical Zeldovich factaf.,(N.), and the vapor den- . 23
sity p, times the exponential of the droplet free energy of BAQ 0= — Nedn S+ NG In(V Jyran). (49

formation. The last factor is the equilibrium concentration of . L . . .
For notational simplicity we introduced the dimensionless
2/3

critical clusters containin§l., molecules. The growth rate is NN 113 ) .

the rate at which the critical cluster grows by one monomer.Surface ten3|ﬁ|ﬂf— (36m) B%]‘j {cp' : The f';St two terms in

it is calculated from kinetic theory of gases to (tiee accom- Eq. (49) are t e free energy of formation o &h,-monomer
modation coefficient has been set to upity _cluster according to classical nucleation theory; the last term

IS
B

m

1/2
P(Pu)(NcrUI)ZBa (45)

1/6

NCI’ — 91/3( -
By(Ne) =9 = 50

—IN(VIyan) = — 3 IN(ONZR) —In| ————
tral 2 cr (ﬂa)\zp|)3/2 .

wherev,= 1/p, is the molecular volume. The Zeldovich fac-

tor gives the contribution to the nucleation rate of numberThe second moment of the attractive potentigalwas elimi-

fluctuations in the critical droplet as nated from Eq.(50) in terms of the range of the attractive

potential\ defined as

L1 f drr2Veg(r) 2m,
The ideal gas law has been used to relate vapor quantities, A -3 N
BP(p,)=p,=1l,. J'drvatt(r)

Comparison of the two nucleation-rate expressions, Egs.

(42) and (43), suggests the identification of the dynamical Thus, the final expression for the modified droplet free en-
prefactorx/(27r) with the growth rateBy(N.,) and the fluc-  ergy of formation becomes
tuations correctior)’ with the Zeldovich factorZ.,(N).
These identifications imply that the growth rate is given by
the kinetic-theory result for the number of collisions between
two molecules in a gas, and that the only critical-droplet
fluctuations incorporated are number fluctuations. Thus, the In( \

modified nucleation rate becomes F) (52

(46)

1/3
Ze(Ne) = (By) " —— | -
cr(Ne) =(B7-) (97Tp|N§r>

(51)

3 3
BAQ 5= = Nedn S+ ONGP— 5 In(ONGE) + 5 In( Bexpy)

Inuc=Bg(Ne) Zer(Ne) V g™ P2 T (478 A decomposition of the correction to the classical expression
) ) has been chosen such that each term may be interpreted
3 ve [Py physically. The first correction term is a logarithmic correc-
_\/_— 32| 7 tion to the surface-free energy term. The second is an addi-
mm; =\ p . . . .
tive (logarithmig contribution to the free energy of forma-

In writing the last equality the correlation length was elimi- tion: the argument of the logarithm is theimensionless
nated in favor of the macroscopic surface tension. Since th@verage attractive energy in the condensed phase. The last
product of the growth rate times the Zeldovich factor is di-term defines a length scafer equivalently a volume scale
mensionless, inspection of E@7a shows that the Jacobian necessary for a correct counting of translational states and
ensures that the nucleation rate per unit volume has the coft€ calculation of the corresponding entropy term, as sum-
rect dimensions. In the classical rdq. (44)], the vapor Marized in the Introduction. For completeness we calculate

density ensures that the rate has correct dimensions. the relevant parametefsuch as\ and a) for a Lennard-
Jones-type potential in Appendix C.

The decomposition presented in E&2) suggests that
there is a “natural” proper scale for the definition of an ef-

The modified classical nucleation rdieq. (47b)] is re-  fective volume, necessary to treat translational degrees of
written in a more suggestive form so that it may be comparedreedom(equivalently, the length scale to be used to distin-
to previous proposals for the incorporation of translationalguish different states or configuration3his length scale is
corrections. Following the suggestion that these additionadlefined at the molecular level and is related to the range of
degrees of freedom contribute to the leading-order correctiothe attractive interaction potential.

