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Critical phenomena in networks
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We develop a phenomenological theory of critical phenomena in networks with an arbitrary distribution of
connectionsP(k). The theory shows that the critical behavior depends in a crucial way on the foRtkpf
and differs strongly from the standard mean-field behavior. The critical behavior observed in various networks
is analyzed and found to be in agreement with theory.
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Many complex interacting systems such as the brain, Inwork and(ii) the symmetry underlying a model. We find that
ternet, social systems, etc., are recognized as networks. Théynetworks described by a degree distribution with divergent
demonstrate a spectrum of unique effdds 5|, which dis- moments, the thermodynamic potential of an interacting sys-
tinguish them from all other known structures of condensedem with cooperative effects is a singular function of an or-
matter. One could expect that such systems have peculiger parameter. The theory is in complete agreement with
cooperative phenomena. Only the first studies of particulaexact results for the Ising and Potts models and percolation
cooperative models on particular networks were performean “equilibrium” uncorrelated random networks. On the ba-
recently[6—18] . They were focused on traditional models in sis of the theory we discuss results of theoretical studies and
statistical physics, such as the Ising a0d models[7-14), simulations of the Ising andXY models and epidemic
percolation[15—17], epidemic spreading, etc., in scale-free spreading on evolving and small-world networks.
networks[18]. It was revealed that their critical behavior is  Let us consider a system of interacting objects. Interac-
more rich and extremely far from that expected from thetions or links between these objects form a net. We assume
standard mean-field theory. A deviation from the usual meanthat some kind of ‘order’ can emerge. This “ordered” phase
field critical behavior appears when, depending on themay be characterized by some quantitative charactenistic
model, the fourth'k*) or third (k®) moments of the degree while it will vanish in a “disordered” phase above a critical
distributionP(k) diverge. Heredegreeis the number of con-  point. In order to study the critical behavior we assume that
nections of a vertex. Whefk?) diverges, all models undergo the thermodynamic potentig of the system is not only a
an unusual phase transition of infinite order. This case is ofunction of the order parameter but also depends on the
primary importance because many real networks such as triegree distribution
Internet and biological nets are describedRk) with infi-
nite (k). -

Why do critical phenomena in networks differ so much <b(x,H)=—Hx+% P(K) p(x,kx). @
from those in usual substrates and what is their common

origin? Why do all investigated models demonstrate univerye ey s g field conjugated wittx. It should be emphasized
sal bghawor_ when(k®) diverges? In order to answer the yhat Eqg.(1) is not obviousa priori. The function ¢(x,kx)
guestions raised above and analyze results of simulations arﬁq

. . ; e ay be considered as a contribution of vertices Witton-
experiments from a general point of view, it is necessary tq,

h | th hich i ¢ wricted b it ections. There are arguments in favor of this assumption.
ave a general theory which Is not restricted by Specifiq ot g consider the interaction of an arbitrary vertex 0 Wwith
properties of any model.

neighboring vertices. In the framework of a mean-field ap-

th Th? gdvcfalnt?ge ct)_f the pk&enotmeno;qgtlcal e:ppro%qh LS thgroach,k neighboring sites having a spontaneous “moment”
€ ongin of Interactions and nature of Interacting objects ar produce an effective fieltkx acting on the site 0. This

irrelev_ant. These can be _spins, percolating clusters, biomg_'i'ndicates that the expansion is over not orligut alsokx.
cal objects, etc. In this article, we develop a phenomenologi- We assume thab(x,y) is a smooth function ok andy

cal theory of cooperative phenomena in networks. Our apffmd can be represented as a series in powers obbanly:
proach is based on concepts of the Landau theory o

continuous phase transitions. It is shown that the critical be- o oo
havior in networks has a universal character and is deter- — my,|

X,y)= Xy 2
mined by two general propertie§) the structure of a net- $x.y) mE=0 Z’o Py @

where ¢, are functions of “temperatureT andH. We use

*Email address: goltsev@pop.ioffe.rssi.ru the term “temperature” for convenience. If a change of an-
"Email address: sdorogov@fc.up.pt other parameter leads to the emergence of “order,” then this
*Email address: jfmendes@fc.up.pt control parameter can be usedTs
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There are general restrictions on the coefficiepys. For ~ ®((0) with I<p are finite while®((0)—» for I=p. In
an arbitrary P(k), at zero fieldH=0, the expansion of this case®(x,H) is a singular function of and can be
®(x,H=0) overx must contain only the second and higher written as follows:
powers ofx. Therefore,dogo= ¢o1= $10=0.

& must be finite if(k) is finite. This condition is satisfied
if at y>1 and an arbitrary the function¢(x,y) increases
slower thany:

p—1
D(x,H)=—Hx+ 22 f,(K)X"+xPs(X), 8

where s(x) is a singular functions(0), sM(0)—o, but
$(x.y)=<g(x)y, (3 xs(x)—0 atx—0. This result is of primary importance. It is
. . . . the singular function that can lead to a deviation from the
whereg(x) is a function ofx. Equations1)—~(3) are the basis standard mean-field behavior. A method for determirsifd

of our theory. is proposed below. For convenience we use a power-law de-
In the framework of the Landau theory, it is assumed that> PP ' P

. . e . “gree distributionP(k)=<k~”. Then, (k%) diverges fory
the thermodynamic potentidl near a phase transition point 9 N PN
can be represented as a series in powers of the order parari-g’ (k%) diverges fory<4, and(k’) is divergent fory

terx: . . .
eterx We begin with the casé,,,;=0. Let us consider the

D(x,H)=—Hx+ fx2+ fx3+ f x4+ - - - (4)  critical behavior forf,>0 and differenty.

(@ y>5. Here, (k% converges. The coefficiert, is fi-
Higher terms in the expansid#d) are irrelevant for the criti- nite and® has a usual forn4). At H=0 Eqg.(6) leads to the
cal behavior. The coefficientk, are related to the coeffi- standard critical behavior
cients¢,, in the expansiori2). Let us suppose first that the o .
critical temperatureT, is finite. (The case of an “infinite” xS ACF O x(H=0)c 7% ©)
critical temperature will be considered separajéfpllowin . . -
Landau, W(E.) assume that near the criticalptempe%ature tghe Cﬁi_ere, r=1-T/T;, AC~1KK') is the jump of the specific

L : t atT.. It tends to zero when—5.
efficient f, can be written ag(T—T,) wherea>0 due to ea c o .
the condition of stability of the disordered phaseTat T . (b) 3<y=<5. Here(k") diverges. According to Eq8), a

_ L : o ; _singular termx“*s(x) is expected to appear . The func-
'Iif)n (f)o?t'rth-e transition point. This gives the following equa tion G(xy) in Eq. (2) may be divided into two parts:
c:

2 _ o]
$od To)+ D1 T(K) + doo T(K)=0. (5) poxy)=2 3 dnx"Y+GY). (10
= < y—
According to this equation, in the cag®,=0 the critical
temperatureT . depends only on the ratigk?)/(k). Such a  The first term determines a nonsingular contributiombtan
dependence was revealed in all studied models on networksg. (1). The second ternG(x,y) gives the singular contri-
[8,9,15,17,18 In the ordered phase the order parame&ter  bution. For 4 y<5 the functionG(x,y) has the following

determined by the condition thdi(x,H) is minimum: properties:G(0,y)xy* at smally, d"G(0,y)/dy"#0 for n
=4 aty=0. Owing to the conditiori3), the functionG(x,y)
d®(x,H)/dx=0. (6) increases slower thay? aty>1.

It is convenient to use a continuous approximation for a
degree distributio? (k) = Ak™?, whereA is a normalization
factor. Then Eq(1) may be rewritten in the following form:

Solving Eq.(6), we findx(T,H) and all other physical pa-
rameters: the response functigp=dx/dH, the specific heat
C=-Td°®/dT? etc.

The condition of the stability of the ordered phase near = dk
the continuous phase transition demands that eithgr>0 D (x,0)="f x>+ (,D(X)X4+Af —G(x,xk), (11
or if (f3)=0, then(f,)>0. In the general casé;,,, 1#0. If m k¥
for symmetry reasonsb(x,H)=®(—x,—H), then f,,,4
=0. This condition takes place i,,=0 atm+I|=2n+1.

Let us consider analytical properties @f in the general
case. Thenth derivative of®(x,H) atx=0 is equal to

wherem is the smallest degree iR(k), ¢(x) is a smooth
function which is determined by the convergent moments
(k'y with <3, ¢(0)#0. In order to find® at smallx, one
can putG(x,y)~G(0,y) into Eq.(11). Considering the inte-
n gral over a variabley=xk, one can show that the region
(I)(n)(O)Edn(I)(X,H)/dxn|X:O:n! E ¢n7|,|<k'>- (7) mx<y=Dh gives a leading contributiorn is a model param-
=0 eter. We obtain

If all the moments(k')==,P(k)k' converge, then all the ®(x,H)=—Hx+a(T-Tox2+Ax* In(b/x), (12
derivatives ®W(0) are finite. Therefore®(x,H) is a
smooth function oix, at least at smalk. However, in most d(x,H)=—Hx+a(T—Ty)x?>+Bx’" 1, (13

interesting real network$?(k) has divergent moments. This
leads to a very important consequence. If momékitswith  for y=5 and 3<y<5, respectivelyA andB are constants at
|<p converge and moment&k') with |=p diverge, then T=T,. The critical behavior for the casg=0, f,>0 at
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TABLE I. Critical behavior of the order parameterthe specific  In this situation, the temperature dependences of the coeffi-
heatsC, and the response functigy of a model on networks with  cients can be found only by a microscopic theory
a degree distributiorP (k) ~k™” for various values of the coeffi- (see below
cientsf; and f,, and exponenty. 7=1-T/T., c is a constant In the general case the symmetry of the model admits
which is determined by the complete form B{k). In the casefs  ponzerof,. In the casef;>0 the analysis of the analytical
<0, orf4<Q_|f f3=0, aty>3, the system undergoes a first-order properties of can be performed as above. Fpr 4, ® is
phase transition. a smooth function of and leads to the standard critical
behavior. Aty<4, ® contains a singular ternga) x°In x at

x SC(T<T,) Xx =T
y=4, (b) x?"1 in the ranges #y>3 and 3>y>2, (¢
v>5 72 jump at T, x’Inx at y=3. The corresponding critical behavior for
f3=0, >3 is represented in Table I. This behavior was observed for
y=5 72/(In 7 H? Yinz ! percolation on uncorrelated random netwofls]. In the
£4>0 range 2 y<3 when (k?) diverges,® has the universal
3<y<5 AHr=3) A5 NHr=3) form, Eqgs.(14) and (15).
1 In the casefz<0, or f,<0 if f;=0, when(k?) con-
y>4 r r verges, a first-order phase transition occurs. In agreement
with this prediction we found such a transition in thetate
£3>0 y=4 /(In w1 /(27 1) Potts model withg=3 on “equilibrium” uncorrelated ran-
dom networks by use of the approach of Ré&. In the limit
3<y<4 Alr=3) A5 Py=3) v— 3 the jump of the order parameter at the transition tends
to zero, and the transition transforms into the infinite order
arbitrary y=3 0T T2 2T 71 phase transition. A detailed study of the transition will be

given elsewhere.

fyand f, | 2<y<3 TG~ T DG-y 2 In order to complete Table I, let us discuss the tempera-
ture behavior in the case<2y<3 within the microscopic
theory of the Ising model and percolation on “equilibrium”
uncorrelated random networks—9,17. For this purpose we
v>3 is summarized in Table I. It was observed in the Isinguse the more general ferromagnetiestate Potts model
model on *“equilibrium” uncorrelated random networks which atg=1 and 2 is equivalent to percolation and the

[8,9]. Ising model, respectivelisee, for example, Reff19]). Using
Note that the divergence ¢k*) does not change the criti- the approach of Ref8] we obtain that in the Potts model a
cal behavior ofy, . continuous phase transition occurs at the exact critical tem-

(c) 2<y=3. Now(k?) diverges. Equatios) shows that perature
in this situation there is no phase transition at any finite

temperature. According to E¢8), a singular termx?s(x) is (k?+(q—2)(k)

expected to appear . Calculations of® may be carried Tc=2/n (k) — 2(K) . (18

out in a similar way as above, using the functi@gx,y)

=d(X,Y) —Zm=1¢mX"y, Eq.(10). We find Hereafter, we set the energy of ferromagnetic interaction be-
®(x,H) = — Hx+Cx2— Dx2In(b/x), (14) tween nearest neighbord=1. The parameterp.=1

—exp(—2/T;) determines the percolation threshgith,17]
and establishes the relation between the Potts model and per-
colation.

Let us consider the case2y<3. Here(k?) divergesT,
is infinite for the infinite networks. In any finite network,
(k?)<os, and T, is finite, although it may be very high,.
=2(k?)/({k)q). In the temperature regio>1, wherex
<1, the Potts model demonstrates universal behavior at all

x=bexd—(2C+D)/(2D)], xx=1/(2D), (16 9=1:

®(x,H)=—Hx+C'x>-D'x?"* (15

for y=3 and X y<3, respectively. The coefficients, D,
C’, andD’ are functions off andH. If C, D, C’, andD’ are
positive, then at arbitrary finite temperatufe>1 in zero
field H=0, Eq.(6) has stable nontrivial solutions

~1/(3-7) x~(q/(ky)e 97®  yo=T ™1, (19)

2C’
(y—1)D’

1
2(3—y)C'

7

M X~T- V=N T2 (20

for y=3 and X< y<3, respectively. As in the Landau for y=3 and 2<y<3, respectively. Without the continuum
theory, the result$16) and(17) are obtained in terms of the approximation, we have instead ¢K) in the exponential, a
coefficients of the thermodynamic potential. Note that in theconstant which is determined by the complete forniP¢k).
situation where a phase transition is absent at any finite tenin Ehrenfest’s classification, this transition is of infinite or-
perature, the phenomenological theory can not determine thaer, as all temperature derivatives®fare finite. The results
temperature behavior of the coefficie@sD, C’, andD’. (16) and(17) agree with Eqs(19) and(20) if we put C,C’
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«T?, D,D'«T. The exponential behaviarl9) has been re- mean-field critical exponents. This result is in agreement
vealed in epidemic spreading within scale-free networks withwith the prediction of the phenomenological theory that the
v=23[18] and in percolation on these networks7]. standard mean-field critical behavior should occur in net-
At small x there is the following relationship between the works described by a degree distribution with convergent
response functiory, and the susceptibility =dM/dH: y  moments. _ - _ _
~2/qT+(K)x«/q. At y>3 the critical behavior of is de- Thus, the analysis of critical behavior of the Ising, Potts,
termined by x,: x~(K)xx/q. At 2<y<3 we have y and XY models, percolation and epidemic spreading on un-

«1/qT, as the paramagnetic contributiomZ/is of the order correlated random, scale-free and small-word networks

of x4 or larger. Let us discuss the results of theoretical stugShows that the critical behavior in networks depends cru-

ies and simulations of critical phenomena in different net-ﬁ'algn%nertlh?nfor;nrz];:jheel ?r?g;efo?risﬁrel?eu?nr:;r?]etzte \?&?Tﬁe—
works on the basis of the phenomenological theory. y ying P 9

The phenomenological theory as vl as the Landayiftemc Bt a2 SO KRS Kever i
theory assumes that the contribution of fluctuations to th 9 » deg ' : '

ermodynaric otenial s small Above v have showrlo0C 52 000" Tese slarecerils e vl levant o
that the theory gives the exact critical behavior of the Ising '

o, perclaton and Pots model o “squlbran” uncor -2orEn = <8l e Furter uesigatons stk
related random networKs$,9,17. The reason for this is that Y. 9

these networks have a local treelike structure and vertices aﬁg't'cal behavior differs from a mean-field one due to strong

L . : Uctuations. However, even in this case it is expected that
statistically equivaleri20-23. Due to these properties, ver whenT tends toT,., a temperature region of the mean-field

tices in the networks can be regarded as forming a BetheF'ritical behavior precedes a region of strong fluctuations
lattice structure for which a mean-field approach is exac Real systems such as the Internet, WWW, or biological

[23]. It means that the fluctuation contribution is negligibly networks have a network structure with a power-law degree
small. Note that in a graph with a Cayley treelike structure,Sjistributiorl with exponenty below 3, see Refg3.4]. The

vertices are statistically inequivalent, and a mean-field ap henomenoloaical theorv predicts for this case the power-

proach is valid only for vertices deep within such a graphp L gical y predi IS case pow

[23]. Iavy critical 'behaV|or(20),_ see also t_h.e last line in Table I.
This behavior agrees with an empirical observafibh for

The origin of a deviation from the standard mean-field . L
critical behavior is different for regular lattices and networks.the nd.edu domain of the WWW, where the variations of the

In a reqular lattice th viation i rona criti F.lze_of the_ gigint component under random dam_age were
a regular lattice the deviation is caused by strong ¢ tcastud|ed. This size and the number of damaged vertices play a

fluctuations which depend crucially on the space dimensionr.Ole of the order parametarand the control parameter. re-
In networks the deviation is brought about by the most con- tivel P P ’
nected vertices which induce strong correlations in theirPeCUVely. .

close neighborhood. With decreasing expongtite relative In conclusion, the phenomenological theory shows that

number of highly connected vertices increases and their roI%i?hd:xzwoqkoltﬁitsgl?r%lrr??r?g\égaggrlgﬁrs;gg?eI?jygfeehrg\sl-
turns out to be more important.

Recent simulations[7] of the Ising model on the ior emerges when a degree distribution has divergent mo-

Barabai-Albert scale-free network with the degree distribu- ments. The theory predigts different cIas;es of critica] behav-
tion P(k)=Ak 3 revealed a temperature behavior describe or in agreement with microscopic stu_d_le_s of the Ising and
by Eq. (19) as well as in the Potts model on “equilibrium” otts models, and percolation on “equilibrium” uncorrelated

uncorrelated random networks. Unlike the latter networksrarldom networks. It also agrees with results previously ob-

the Barabai-Albert net is correlated. Nevertheless, results ofta'ned for various models on small-world and evolving net-

the simulations agree with the universal temperature beha\yyorks. The theory can easily be generalized for models with

or predicted by the pheriomenological theory for networksl i T RIET. G PEEEE B o0 I ased i
with the divergent momen(tk?). 9

The exact results for percolation on small-world netWorksconnectlon with the Internet, biological networks, etc. Using

were obtained in Ref[6]. The Ising andXY models on this approach, one can also study the critical relaxation in

small-world networks were studied analytically and by usemodels on networks.

of Monte Carlo simulation§10—13. These networks, intro- S.N.D and J.F.F.M. were partially supported by Project
duced by Watts and Strogdt24], have a Poisson-like degree No. POCTI/99/FIS/33141. A.G. acknowledges the support of
distribution and large clustering coefficients. It was foundthe NATO program OUTREACH. We also thank A.N. Sam-

that the critical behavior is characterized by the standardikhin for many useful discussions.
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