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Measuring nonequilibrium temperature of forced oscillators
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The meaning of temperature in nonequilibrium thermodynamics is considered by using a forced harmonic
oscillator in a heat bath, where we have two effective temperatures for the position and the momentum,
respectively. We propose a concrete model of a thermometer to testify the validity of these different tempera-
tures from the operational point of view. It is found that the measured temperature depends on a specific form
of interaction between the system and a thermometer, which means that the zeroth law of thermodynamics
cannot be immediately extended to nonequilibrium cases.
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I. INTRODUCTION

Temperature and entropy are basic concepts of therm
namics which have clear definitions and meaning in equi
rium but which are not yet fully understood in nonequili
rium situations. In equilibrium thermodynamics, one way
introduce temperature is to define entropy somehow~e.g.,
through the adiabatic invariant! so that temperature can b
introduced as a derivative of entropy with respect to ener

b5
]S

]U
. ~1!

However, since nonequilibrium entropy has never been c
structed in a consistent way, we cannot define nonequ
rium temperature in this manner. For example, we do
know whether entropy is a measurable quantity in contras
equilibrium cases where entropy difference between
states is measured by heat produced in quasistatic proce
Furthermore, even if we can measure nonequilibrium
tropy, we cannot obtain unique temperature unless we p
erly set up the thermodynamic state space@1–4#; i.e., the
value of the temperature depends on the choice of varia
which we will fix through the differentiation of entropy with
respect to energy@1#.

Local equilibrium temperature, which we are famili
with, loses its validity for systems where the deviation fro
equilibrium ensemble is not negligible. Indeed, it is expec
that equipartition of energy will no longer be valid, in such
way that different degrees of freedom may have differ
energy. For instance, some numerical simulations sho
that nonequilibrium systems are anisotropic with regard
their kinetic energy@5#, which is never explained based o
the local equilibrium assumption.

So far, several authors have tried to seek the meanin
temperature beyond the local equilibrium picture utilizi
the microscopic expression devised by Rugh@6#:
1063-651X/2003/67~2!/026121~6!/$20.00 67 0261
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where N is the number of degrees of freedom,m denotes
mass of the microscopic particles, andf is the interparticle
potential. Note that we need arbitrary factorsa andb to let
the dimensions of the two terms~both of the numerator and
of the denominator! be the same. We remark that, howev
this arbitrariness has no influence on the value of temp
ture in equilibrium situations. Although Eq.~2! is originally
defined in microcanonical ensemble, Jeppset al. @7# general-
ized this expression for canonical ensemble and present
in a more general form. Furthermore, they applied it to n
merical simulations of nonequilibrium stationary states in
presence of shear flow or heat flow. However, in nonequi
rium systems, we cannot have the unique value of temp
ture due to the arbitrariness ofa and b @8#. This ambiguity
seems quite natural since Rugh’s expression is essent
based on the equilibrium thermodynamic relation in Eq.~1!.
Namely, the problem is carried over from the choice of va
ables to be fixed: we cannot reach the dynamical expres
of nonequilibrium temperature unless the correct thermo
namic state space is set up.

There is another way to define temperature that we
operational temperature in this paper. When finite closed s
tems are in contact, they finally equilibrate to have the sa
intensive quantity, which we identify with temperature~i.e.,
the zeroth law of thermodynamics!. Hence, it might be pos-
sible to measure nonequilibrium temperature by putting eq
librium thermometer in contact to nonequilibrium systems
gedanken experiment has been proposed in order to cla
the meaning of nonequilibrium temperature from that po
of view @9#. In particular, Baranyai has performed numeric
simulations on shear-flow or heat-flow systems in cont
with thermometers and obtained some explicit values of
erational temperature@5#. However, since we do not have
theoretical framework in which the obtained values sho
©2003 The American Physical Society21-1
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be interpreted, those numerical data seem to be left alon
other words, we cannot theoretically predict the value of
erational temperature with which the numerical data sho
be compared.