1/2
VNg e AAlenr, (47h

VI. CLASSICAL NUCLEATION THEORY MODIFIED
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The proposed free energy may be compared to the fre- 1
quently used general formula for &hcluster Bo(T)=— Ej dre”AVid) —1] (58

BAQ(N)=—NInS+kyON?*+7InN—In(qeV). 53) o obtain

The quantityky describesN-dependent deviations of the ] 1
cluster surface energy from that of a macroscopic liquid lim BAQ k= —In U—|+§ INN—=2pBy(T). (59
droplet, whereas andq, are adjustable parameters. The first p=0

two terms are the volume and surface contributions ConSidThus if the same decomposition is made for the RKK theory,

ered in classical nucleation theory, the others are terms Ilkﬂ1e molecular volume in the condensed phase becomes the

positional and configurational entropies. scalin - S
. ) g volume, and= +1/2. A similar dependence on the
Equation(53) is based on the droplet model proposed bymolecular volume in the liquid phase has been proposed by

Elshelr?l] gnld reelagorated by I(Djll_lm?r?n fand I\éle@ﬂ. Barrett[8], but with a dependence dW, that is similar to
roplet models may be expressed in this form:0 yields 0" 0 "o ived in this worke= — 1.

the classical theoryno mechanical degrees of freedpm
= —4 yields the theory of Lothe-Pourd] (translational and
rotational degrees of freedom3/2<r<—1/2 yields ver-
sions of the Reiss-Katz-Cohd8] theories(center-of-mass The contribution of a nucleating droplet’s translational de-
fluctuations. Dillmann and Meier proposegr2.2, whereas  grees of freedom to classical nucleation rate was addressed
Fisher[31] argued that the nonclassical contribution arosep this work. Our calculation was based on a field-theoretic
from the droplet configurational entrapy to obtaf§<7  description of a cluster of condensed-phase molecules in
<7 . Each theory has its own value fo, andky=1is  terms of a nonuniform density profile of a liquid-state drop-
common to all of them. The functional form of tli term let. This approach’ Origina”y proposed in RE[Z], was mo-
suggests that it is an entropic contribution. Note that(B8!  tivated by its successful use in quantum phase transitions
is a general expression for acluster, whereas the modi- (and, in particular, in Bose-Einstein condensatidtarting
fied expressiofiEq. (52)] has been evaluated at the extremalfrom the many-body Hamiltonian for a system of interacting
configurationg(i.e., atN,). Bose particles, a functional-integral representation of the
The modified formula expressed in this form yields classical partition function was obtained. The symmetry
properties of the many-body Bose wave function andhhe
normalization factor of the classical partition function were
introduced in the functional-integral measure. The classical
entropy term p In p) in the partition-function action was di-
andr=—1. rectly related to the symmetry properties of the many-body
Recently Reiss, Kegel, and KatRKK) [5] proposed an wave function, and in particular to particle indistinguishabil-
intuitively appealing correction. They argued that a dropletity. Only two-body interactions were considered, an approxi-
can be defined up to volume fluctuations: their expression fomation that leads to a low-density expansion of the appropri-
the correction to classical nucleation theory is ate classical thermodynamic potential.
The intermolecular interaction potential was decomposed
Bp into a short-rangglocal) repulsive part and a long-range
V(N_KT ' (55 (nonloca) attractive part. This decomposition naturally led to
the identification of two different length scales: the lattice
where «y is the isothermal compressibility. The compress-SPacinga, & length scale introduced in the lattice regulariza-
ibility equation is[32] t|9n of the functional integral, and an eﬁecnv_e hard-.sp.here
diametero. It was argued that fosr<<a, the continuum limit
ap of the partition function implies a coarse graining of the
— =B+ ﬂpJ dr[g(r)—1], (56) initial attractive interaction potential. In that limit, the pa-
P rameter that characterizes short-range repulsive interactions
) , o , . was specified in terms of an effective hard-sphere diameter.
where g(r) is the radial qllstrlbutlon function of the f_Igld, The free energy of formation of the nucleating droplet
may be used to replacer in terms of molecular quantities. |55 optained in the saddle-point evaluation of the functional
Substitution yields integral as the free energy difference of two extremal con-
figurations: the(spatially nonuniform field configuration
J _ and the uniform metastable configuration. This free energy
1+p,| dr[g(r)—1];. . o L
% difference was related to the capillarity approximation of
(57)  classical nucleation theory by postulating a physically moti-
vated nonuniform density profile. The density ansatz was
In the low-density limit, the logarithm may be expanded,used to resum the low-density expansion to obtain the Helm-
g(r)—exd—BVi(r)], and the integral may be related to holtz free energy density of a uniform fluighe it vapor or
the second virial coefficient liquid). The nonlocal attractive term was expanded in gradi-

VIl. SUMMARY AND CONCLUSIONS

kn=1—= —N_2°, (54)

1/2

ﬁAQRKK: - |n

vV 1
BAQRKK: - |n_+ _ln N+In
V| 2

026127-9



Y. DROSSINOS AND P. G. KEVREKIDIS PHYSICAL REVIEW B7, 026127 (2003

ents, retaining only the leading-order square-gradient term.configurational-entropy term. This exercise is left as future
In the limit of a droplet radius much larger than the inter-work, as is the numerical solution of the Euler-Lagrange
facial correlation length, a limit consistent with the capillar- equation that will provide a numerical justification for the
ity approximation, we showed that the local free energy ternflensity-profile ansatz. An additional topic of interest that will
gives a negative volume contribution to the droplet free enbe addressed in future work is a detailed comparison of re-
ergy (for saturation ratios greater than unignd the gradient sults of the correctetto account for translationpredictions
term a positive surface contribution. Thus, the expression foff our self-consistent revision of classical nucleation theory
the droplet free energy in the capillarity approximation wasWith experimental results on homogeneous nucleation of
obtained in the mean-field approximation of the functional9@S€s that can be described well by approximate intermo-
integral. This argument provides(aalid in the appropriate lecular potentialgsuch as the Lennard-Jones potential; see

low-density limit, yet not rigorousjustification of the fre-  €-9-» Appendix

quently postulated classical expression starting from micro-
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product of a dynamical prefactor times a statistical prefactor.
We argued that the exponential term in the nucleation rate
reduces to the classical nucleation theory expression. The APPENDIX A: GRADIENT EXPANSION
statistical prefactor was split into a contribution of the trans-
lational eigenmodes and a contribution of all other Gaussia
fluctuations about the saddle and metastable configuration ()
The translational eigenmodes were treated as described '/
Paper | and summarized herein, whereas the dynamical pref-
actor was approximated by the droplet growth rate as given BSC|[p]=f dr
by kinetic theory. Furthermore, only critical-number fluctua-
tions were considered. This approximation corresponds to
keeping only the negative eigenvalue of the saddle-point +p(l’)|n[A3p(r)]—p(l’)], (A1)
Gaussian-fluctuations matrix, an approximation that reduces
to the so-called Zeldovich factor in classical nucleation
theory.

The consistent incorporation of the effect of translational
eigenmodes in the nucleation rate along with the connection
of the classical droplet free energy to the evaluation of the f(r)=J dr'Vad|[r=r"])p(r"). (A2)
partition function are the main results of our work.

The modification of the classical nucleation rate was for-_l_he attractive potential is assumed spherically svmmetric
mally viewed as a modification of the droplet free energy b P Yy sy '

The resulting expression was discussed in terms of the ger-1r-he local density(r’) in Eq. (A2) is expanded in a Taylor

eral formula proposed by Dillmann and Meigk3] for the expan_sion abou_t, and it§ substitution irfi(r) introduces the
droplet free energy of formation. We showed that the addi—f()"owIng terms inSq[p]:
tional terms modify the surface energy and contribute an
additive (logarithmig contribution. More importantly, we f drdr/f(rp(r)="fo+fi+fo+---, (A3)
showed that the proper length scale for the calculation of the
entropy associated to droplet’s translational states is related )
to the interaction range of the coarse-grained, attractive inWheref; are defined to be
teraction potential.

It should be mentioned that our expression for the droplet fo:f dr dr’ p(r)Vad|r=r'p(r), (Ada)
free energy neglects the contribution of all other fluctuations
(e.g., distortion of the droplet surface that would lead to an
additional droplet configurational entropySuch a calcula- , ,.dp
tion involves the determination of the contribution of Gauss- fl:f drdr’p(r)Va(|r—r |)d_fi
ian fluctuations about the two extremal configurations. Our
analysis of the nucleation rate in terms of a functional inte- 1 42
gral suggests that previously developed techniques forfzz_f drdr’p(r)Vad|r—r']) d (r=r")(r=r");.
saddle-point evaluations of functional integrals may be prof- 2 dridr; r .
itably used for the calculation of the additional (Adc)

As argued in the main text, the action in the classical
artition function Eq(10) is a function of the local density

1 1 5
~Bup(r)+ 5 BHr)p(r)+5 Bgp(r)

where the nonlocal, attractive terfir), defined in Eq(5),
is

(r=r");, (Adb)
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Only leading-order terms in the gradient expansion were re- ) =,
tained. The expansion, which assumes long-wavelength lim fo drr<{tani(r —R.) — 1]
variations of the density, can be made more formal by intro- Re—e
ducing a scale parameter as described in (3. _  F(3-2)

For an infinite system witla the strength of the attractive = lim —
interaction, defined in Eq15), Re—

2 A
=— §R§— &Rt O(R;2"*1),  (Bla
f0=—af drp?(r). (A5)

. * 2 o
Symmetry argumentgspherically symmetric attractive lim fo drr?sechi(r—Rc)

potentia) show that the linear-gradient terip vanishes. The Rome
third term may be reexpressed in termycfr—r' as fol- = lim —F(2,—2)
lows: Re—e
2
— 2 7T_ —-2n
1 d2p =2R:+ 6 +O(R; ), (B1b)
fzzzf drp(r)dridrj J dXV el [X]) XX (A6a)
wheren=1,23 ..., z=exp(&,), and the polylogarithm
functionF(n,z) is
- f arp(n | [ f AX Vgl X))52
=5 | dre(D 5 4r 13 X V(| X[) X ® K
(A6b) Finz=2 = (B2)
dp\? It is relatively easy to note that the following general result
=m, f drlgr| (ABC)  holds:
r
where the ternx;-x; was replaced by? because the cross lim | drreftanir—R;)—1]"=——R;. (B3

R,—®

terms are odd functions?=x- x/3 since all three directions
are equivalentspherical symmetny the surface term was
dropped in the integration by parts, and the second moment
of the attractive potentiah, was defined in Eq(22).

Thus, the gradient approximation to the classical action

A limit required for the expression of the number of
monomers in the critical clusteéM, in terms of the critical
radius, with the additional assumption thgep, , is

becomes
; Re 0.2 2 3 2
lim f drr [1—tanr(r—RC)]=§Rc—RC In(2).
1 1 Rg—
,35[/3]=f dr[zﬂmz(Vp)z—BMp(r)Jr 5B(g=a)p*(r) (B4)
The integrals that lead to the surface-energy term and the
+p(N)IN[A3p(r)]— p(r)] ) (A7)  square-gradient surface tension evaluate to
47°(3+72)
This derivation justifies Eq21) in the main text. I|m dr secH(r — )— || —
3(1+2)?
, 4
APPENDIX B: LARGE-DROPLET LIMIT =5 +O[exp—Ry],  (B53)
We present exact and limiting values for integrals that
appear in the main text as calculated Mwathematical23]. "
The R.> ¢ limiting values were obtained by first evaluating lim j drr?sech(r—R,)
the integrals for a given droplet radigge integrals usually Re—o” 0
evaluate to polylogarithm functionsand then the large- B
droplet limit was taken. In someexplicity mentioned = lim [_ Az+(1+2)F(2-2)]
cases, the limitp;>p, was taken before the large-droplet Re—os 3(1+2)
limit to avoid indeterminate limits. 4 2 6
; . -
The integrals that follow are necessary for the evaluation _ —R§+ +O(Rc_2”). (B5h)
of the volume term of the droplet free energy 3 9
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Finally, the limiting value of the exact integréin the  Then, one finds that the strength of the attractive potential is
spirit of Eq.(313 of Ref.[12]) that appears in the evaluation

of the Jacobian Eq39) in the limit p;>p, is o —3277\/5503 (C2)
LI~ '
9
_ " i secH(x—R,)
lim | dx 1—tanx—R the second moment of the attractive potential evaluates to
R.xJ0 r( C)
= lim {In(1+2)~F(2,~2 1 48
Jim {in(1+2)=F(2.-2)} my=— % f Arr2Ve(1) = 52%%mo®,  (CY
C
_ 2
=2R;+2R;. (B6)  and the corresponding interaction rangs is
APPENDIX C: INTERACTION POTENTIAL N _(27 1/221/60 (C4)
[ Y '
35

The numerical evaluation of the modified classical nucle-

ation rate requires, apart from the density profile, the evalurgtion has to be exercised in using these formulas when

ation of the strength and the interaction range of the coarsgsomparing theoretical predictions with experimental results.
grained attractive potentiaV,q. For completeness, we The approximation of the intermolecular interaction potential

present these parameters for tlmeodified, fully attractive

by a Lennard-Jones potential is expected to be reasonable for

Lennard-JonesLJ) potential, decomposed as described inponpolar, almost spherical molecules but not for small polar

Ref.[34], namely,

Va(r)=—€ for r<2¥y, (Cla
0_12 0.6

Valr)=4el ———| for r=2%¢. (Cip
r r

molecules such as water. Moreover, the choice of the hard-
sphere diameter, i.e., the mapping of the Lennard-Jones po-
tential to a hard-sphere fluid is not uniq&2]. Alternatively,

the Lennard-Jones parameters may be determined by a fitting
procedure that ensures that bulk thermodynamic properties
or the macroscopic surface tension are obtairdzd.
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