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Measuring nonequilibrium temperature of forced oscillators
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The meaning of temperature in nonequilibrium thermodynamics is considered by using a forced harmonic
oscillator in a heat bath, where we have two effective temperatures for the position and the momentum,
respectively. We propose a concrete model of a thermometer to testify the validity of these different tempera-
tures from the operational point of view. It is found that the measured temperature depends on a specific form
of interaction between the system and a thermometer, which means that the zeroth law of thermodynamics
cannot be immediately extended to nonequilibrium cases.
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I. INTRODUCTION N
< aa + bV2¢>
Temperature and entropy are basic concepts of thermody- B= > , 2
namics which have clear definitions and meaning in equilib- aE p_i+b Vo
rium but which are not yet fully understood in nonequilib- i m

rium situations. In equilibrium thermodynamics, one way to
introduce temperature is to define entropy someliewy., whereN is the number of degrees of freedom, denotes
through the adiabatic invarianso that temperature can be mass of the microscopic particles, agdis the interparticle
introduced as a derivative of entropy with respect to energypotential. Note that we need arbitrary factarsndb to let
the dimensions of the two terngboth of the numerator and
of the denominatgrbe the same. We remark that, however,
S this arbitrariness has no influence on the value of tempera-
== (1) ture in equilibrium situations. Although E@) is originally
U ; AT :
defined in microcanonical ensemble, Jeppsal.[7] general-
ized this expression for canonical ensemble and presented it
in a more general form. Furthermore, they applied it to nu-
, . ) M erical simulations of nonequilibrium stationary states in the
structed in a consistent way, we cannot define nonequilibyresence of shear flow or heat flow. However, in nonequilib-
rium temperature in this manner. For example, we do no},;m systems, we cannot have the unique value of tempera-
know whether entropy is a measurable quantity in contrast t9 e due to the arbitrariness afand b [8]. This ambiguity
equilibrium cases where entropy difference between twaeems quite natural since Rugh’s expression is essentially
states is measured by heat produced in quasistatic processpgsed on the equilibrium thermodynamic relation in B).
Furthermore, even if we can measure nonequilibrium enNamely, the problem is carried over from the choice of vari-
tropy, we cannot obtain unique temperature unless we progbles to be fixed: we cannot reach the dynamical expression
erly set up the thermodynamic state sp@ted4]; i.e., the  of nonequilibrium temperature unless the correct thermody-
value of the temperature depends on the choice of variablesamic state space is set up.
which we will fix through the differentiation of entropy with There is another way to define temperature that we call
respect to energjl]. operational temperature in this paper. When finite closed sys-
Local equilibrium temperature, which we are familiar tems are in contact, they finally equilibrate to have the same
with, loses its validity for systems where the deviation fromintensive quantity, which we identify with temperatuie.,
equilibrium ensemble is not negligible. Indeed, it is expectedhe zeroth law of thermodynamicsdHence, it might be pos-
that equipartition of energy will no longer be valid, in such asible to measure nonequilibrium temperature by putting equi-
way that different degrees of freedom may have differentibrium thermometer in contact to nonequilibrium systems. A
energy. For instance, some numerical simulations showededanken experiment has been proposed in order to clarify
that nonequilibrium systems are anisotropic with regard tahe meaning of nonequilibrium temperature from that point
their kinetic energy{5], which is never explained based on of view [9]. In particular, Baranyai has performed numerical
the local equilibrium assumption. simulations on shear-flow or heat-flow systems in contact
So far, several authors have tried to seek the meaning ofith thermometers and obtained some explicit values of op-
temperature beyond the local equilibrium picture utilizing erational temperaturgs]. However, since we do not have a
the microscopic expression devised by Righ theoretical framework in which the obtained values should
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be interpreted, those numerical data seem to be left alone. helaxation times, each of which is related to position and
other words, we cannot theoretically predict the value of opmomentum, respectively. We write the relaxation time of po-
erational temperature with which the numerical data shoulgition asr,= yQ ~2 and the one of momentum ag= y L
be compared. When the forcing period,=2#/w is longer enough than a
Since the meaning of temperature out of equilibriumrelaxation time(i.e., 74> 7, or 7p), the sinusoidal motion is
seems to lack a sound theoretical basis, it is reasonable tveraged to yield a distribution function which deviates from
pick up the simplest model in order to analyze theoreticathe equilibrium one. In contrast, if the forcing period is com-
aspects more easily. For this purpose, it seems that systerparable with(or shorter thaha relaxation timgi.e., To< 7,
such as shear flow or heat flow are still excessively complior 7,,), the corresponding motion of position or momentum
cated. In this paper, we adopt a forced harmonic oscillator asannot follow the forcing and the distribution function is
a model system. Although it might be regarded as one of thindistinguishable from the equilibrium one. For instance, if
simplest nonequilibrium systems, it is worth noting that r,<7,<r,, we may expect that the distribution function of
time-averaged distribution functions of momentum and posiposition is not much changed from equilibrium, whereas the
tion are both Gaussian but characterized by different effecone of momentum is modified by the forcing.
tive temperatures depending on the forcing frequeid}. To see these circumstances explicitly, we first calculate
Thus, this system may provide a simpler example for thehe potential energy,,, and the kinetic energy,;,. Since
concept of temperatures than fluid systems under she#@q. (3) is linear, we can decomposeinto the ensemble-
where different effective temperatures have been studied sgverage parX and the fluctuation parg (i.e., x=X+y),