Since the meaning of temperature out of equilibriu
seems to lack a sound theoretical basis, it is reasonab
pick up the simplest model in order to analyze theoreti
aspects more easily. For this purpose, it seems that sys
such as shear flow or heat flow are still excessively com
cated. In this paper, we adopt a forced harmonic oscillato
a model system. Although it might be regarded as one of
simplest nonequilibrium systems, it is worth noting th
time-averaged distribution functions of momentum and po
tion are both Gaussian but characterized by different ef
tive temperatures depending on the forcing frequency@10#.
Thus, this system may provide a simpler example for
concept of temperatures than fluid systems under s
where different effective temperatures have been studie
far. We will simulate an experiment analogous to Ref.@9# by
letting a forced oscillator interact with another nonforced
cillator ~in a different heat bath!, which acts as a thermom
eter. Comparison of the respective results may be usefu
clarification of the concept of temperature.

The plan of the paper is as follows. First, some statist
properties of a forced harmonic oscillator in a thermal b
are recalled and interpreted in terms of nonequilibrium te
perature. In Sec. II, in order to define temperature in a m
roscopic point of view, a forced and an unforced oscillat
situated in different thermal baths will be considered and
heat current between them will be calculated. In Sec. IV,
discuss the form of entropy for some different choices
variables, and compare our result with those obtained
Baranyai in the framework of nonequilibrium molecular d
namics of fluid systems of soft spheres in shear flow.

II. A MODEL SYSTEM: FORCED HARMONIC
OSCILLATOR

We assume that our model system is described by
following Langevin equation;

ẍ1g ẋ1V2x5A sinvt1j~ t !, ~3!

where the mass of the oscillator is taken as unit. The nat
frequency of the harmonic oscillator is denoted byV, and
A sinvt corresponds to external forcing. The noise termj(t)
is assumed to be Gaussian white noise which satisfies

^j~ t !&50, ^j~ t !j~ t8!&52gb21d~ t2t8!, ~4!

whereb is the inverse temperature of the heat bath.
Macroscopic or thermodynamic quantities should be

fined by an appropriate averaging; usually ensemble ave
or time average. Throughout this paper, we will take tim
averaged quantities as macroscopic variables, since
model system is periodic in time due to sinusoidal forcin

In our model, the external force gives power input to t
oscillator, which may cause a different influence on the
erage energy of momentum and of position. To have a ph
cal idea of this influence, note that we have two kinds
02612
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relaxation times, each of which is related to position a
momentum, respectively. We write the relaxation time of p
sition astx5gV22 and the one of momentum astp5g21.
When the forcing periodtA52p/v is longer enough than a
relaxation time~i.e., tA@tx or tp), the sinusoidal motion is
averaged to yield a distribution function which deviates fro
the equilibrium one. In contrast, if the forcing period is com
parable with~or shorter than! a relaxation time~i.e., tA<tx
or tp), the corresponding motion of position or momentu
cannot follow the forcing and the distribution function
indistinguishable from the equilibrium one. For instance,
tp!tA<tx , we may expect that the distribution function o
position is not much changed from equilibrium, whereas
one of momentum is modified by the forcing.

To see these circumstances explicitly, we first calcul
the potential energyucon and the kinetic energyukin . Since
Eq. ~3! is linear, we can decomposex into the ensemble-
average partX and the fluctuation partx ~i.e., x5X1x),
each of which satisfies the following equations.

Ẍ1gẊ1V2X5A sinvt, ~5!

ẍ1gẋ1V2x5j~ t !. ~6!

From these equations, we can see three important poin
calculateucon and ukin . ~i! The two variables,X and x are
independent of each other and hence have no correlation;
~ii ! The fluctuation partx is identical to the equilibrium fluc-
tuation; iii! the average motion can be solved to give

X~ t !5X0sin~vt2d!, ~7!

where

X05
A

A~V22v2!21g2v2
, ~8!

tand5
gv

V22v2
. ~9!

The above three discussions lead to

ucon5
V2

2
~^X2&1^x2&!5

1

2b
1

V2X0
2

4
, ~10!

ukin5
1

2
~^Ẋ2&1^ẋ2&!5

1

2b
1

v2X0
2

4
. ~11!

The corresponding energy dissipation rateẇ is also cal-
culated as

ẇ5^ẋ~ t !A sinvt&5
A2

2

gv2

~gv!21~V22v2!2
, ~12!

5g~2ukin2b21!. ~13!

Then we wish to consider the distribution functio
r(x,p;t) of our system. With standard techniques describ
1-2
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in Ref. @11#, the following differential equation regardin
r(x,v;t) is derived from Eq.~3!:

ṙ~x,p;t !5F2
]

]x
p1

]

]p
~gp1V2x2A sinvt !

1
g

b

]2

]p2Gr~x,p;t !. ~14!

The solution independent of the initial condition is

r~x,p;t !}expF2
b

2
@p2vX0cos~vt2d!#22

bV2

2

3@x2X0sin~vt2d!#2G , ~15!

Since this solution corresponds to ensemble distributio
a given instant, in order to calculate time-averaged qua
ties, the distribution function@Eq. ~15!# itself must be time-
averaged.

r~x,p!5E
0

2p/v

dtr~x,p;t !,}expF2
b

2
~p2

1V2x2!G E
0

2p/v

dt f~x,p;t !, ~16!

where

f ~x,p;t !5expFbS pvX0cosvt1VxX0sinvt

2
v2X0

2

2
cos2vt2

V2X0
2

2
sin2vt D G . ~17!

To perform the integral in Eq.~16!, we expandf (x,p;t)
up to second order inbpvX0 and bV2xX0 ~Gaussian ap-
proximation!, providing that b(vX0)2!1 and b(VX0)2

!1. Namely, we assume that gain of the internal energy
to the external forcing is small compared with thermal e
ergy. With this approximation, we get the following distrib
tion function.

r~x,p!}expF2bcon

V2x2

2
2bkin

p2

2 G , ~18!

where

bcon5bS 12b
V2X0

2

2 D , ~19!

bkin5bS 12b
v2X0

2

2 D . ~20!

We can see that there are two kinds of temperature for
oscillator. Hereafter each temperature corresponding to p
tion and momentum is called configurational temperat
and kinetic temperature, respectively.
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III. OPERATIONAL TEMPERATURE

The discussion in the preceding section deals with
distribution function in the phase space and hence it m
rather be a microscopic consideration. From the thermo
namic point of view, the problem arises how the differe
microscopic temperatures of Eqs.~19! and ~20! are con-
nected to macroscopic measurements. Since those tem
tures differ, the macroscopically measured temperature~i.e.,
operational temperature! may indicate different values de
pending on the details of the connection between the sys
and the thermometer. In this section, we will investigate
problem by devising a concrete model for the temperat
measurement.

Here, we will examine a situation which bears some sim
larities with the proposal of Jou and Casas-Va´zquez @9#.
They defined a prototype of operational temperature
which two systems are in thermal contact: one is kept i
nonequilibrium steady state by means of heat flux, wher
the other is in equilibrium to act as a thermometer. In o
setting, we consider two coupled oscillators in contact w
different heat baths whose temperature can be controlled
dependently. One is forced to stay away from equilibriu
~the system! while the other is unforced to remain in equ
librium ~the thermometer!. They are connected through
weak interaction potentialV. The schematic picture of ou
situation is shown in Fig. 1.

The dynamics of such oscillators will be written as

ẍ1g ẋ1V2x1e
]V~x2y!

]x
5A sin~vt !1j1~ t !, ~21!

a ÿ1g ẏ1e
]V~x2y!

]y
5j2~ t !, ~22!

wherea denotes the mass of unforced oscillator. We leta
ande to be small so that the disturbance of the forced os
lator by the thermometer will be weak. The noise termsj i(t)
are again assumed to be Gaussian white noise but chara
ized by different temperatures denoted byb i

21 , i.e.,

^j i~ t !&50, ^j i~ t !j j~ t8!&52gb i
21d i j d~ t2t8!, ~23!

whered i j is Kronecker’s delta~unity if i 5 j and zero other-
wise!. The similar system, in the absence of inertia and
external forcing, was studied in detail by Sekimoto@12#.

FIG. 1. Schematic of the numerical experiment for operatio
temperature.
1-3
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We will test two kinds of interaction terms; harmonic an
bistable potentials.

V~r !5H 1

2
r 2

2
1

2
r 21

1

4
r 4.

~24!

The heat flux from the forced oscillator to the thermomete
evaluated as

q52e
]V~x2y!

]y
ẏ. ~25!

When both oscillators are left unforced (A50), the heat flux
between both systems is proportional to the difference of
temperatures of the corresponding heat baths. When on
the oscillators is forced (AÞ0), the unforced oscillator play
the role of thermometer.

Our definition of the operational temperature is as f
lows. We fix the parameters of the forced oscillator~i.e., A,
v, b1, andV), and change the temperature of the heat b
for the thermometer (b2). There should be a certain value
b2 at which the average heat flux̂q& vanishes. Then we
identify the temperature of heat bathb2

21 with the opera-
tional temperature. Throughout the numerical simulatio
we setg51.0, A51.0, b151.0, e50.1, anda50.1.

The results of the numerical simulations are shown
Figs. 2 and 3 for different parameters of the oscillator, wh
the values of̂ q& are rescaled suitably. Note that the ze
point of heat flux~equilibration point! is different depending
on the interaction potential: thermometers indicate differ
values for the same system. Especially, the one with h
monic potential shows good agreement with the configu
tional temperature, while the other with bistable poten
indicates a value close to the kinetic temperature. This
dency is unchanged for the system with different parame
at which the configurational temperature is higher than
kinetic one~Fig. 3!, while the latter is higher than the forme
in Fig. 2.

In short, the operational temperature of a thermome
with harmonic potential is almost the configurational te

FIG. 2. Average heat flux̂q& as the function of the temperatur
of the heat bath of thermometer. The results of harmonic interac
are represented by3 ’s, while the ones of bistable interaction are b
1 ’s. The parameters are set asv50.25 andV51.0, where the
corresponding kinetic and configurational temperatures are 1.08
1.49, respectively~shown by the arrows!.
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perature, and the one with bistable potential is close to
kinetic temperature. It is concluded that various interactio
show various temperatures whose values are ranged bet
kinetic and configurational temperatures. Therefore, it
plausible that the zeroth law of thermodynamics should
formulated only in a very restrictive form for nonequilibrium
cases.

IV. CONCLUDING REMARKS

In this concluding section, we will pay some attention
entropy corresponding to the nonequilibrium system, and
a comparison with the results obtained by Baranyai and
workers by means of the nonequilibrium molecular dyna
ics.

A. Entropy for nonequilibrium steady states

In this section, we will see some possible extended Gi
relations of forced harmonic oscillators. The motivation is
discuss temperature from a thermodynamic point of vi
and to compare it with the operational temperature obtai
in the preceding section. The distribution function@Eq. ~18!#
based on the Gaussian approximation may be considere
give the maximum entropy with the constraint that the s
ond moments of momentum and position are given. The c
responding Gibbs relation will thus be

ds5bconducon1bkindukin , ~26!

wheres denotes entropy per oscillator. This may be a natu
extension of the equilibrium Gibbs relation by consideri
that each degree of freedom is a thermodynamic system
itself with different temperature. This simple form of th
Gibbs relation is due to the Gaussian approximation of
distribution function. If they are not Gaussian, we wou
need additional independent variables; e.g., higher-order
ments. Note that systems with two temperatures are com
in nonequilibrium physics, for example, in plasmas~where
electrons and ions may have different temperatures!, or in
metals or semiconductors~where electrons may exhibit
temperature different from that of the lattice!.

However, Eq.~26! is not the only candidate. We can con
sider arbitrary linear transformation ofucon andukin such that

u5ucon1ukin , ~27!

n

nd

FIG. 3. The same graph with Fig. 2 but with different param
eters such thatv51.0 andV50.1, where the corresponding kinet
and configurational temperatures are 1.37 and 1.04, respect
~shown by the arrows!.
1-4
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y5a1ucon1a2ukin , ~28!

wherea1Þa2. By using these new variables, we can rewr
Eq. ~26! as

ds5
a2bcon2a1bkin

a22a1
du2

bcon2bkin

a22a1
dy. ~29!

Sinceu is the total energy of the oscillator, it may be possib
to define temperature analogous to Eq.~1!;

u5S ]s

]uD
y

, ~30!

which yields

u5
a2bcon2a1bkin

a22a1
. ~31!

Here we use another notationu as the~inverse! temperature
of the nonequilibrium system, which clearly depends on
choice ofa1 anda2. Namely, the thermodynamic temper
ture u depends on the choice of the new variabley.

Although the nonuniqueness of temperature has been
gued, e.g. in the context of extended irreversible thermo
namics@1#, the criterion for the choice of new variables
still unknown. At least there are some necessary conditi
for the choice ofy: ~a! it must be extensive, and macroscop
cally observable.~b! the entropy must be convex regardin
to the new extensive variabley.

In Eq. ~26!, the convexity is identical with thatbcon and
bkin are nonincreasing functions ofucon and ukin , respec-
tively. This is obvious sincebcon5(2ucon)

21 and bkin
5(2ukin)

21. Of course, there are other choices satisfy
convexity. Say we seta151 anda250, then

ds5bkindu1~bcon2bkin!ducon, ~32!

where the thermodynamic temperature coincides with the
netic temperature.

Another possibility is to adopt the entropy production ra
s,

s5bẇ5g~2bukin21!, ~33!

where Eq.~13! is recalled. Sinceds52gbdukin , from Eq.
~26! we get

ds5bcondu2
bcon2bkin

2bg
ds, ~34!

where the thermodynamic temperature becomes the con
rational temperature. Using Eqs.~19! and ~20!, we can fur-
ther rewrite Eq.~34! as

ds5bcondu2
1

2g2 S 12
V2

v2 D sds, ~35!

where we can see the second-order contribution of the flus
to the entropy. Note that the above expression with ene
02612
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and entropy production rate are analogous to that in exten
irreversible thermodynamics@1#, where the usual thermody
namic variables and the fluxes are taken as independent
ables. In this case, we havebcon as the thermodynamic tem
perature. In addition, we remark that the second terms
Eqs. ~32! and ~34! vanish at resonance wherev5V. It is
identical with

S ]S

]yD
u

50. ~36!

Also the entropy production rates is maximum at reso-
nance.

As we have seen so far, thermodynamic temperature
fined through the extended Gibbs relation depends on
choice of the new variable. We have expected that the op
tional temperature would be the criterion for choosing t
new variable, which was one of the motivations of our stu
However, in the preceding section, we have seen that dif
ent thermometers read different temperatures, which me
impossibility of defining the unique nonequilibrium temper
ture even in this simple model system consisting of one
gree of freedom. The absence of a unique operational t
perature can be a serious problem for the construction
thermodynamics: at least the formulation of the zeroth law
not immediate and, if possible, would be a very restrict
form in contrast to equilibrium cases. Sasa and Tasaki h
already pointed out this kind of operational restriction whi
results from the anisotropy of pressure in a macroscopic h
conducting system@13#.

B. Comparison with the results of nonequilibrium
molecular dynamics

In this paper, we have examined kinetic, configuration
and operational temperatures in a forced harmonic oscilla
As was mentioned in the Introduction, similar situations ha
been examined by Baranyai@5# based on the same motiva
tion. While he studied systems consisting of soft sphe
under shear flow or in the presence of heat current us
techniques of nonequilibrium molecular dynamics, the s
tem analyzed here is much simpler than that. It must
noted that Baranyai used the Nose´-Hoover–type dynamics
which removes energy from the system as dissipati
whereas we adopt the Langevin equation to represent
effect of heat baths. Despite these differences, we think
it is still worth comparing these results, since we are look
for general thermodynamic concepts which should be larg
independent of the microscopic details of the system.

The definitions of temperature in the works of Baranya
based on the Rugh microscopic expression of Eq.~2!. As we
have mentioned in the Introduction, the expression itself c
not define temperature uniquely in nonequilibrium states
to arbitrary factorsa and b. Instead of the unique tempera
ture, again we have two kinds of temperature; configu
tional and kinetic temperatures which can be defined with
the arbitrariness.
1-5
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bcon5K ¹2f

u¹fu2L , ~37!

bkin5

N

m

K (
i

pi
2

mL . ~38!

These expressions yieldbcon5(2ucon)
21 and bkin

5(2ukin)
21 which coincide with our results obtained b

Gaussian approximation. