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Critical phenomena in networks
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We develop a phenomenological theory of critical phenomena in networks with an arbitrary distribution of
connectionsP(k). The theory shows that the critical behavior depends in a crucial way on the form ofP(k)
and differs strongly from the standard mean-field behavior. The critical behavior observed in various networks
is analyzed and found to be in agreement with theory.
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Many complex interacting systems such as the brain,
ternet, social systems, etc., are recognized as networks.
demonstrate a spectrum of unique effects@1–5#, which dis-
tinguish them from all other known structures of condens
matter. One could expect that such systems have pec
cooperative phenomena. Only the first studies of particu
cooperative models on particular networks were perform
recently@6–18# . They were focused on traditional models
statistical physics, such as the Ising andXY models@7–14#,
percolation@15–17#, epidemic spreading, etc., in scale-fr
networks@18#. It was revealed that their critical behavior
more rich and extremely far from that expected from t
standard mean-field theory. A deviation from the usual me
field critical behavior appears when, depending on
model, the fourtĥ k4& or third ^k3& moments of the degre
distributionP(k) diverge. Here,degreeis the number of con-
nections of a vertex. When̂k2& diverges, all models underg
an unusual phase transition of infinite order. This case is
primary importance because many real networks such as
Internet and biological nets are described byP(k) with infi-
nite ^k2&.

Why do critical phenomena in networks differ so mu
from those in usual substrates and what is their comm
origin? Why do all investigated models demonstrate univ
sal behavior when̂ k2& diverges? In order to answer th
questions raised above and analyze results of simulations
experiments from a general point of view, it is necessary
have a general theory which is not restricted by spec
properties of any model.

The advantage of the phenomenological approach is
the origin of interactions and nature of interacting objects
irrelevant. These can be spins, percolating clusters, biol
cal objects, etc. In this article, we develop a phenomenolo
cal theory of cooperative phenomena in networks. Our
proach is based on concepts of the Landau theory
continuous phase transitions. It is shown that the critical
havior in networks has a universal character and is de
mined by two general properties:~i! the structure of a net
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work and~ii ! the symmetry underlying a model. We find th
in networks described by a degree distribution with diverg
moments, the thermodynamic potential of an interacting s
tem with cooperative effects is a singular function of an
der parameter. The theory is in complete agreement w
exact results for the Ising and Potts models and percola
on ‘‘equilibrium’’ uncorrelated random networks. On the b
sis of the theory we discuss results of theoretical studies
simulations of the Ising andXY models and epidemic
spreading on evolving and small-world networks.

Let us consider a system of interacting objects. Inter
tions or links between these objects form a net. We assu
that some kind of ‘order’ can emerge. This ‘‘ordered’’ pha
may be characterized by some quantitative characteristx
while it will vanish in a ‘‘disordered’’ phase above a critica
point. In order to study the critical behavior we assume t
the thermodynamic potentialF of the system is not only a
function of the order parameterx but also depends on th
degree distribution

F~x,H !52Hx1(
k

`

P~k!f~x,kx!. ~1!

HereH is a field conjugated withx. It should be emphasized
that Eq.~1! is not obviousa priori. The functionf(x,kx)
may be considered as a contribution of vertices withk con-
nections. There are arguments in favor of this assumpt
Let us consider the interaction of an arbitrary vertex 0 withk
neighboring vertices. In the framework of a mean-field a
proach,k neighboring sites having a spontaneous ‘‘momen
x produce an effective fieldkx acting on the site 0. This
indicates that the expansion is over not onlyx but alsokx.

We assume thatf(x,y) is a smooth function ofx and y
and can be represented as a series in powers of bothx andy:

f~x,y!5 (
m50

`

(
l 50

`

fmlx
myl , ~2!

wherefml are functions of ‘‘temperature’’T andH. We use
the term ‘‘temperature’’ for convenience. If a change of a
other parameter leads to the emergence of ‘‘order,’’ then
control parameter can be used asT.
©2003 The American Physical Society23-1
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There are general restrictions on the coefficientsfml . For
an arbitrary P(k), at zero fieldH50, the expansion of
F(x,H50) overx must contain only the second and high
powers ofx. Therefore,f005f015f1050.

F must be finite if̂ k& is finite. This condition is satisfied
if at y@1 and an arbitraryx the functionf(x,y) increases
slower thany:

f~x,y!<g~x!y, ~3!

whereg(x) is a function ofx. Equations~1!–~3! are the basis
of our theory.

In the framework of the Landau theory, it is assumed t
the thermodynamic potentialF near a phase transition poin
can be represented as a series in powers of the order pa
eterx:

F~x,H !52Hx1 f 2x21 f 3x31 f 4x41•••. ~4!

Higher terms in the expansion~4! are irrelevant for the criti-
cal behavior. The coefficientsf n are related to the coeffi
cientsfml in the expansion~2!. Let us suppose first that th
critical temperatureTc is finite. ~The case of an ‘‘infinite’’
critical temperature will be considered separately.! Following
Landau, we assume that near the critical temperature the
efficient f 2 can be written asa(T2Tc) wherea.0 due to
the condition of stability of the disordered phase atT.Tc .
f 250 at the transition point. This gives the following equ
tion for Tc :

f20~Tc!1f11~Tc!^k&1f02~Tc!^k
2&50. ~5!

According to this equation, in the casef2050 the critical
temperatureTc depends only on the ratiôk2&/^k&. Such a
dependence was revealed in all studied models on netw
@8,9,15,17,18#. In the ordered phase the order parameterx is
determined by the condition thatF(x,H) is minimum:

dF~x,H !/dx50. ~6!

Solving Eq.~6!, we find x(T,H) and all other physical pa
rameters: the response functionxx5dx/dH, the specific heat
C52Td2F/dT2, etc.

The condition of the stability of the ordered phase n
the continuous phase transition demands that either^ f 3&.0
or if ^ f 3&50, then^ f 4&.0. In the general case,f 2n115” 0. If
for symmetry reasonsF(x,H)5F(2x,2H), then f 2n11
50. This condition takes place iffml50 at m1 l 52n11.

Let us consider analytical properties ofF in the general
case. Thenth derivative ofF(x,H) at x50 is equal to

F (n)~0![dnF~x,H !/dxnux505n!(
l 50

n

fn2 l ,l^k
l&. ~7!

If all the moments^kl&5(kP(k)kl converge, then all the
derivatives F (n)(0) are finite. Therefore,F(x,H) is a
smooth function ofx, at least at smallx. However, in most
interesting real networks,P(k) has divergent moments. Thi
leads to a very important consequence. If moments^kl& with
l ,p converge and momentŝkl& with l>p diverge, then
02612
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F ( l )(0) with l ,p are finite whileF ( l )(0)→` for l>p. In
this caseF(x,H) is a singular function ofx and can be
written as follows:

F~x,H !52Hx1 (
n52

p21

f n~k!xn1xps~x!, ~8!

where s(x) is a singular function,s(0), s(n)(0)→`, but
xs(x)→0 atx→0. This result is of primary importance. It i
the singular function that can lead to a deviation from t
standard mean-field behavior. A method for determinings(x)
is proposed below. For convenience we use a power-law
gree distributionP(k)}k2g. Then, ^k4& diverges for g
<5, ^k3& diverges forg<4, and ^k2& is divergent forg
<3.

We begin with the casef 2n1150. Let us consider the
critical behavior forf 4.0 and differentg.

~a! g.5. Here,^k4& converges. The coefficientf 4 is fi-
nite andF has a usual form~4!. At H50 Eq.~6! leads to the
standard critical behavior

x}t1/2,DC5” 0,xx~H50!}t21. ~9!

Here,t512T/Tc , DC;1/̂ k4& is the jump of the specific
heat atTc . It tends to zero wheng→5.

~b! 3,g<5. Here,̂ k4& diverges. According to Eq.~8!, a
singular termx4s(x) is expected to appear inF. The func-
tion f(x,y) in Eq. ~2! may be divided into two parts:

f~x,y!5 (
m50

`

(
1< l ,g21

fmlx
myl1G~x,y!. ~10!

The first term determines a nonsingular contribution toF in
Eq. ~1!. The second termG(x,y) gives the singular contri-
bution. For 4,g<5 the functionG(x,y) has the following
properties:G(0,y)}y4 at smally, dnG(0,y)/dynÞ0 for n
>4 aty50. Owing to the condition~3!, the functionG(x,y)
increases slower thany3 at y@1.

It is convenient to use a continuous approximation fo
degree distributionP(k)5Ak2g, whereA is a normalization
factor. Then Eq.~1! may be rewritten in the following form:

F~x,0!5 f 2x21w~x!x41AE
m

` dk

kg
G~x,xk!, ~11!

wherem is the smallest degree inP(k), w(x) is a smooth
function which is determined by the convergent mome
^kl& with l<3, w(0)5” 0. In order to findF at smallx, one
can putG(x,y)'G(0,y) into Eq.~11!. Considering the inte-
gral over a variabley5xk, one can show that the regio
mx<y&b gives a leading contribution.b is a model param-
eter. We obtain

F~x,H !52Hx1a~T2Tc!x
21Ax4 ln~b/x!, ~12!

F~x,H !52Hx1a~T2Tc!x
21Bxg21, ~13!

for g55 and 3,g,5, respectively.A andB are constants a
T5Tc . The critical behavior for the casef 350, f 4.0 at
3-2
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g.3 is summarized in Table I. It was observed in the Isi
model on ‘‘equilibrium’’ uncorrelated random network
@8,9#.

Note that the divergence of^k4& does not change the criti
cal behavior ofxx .

~c! 2,g<3. Now ^k2& diverges. Equation~5! shows that
in this situation there is no phase transition at any fin
temperature. According to Eq.~8!, a singular termx2s(x) is
expected to appear inF. Calculations ofF may be carried
out in a similar way as above, using the functionG(x,y)
5f(x,y)2(m51fm1xmy, Eq. ~10!. We find

F~x,H !52Hx1Cx22Dx2 ln~b/x!, ~14!

F~x,H !52Hx1C8x22D8xg21 ~15!

for g53 and 2,g,3, respectively. The coefficientsC, D,
C8, andD8 are functions ofT andH. If C, D, C8, andD8 are
positive, then at arbitrary finite temperatureT@1 in zero
field H50, Eq. ~6! has stable nontrivial solutions

x5b exp@2~2C1D !/~2D !#, xx51/~2D !, ~16!

x5S 2C8

~g21!D8
D 21/(32g)

, xx5
1

2~32g!C8
~17!

for g53 and 2,g,3, respectively. As in the Landa
theory, the results~16! and~17! are obtained in terms of th
coefficients of the thermodynamic potential. Note that in
situation where a phase transition is absent at any finite t
perature, the phenomenological theory can not determine
temperature behavior of the coefficientsC, D, C8, andD8.

TABLE I. Critical behavior of the order parameterx, the specific
heatdC, and the response functionxx of a model on networks with
a degree distributionP(k);k2g for various values of the coeffi
cients f 3 and f 4, and exponentg. t[12T/Tc , c is a constant
which is determined by the complete form ofP(k). In the casef 3

,0, or f 4,0 if f 350, atg.3, the system undergoes a first-ord
phase transition.
02612
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In this situation, the temperature dependences of the co
cients can be found only by a microscopic theo
~see below!.

In the general case the symmetry of the model adm
nonzerof 3. In the casef 3.0 the analysis of the analytica
properties ofF can be performed as above. Forg.4, F is
a smooth function ofx and leads to the standard critic
behavior. Atg<4, F contains a singular term:~a! x3 ln x at
g54, ~b! xg21 in the ranges 4.g.3 and 3.g.2, ~c!
x2ln x at g53. The corresponding critical behavior forg
.3 is represented in Table I. This behavior was observed
percolation on uncorrelated random networks@17#. In the
range 2,g<3 when ^k2& diverges,F has the universa
form, Eqs.~14! and ~15!.

In the casef 3,0, or f 4,0 if f 350, when ^k2& con-
verges, a first-order phase transition occurs. In agreem
with this prediction we found such a transition in theq-state
Potts model withq>3 on ‘‘equilibrium’’ uncorrelated ran-
dom networks by use of the approach of Ref.@8#. In the limit
g→3 the jump of the order parameter at the transition te
to zero, and the transition transforms into the infinite ord
phase transition. A detailed study of the transition will
given elsewhere.

In order to complete Table I, let us discuss the tempe
ture behavior in the case 2,g<3 within the microscopic
theory of the Ising model and percolation on ‘‘equilibrium
uncorrelated random networks@7–9,17#. For this purpose we
use the more general ferromagneticq-state Potts mode
which at q51 and 2 is equivalent to percolation and th
Ising model, respectively~see, for example, Ref.@19#!. Using
the approach of Ref.@8# we obtain that in the Potts model
continuous phase transition occurs at the exact critical t
perature

Tc52/ln
^k2&1~q22!^k&

^k2&22^k&
. ~18!

Hereafter, we set the energy of ferromagnetic interaction
tween nearest neighborsJ51. The parameterpc51
2exp(22/Tc) determines the percolation threshold@16,17#
and establishes the relation between the Potts model and
colation.

Let us consider the case 2,g<3. Here,̂ k2& diverges.Tc
is infinite for the infinite networks. In any finite network
^k2&,`, andTc is finite, although it may be very high,Tc
>2^k2&/(^k&q). In the temperature regionT@1, wherex
!1, the Potts model demonstrates universal behavior a
q>1:

x'~q/^k&!e2qT/^k&, xx}T21, ~19!

x;T21/(32g), xx}T22 ~20!

for g53 and 2,g,3, respectively. Without the continuum
approximation, we have instead of^k& in the exponential, a
constant which is determined by the complete form ofP(k).
In Ehrenfest’s classification, this transition is of infinite o
der, as all temperature derivatives ofF are finite. The results
~16! and ~17! agree with Eqs.~19! and ~20! if we put C,C8
3-3
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}T2, D,D8}T. The exponential behavior~19! has been re-
vealed in epidemic spreading within scale-free networks w
g53 @18# and in percolation on these networks@17#.

At small x there is the following relationship between th
response functionxx and the susceptibilityx5dM/dH: x
'2/qT1^k&xx /q. At g.3 the critical behavior ofx is de-
termined by xx : x'^k&xx /q. At 2,g<3 we have x
}1/qT, as the paramagnetic contribution 2/qT is of the order
of xx or larger. Let us discuss the results of theoretical st
ies and simulations of critical phenomena in different n
works on the basis of the phenomenological theory.

The phenomenological theory as well as the Land
theory assumes that the contribution of fluctuations to
thermodynamic potential is small. Above we have sho
that the theory gives the exact critical behavior of the Is
model, percolation and Potts model on ‘‘equilibrium’’ unco
related random networks@8,9,17#. The reason for this is tha
these networks have a local treelike structure and vertices
statistically equivalent@20–22#. Due to these properties, ve
tices in the networks can be regarded as forming a Be
lattice structure for which a mean-field approach is ex
@23#. It means that the fluctuation contribution is negligib
small. Note that in a graph with a Cayley treelike structu
vertices are statistically inequivalent, and a mean-field
proach is valid only for vertices deep within such a gra
@23#.

The origin of a deviation from the standard mean-fie
critical behavior is different for regular lattices and network
In a regular lattice the deviation is caused by strong criti
fluctuations which depend crucially on the space dimens
In networks the deviation is brought about by the most c
nected vertices which induce strong correlations in th
close neighborhood. With decreasing exponentg the relative
number of highly connected vertices increases and their
turns out to be more important.

Recent simulations@7# of the Ising model on the
Barabási-Albert scale-free network with the degree distrib
tion P(k)5Ak23 revealed a temperature behavior describ
by Eq. ~19! as well as in the Potts model on ‘‘equilibrium
uncorrelated random networks. Unlike the latter networ
the Baraba´si-Albert net is correlated. Nevertheless, results
the simulations agree with the universal temperature beh
ior predicted by the phenomenological theory for netwo
with the divergent moment̂k2&.

The exact results for percolation on small-world netwo
were obtained in Ref.@6#. The Ising andXY models on
small-world networks were studied analytically and by u
of Monte Carlo simulations@10–13#. These networks, intro
duced by Watts and Strogatz@24#, have a Poisson-like degre
distribution and large clustering coefficients. It was fou
that the critical behavior is characterized by the stand
02612
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mean-field critical exponents. This result is in agreem
with the prediction of the phenomenological theory that t
standard mean-field critical behavior should occur in n
works described by a degree distribution with converg
moments.

Thus, the analysis of critical behavior of the Ising, Pot
andXY models, percolation and epidemic spreading on
correlated random, scale-free and small-word netwo
shows that the critical behavior in networks depends c
cially on the form of the degree distribution and the symm
try underlying a model in a complete agreement with t
phenomenological theory. The studied networks differ
clustering coefficients, degree correlations, etc. Howeve
looks as though these characteristics are not relevant
critical behavior. Their role in the formation of the critica
exponents is still unclear. Further investigations in this to
are necessary. It would be interesting to find a network wh
critical behavior differs from a mean-field one due to stro
fluctuations. However, even in this case it is expected t
whenT tends toTc , a temperature region of the mean-fie
critical behavior precedes a region of strong fluctuations.

Real systems such as the Internet, WWW, or biologi
networks have a network structure with a power-law deg
distribution with exponentg below 3, see Refs.@3,4#. The
phenomenological theory predicts for this case the pow
law critical behavior~20!, see also the last line in Table
This behavior agrees with an empirical observation@5# for
the nd.edu domain of the WWW, where the variations of
size of the giant component under random damage w
studied. This size and the number of damaged vertices pl
role of the order parameterx and the control parameter, re
spectively.

In conclusion, the phenomenological theory shows t
the deviation of the critical behavior of interacting system
with a network structure from the standard mean-field beh
ior emerges when a degree distribution has divergent
ments. The theory predicts different classes of critical beh
ior in agreement with microscopic studies of the Ising a
Potts models, and percolation on ‘‘equilibrium’’ uncorrelate
random networks. It also agrees with results previously
tained for various models on small-world and evolving n
works. The theory can easily be generalized for models w
a multicomponent order parameter and can give useful
sight into collective effects in different networks discussed
connection with the Internet, biological networks, etc. Usi
this approach, one can also study the critical relaxation
models on networks.
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