far. We will simulate an experiment analogous to R8f.by  each of which satisfies the following equations.
letting a forced oscillator interact with another nonforced os-

cillator (in a different heat bajh which acts as a thermom- X+ yX+Q2X=Asinot, (5
eter. Comparison of the respective results may be useful for
clarification of the concept of temperature. Y+ yx+ Q%= £(1). (6)

The plan of the paper is as follows. First, some statistical
properties of a forced harmonic oscillator in a thermal bathFrom these equations, we can see three important points to
are recalled and interpreted in terms of nonequilibrium temcalculateu,,, and u;,. (i) The two variablesX and y are
perature. In Sec. Il, in order to define temperature in a macindependent of each other and hence have no correlation; and
roscopic point of view, a forced and an unforced oscillators(ii) The fluctuation parj is identical to the equilibrium fluc-
situated in different thermal baths will be considered and theuation; iii) the average motion can be solved to give
heat current between them will be calculated. In Sec. IV, we
discuss the form of entropy for some different choices of X(t)=Xgsin(wt = 6), (7)
variables, and compare our result with those obtained by
Baranyai in the framework of nonequilibrium molecular dy- Where
namics of fluid systems of soft spheres in shear flow.

A
Xo= , ®
Il. A MODEL SYSTEM: FORCED HARMONIC N Y w?
OSCILLATOR
We assume that our model system is described by the tano= — 2 (9)
following Langevin equation; 0?%— w?
X+ yj(+ Q%x=Asinwt+ &(t), 3 The above three discussions lead to
where the mass of the oscillator is taken as unit. The natural 02 1 szé
: ; . Ueor=—= (XD + () =55+ (10
frequency of the harmonic oscillator is denoted ®y and con— o X 23 4 '
A sinwt corresponds to external forcing. The noise tei(t)
is assumed to be Gaussian white noise which satisfies 1 . ) 1 wzxg
, L Ukn =5 (X% + ()= 55+ —4— (1
(&(1))=0, (&VEt))=2yp  a(t—t"), (4)

whereg is the inverse temperature of the heat bath. The corresponding energy dissipation ratds also cal-
Macroscopic or thermodynamic quantities should be de¢ulated as
fined by an appropriate averaging; usually ensemble average
or time average. Throughout this paper, we will take time-
averaged quantities as macroscopic variables, since the
model system is periodic in time due to sinusoidal forcing.
In our model, the external force gives power input to the =y(2Un— B~ ). (13)
oscillator, which may cause a different influence on the av-
erage energy of momentum and of position. To have a physi- Then we wish to consider the distribution function
cal idea of this influence, note that we have two kinds ofp(x,p;t) of our system. With standard techniques described

V= (kA SInat)= v’ (12)
W= (X In ==
A et (07—
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in Ref. [11], the following differential equation regarding external forcing
p(x,v;t) is derived from Eq(3):

p(x,p;t)=| — %er %(7p+92x—Asinwt)
92
+E(9_pz p(X,p;t). (14)
The solution independent of the initial condition is system thermometer
B ,392 FIG. 1. Schematic of the numerical experiment for operational
p(X.p:t)“exr{ - E[p_ wXqcog wt—8)]%~ - temperature.

IIl. OPERATIONAL TEMPERATURE

X [x—Xosin(wt— 8)]2], (15)

The discussion in the preceding section deals with the
i i ) _ .. distribution function in the phase space and hence it may
Sllnce.th|s solqtlon corresponds to eqsemble distribution abther be a microscopic consideration. From the thermody-
a given instant, in order to calculate time-averaged quantizamic point of view, the problem arises how the different
ties, the distribution functiofEq. (15)] itself must be time- microscopic temperatures of Eq&l9) and (20) are con-
averaged. nected to macroscopic measurements. Since those tempera-
2l B tures differ, the macroscopically measured tempera(iueg
p(x,p)zf dtp(X,p;t)'ocex[{— _(p2 operational temperaturenay indicate different values de-
0 2 pending on the details of the connection between the system
— and the thermometer. In this section, we will investigate the
f dtf(x,p;t), (16) problem by devising a concrete model for the temperature
0 measurement.
Here, we will examine a situation which bears some simi-
where larities with the proposal of Jou and Casaszyfaez[9].
They defined a prototype of operational temperature in
f(x,p;t):eX[{g( pwXyCoswt + QxXgsinwt which two systems are in thermal contact: one is kept in a
nonequilibrium steady state by means of heat flux, whereas
the other is in equilibrium to act as a thermometer. In our
.17 setting, we consider two coupled oscillators in contact with
different heat baths whose temperature can be controlled in-
dependently. One is forced to stay away from equilibrium

. 5 g (the systemwhile the other is unforced to remain in equi-
up to second order iBpwX, and SQ1°xX, (Gaussian ap- librium (the thermometer They are connected through a

proximation, providing that 'B(w_XO) =1 _and B(2Xo) weak interaction potentid¥. The schematic picture of our
<1. Namely, we assume that gain of the internal energy dugituation is shown in Fig. 1

to the external forcing is small compared with thermal en-
ergy. With this approximation, we get the following distribu-

tion function. . INV(X—Y)
X+ yx+Q°x+ e Y

+02x?)

22 2v2
wX 0OX
0 coLwt— 0

> > sirfwt

To perform the integral in Eq.16), we expandf(x,p;t)

The dynamics of such oscillators will be written as

=Asin(wt)+ (1), (21

02x2 pz IX
p(X,p)xex —Beon—5— — Bkin5 | (18
2 2 . . IV(X—Y)
ay+yyte =&(1), (22
where ay
02x2 where o denotes the mass of unforced oscillator. Wedet
ﬁconzﬁ( 1-8 > 0) , (19  ande to be small so that the disturbance of the forced oscil-

lator by the thermometer will be weak. The noise teii{s)
252 are again assumed to be Gaussian white noise but character-
1-3 “’2 0) _ (20  ized by different temperatures denoted By, ie.,

, (&(0)=0, (&(D&))=2yB; '5;0(t—t"), (23
We can see that there are two kinds of temperature for one
oscillator. Hereafter each temperature corresponding to posivhere ;; is Kronecker’s deltgunity if i=j and zero other-
tion and momentum is called configurational temperaturavise). The similar system, in the absence of inertia and the
and kinetic temperature, respectively. external forcing, was studied in detail by Sekimpi2].

Bkin=B
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FIG. 2. Average heat flukq) as the function of the temperature ~ FIG. 3. The same graph with Fig. 2 but with different param-
of the heat bath of thermometer. The results of harmonic interactiofters such thab=1.0 and2=0.1, where the corresponding kinetic
are represented by 's, while the ones of bistable interaction are by and configurational temperatures are 1.37 and 1.04, respectively
+'s. The parameters are set as=0.25 andQ)=1.0, where the (shown by the arrows
corresponding kinetic and configurational temperatures are 1.08 and
1.49, respectivelyshown by the arrows perature, and the one with bistable potential is close to the
kinetic temperature. It is concluded that various interactions
We will test two kinds of interaction terms; harmonic and show various temperatures whose values are ranged between
bistable potentials. kinetic and configurational temperatures. Therefore, it is
plausible that the zeroth law of thermodynamics should be
1, formulated only in a very restrictive form for nonequilibrium
of cases.

1 1 29

_ §r2+ Zr4' IV. CONCLUDING REMARKS

V(r)=

In this concluding section, we will pay some attention to
The heat flux from the forced oscillator to the thermometer isentropy corresponding to the nonequilibrium system, and to

evaluated as a comparison with the results obtained by Baranyai and co-
workers by means of the nonequilibrium molecular dynam-
IV(X—Y). ics.
q=— eTy. (25

A. Entropy for nonequilibrium steady states
When both oscillators are left unforced€0), the heat flux

between both systems is proportional to the difference of th? I!a?i(t)w: gfeglr?:gdmzmlérsli?:eo?s?:mgtgr?sss'll'?l: r?w)gtei\?gt?(?nci;slbtgs
temperatures of the corresponding heat baths. When one 8(? : . ) '
the oscillators is forcedA+ 0), the unforced oscillator plays Iscuss temperature from a thermodynamic point of view
the role of thermometer ' PIaYS and to compare it with the operational temperature obtained
L ' . . in the preceding section. The distribution functidty. (18)]
Our definition of the operational temperature is as fol based on the Gaussian approximation may be considered to

lows. We fix the parameters of the forced oscillafioe., A, . i th th int that th
B1, and(), and change the temperature of the heat batty < the maximum eniropy with the constraint that the sec-
@ Pl ' ond moments of momentum and position are given. The cor-

for the thermometerf,). There should be a certain value of . . . .
B, at which the average heat flux]) vanishes. Then we responding Gibbs relation will thus be

identify the temperature of heat baﬁgl with the opera- ds= BeordUcon™t Brind Ukin (26)
tional temperature. Throughout the numerical simulations,
we sety=1.0,A=1.0, 8;=1.0, e=0.1, anda=0.1. wheres denotes entropy per oscillator. This may be a natural

The results of the numerical simulations are shown inextension of the equilibrium Gibbs relation by considering
Figs. 2 and 3 for different parameters of the oscillator, wherehat each degree of freedom is a thermodynamic system by
the values of(q) are rescaled suitably. Note that the zeroitself with different temperature. This simple form of the
point of heat flux(equilibration point is different depending Gibbs relation is due to the Gaussian approximation of the
on the interaction potential: thermometers indicate differentlistribution function. If they are not Gaussian, we would
values for the same system. Especially, the one with hameed additional independent variables; e.g., higher-order mo-
monic potential shows good agreement with the configuraments. Note that systems with two temperatures are common
tional temperature, while the other with bistable potentialin nonequilibrium physics, for example, in plasmagere
indicates a value close to the kinetic temperature. This terelectrons and ions may have different temperajyres in
dency is unchanged for the system with different parametermetals or semiconductoravhere electrons may exhibit a
at which the configurational temperature is higher than theemperature different from that of the lattjce
kinetic one(Fig. 3), while the latter is higher than the former However, Eq(26) is not the only candidate. We can con-

in Fig. 2. sider arbitrary linear transformation of,, andu,;, such that
In short, the operational temperature of a thermometer
with harmonic potential is almost the configurational tem- U= Ugon™T Ugin » (27
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Y= a1Ucont @oUgin» (29 and entropy production rate are analogous to that in extended
irreversible thermodynamidd], where the usual thermody-
wherea; # a,. By using these new variables, we can rewritenamic variables and the fluxes are taken as independent vari-
Eq. (26) as ables. In this case, we hay,, as the thermodynamic tem-
perature. In addition, we remark that the second terms of
_ @2fBcon™ “1'3kindu_ Beon~ Biin dy (29 Egs. (32) and (34) vanish at resonance whete=. It is
ag

ds . . :
ar—ay ar— identical with

Sinceu is the total energy of the oscillator, it may be possible
to define temperature analogous to Eb); S
7y =0. (36)
u

0:

Js
ﬁu)y’ (30
Also the entropy production rate is maximum at reso-
nance.
As we have seen so far, thermodynamic temperature de-
(31) fined through the extended Gibbs relation depends on the
@z choice of the new variable. We have expected that the opera-
tional temperature would be the criterion for choosing the
new variable, which was one of the motivations of our study.
q—|owever, in the preceding section, we have seen that differ-
ent thermometers read different temperatures, which means

ture ¢ depends on the choice of the new variagle impossibility of defining the unique nonequilibrium tempera-

AIthough the nonuniqueness of temperature has been Aire even in this simple model system consisting of one de-
gued, e.g. in the context of extended irreversible thermody-

namics[1], the criterion for the choice of new variables is gree of freedom. The absence of a unique operational tem-

. ...~ perature can be a serious problem for the construction of
still unknown. At least there are some necessary condition S . .
. o . . thermodynamics: at least the formulation of the zeroth law is
for the choice ofy: (a) it must be extensive, and macroscopi-

cally observable(b) the entropy must be convex regardin not immediate and, if possible, would be a very restrictive
y . ntropy 9 9 form in contrast to equilibrium cases. Sasa and Tasaki have
to the new extensive variabie

ST . . already pointed out this kind of operational restriction which
In Eq. (26).' the convexity is identical with thgBco and results from the anisotropy of pressure in a macroscopic heat
Byin are nonincreasing functions af.,, and u,;,, respec- .
X S : . X conducting systerfil3].
tively. This is obvious sinceB;q=(2Ucon) and Biin
=(2u,,) L. Of course, there are other choices satisfying
convexity. Say we set; =1 anda,=0, then B. Comparison with the results of nonequilibrium

molecular dynamics
ds= Byind U+ ( Bcon— Bkin) dUcon, (32 . . L. . .
In this paper, we have examined kinetic, configurational,
where the thermodynamic temperature coincides with the kiand operational temperatures in a forced harmonic oscillator.

which yields

o= @2Bcon— @1 Bkin

Here we use another notatighas the(inverse temperature
of the nonequilibrium system, which clearly depends on th
choice ofa; and @,. Namely, the thermodynamic tempera-

netic temperature. As was mentioned in the Introduction, similar situations have
Another possibility is to adopt the entropy production ratebeen examined by Baranygh] based on the same motiva-

o, tion. While he studied systems consisting of soft spheres

) under shear flow or in the presence of heat current using

o= BwW=y(2BU,— 1), (33)  techniques of nonequilibrium molecular dynamics, the sys-

tem analyzed here is much simpler than that. It must be
where Eq.(13) is recalled. Sinc&lo=2ygduy,, from Eq.  noted that Baranyai used the Nedeover—type dynamics
(26) we get which removes energy from the system as dissipation,
whereas we adopt the Langevin equation to represent the
Beon— Bin do (34) effect of heat baths. Despite these differences, we think that
2By ’ it is still worth comparing these results, since we are looking
) . for general thermodynamic concepts which should be largely
where the thermodynamic temperature becomes the Conf'g'ihdependent of the microscopic details of the system.

ds= BeodU—

rational temperature. Using Ege9) and (20), we can fur- The definitions of temperature in the works of Baranyai is
ther rewrite Eq(34) as based on the Rugh microscopic expression of(Bg.As we
) have mentioned in the Introduction, the expression itself can-
ds= By du— i( 1— Q_) odo (35) not define temperature uniquely in nonequilibrium states due
«© 22 w? ' to arbitrary factorsa andb. Instead of the unique tempera-

ture, again we have two kinds of temperature; configura-
where we can see the second-order contribution of thedflux tional and kinetic temperatures which can be defined without
to the entropy. Note that the above expression with energthe arbitrariness.
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2 tional temperature. However, since Hooetral. ignored the
Vg . e e
Beonr=\ =735/ (37 anisotropy of the kinetic energy, it is not apparent what value
|Vl the ideal gas thermometer reads when it is actually in contact

with a nonequilibrium system. More numerical simulations

ﬂ and real experiments on the operational temperature are
m needed for the clarification of nonequilibrium temperature
Bkin:—pz- (38 and the underlying nonequilibrium thermodynamics.
<E —'> In summary, we have found that the operational tempera-
T m ture depends on the details of interaction between the system

. . _ 1 ' and a thermometer, which is never seen in equilibrium situ-
These  expressions yield Beon=(2Ucor) and B ations. The fact may shove a strong restriction on the exten-

_ . 71 . . . . .
_(zuk'.”) Wh'Ch. c0|_nC|de with our results obtained by sion of the zeroth law for nonequilibrium systems. Of course,
Gaussian approximation. Baranyai calculated these expres-

sions for temperatures in the mentioned fluid system of so s our analysis is confined to one-dimensional systems, there

: ay arise another problem for two- or three-dimensional

spheres at various values of the shear rate, and found that the . . .
i . S T systems regarding the relation between the anisotropy of
configurational temperature is higher than the kinetic tems . 2.
E}mperatures and the operational temperature. In addition,

perature, whereas the situation is opposite in systems wit e Gaussian approximation of the distribution functions

charge current. Furthermore, these temperatures turned out . . . "
be anisotropic: that is, they take different values for different ake especially easy to define temperatures, while additional

conceptual problems would appear if the distribution func-

spat?al dirf-:-ctions. In our _situ.ation, the relation between the[ion deviates far from the Gaussian. For instance, there have
configurational and the kinetic temperatures depends on the ) '

. . . . been some maximum-entropy analyses of nonequilibrium ra-
ratio O/ w. In general, as Baranyai has discussed, they wil by Y q

L diation, where nonequilibrium temperature or quasitempera-
depend on the characteristics of the system and the externt%lfe per mode have been defined in terms of the nonequilib-
forcing responsible for the nonequilibrium situation.

In addition, Baranyai has proposed an operational tem[ium po.pulations of the_diﬁergnt modes, in the_ context of a

perature by <’jevising the concrete model that emulates engrgllzed Planck statistics m;tead of a classical Boltzmann

physical thermometer in contact with the fluid. The ther- _atlst|cs_[15]: 'I_'he present situation h as the a_d\_/antages (.)f the
: higher simplicity and of the possibility of devising numerical

nmo(ir?:éle;hzogiflsrj 8; gr]]z;?mfmpr?(;trl?ﬁj tﬁsertr?wisﬂtl;gis, Ptjhted imulations concerning operational temperature which have
9: €Y%,0t been done before.

interact only with the fluid particles. This thermometer seems

to read definite values of temperature regardless of the mass
and the number of thermometer particles. However, the de-
pendency of interaction potential between the fluid and the D.J. acknowledges the financial support of the Spanish
thermometer is not discussed. Taking our result into considMinistry for Science and Technology under Grant No.

eration, the operational temperature will depend on the interBFM2000-0351-C03-01 and of the General Direction for Re-
action between the system and thermometers. Indeedgarch of the Generalitat of Catalonia under Grant No. 2001
Hoover et al. have discussed the ideal gas thermometeSGR 00186. T.H. acknowledges the financial support of Ja-
which reads the kinetic temperatuig4], while Baranyai's pan Society for Promotion of Science under Grant No. 12-
thermometer reads the value that is closer to the configur&288.
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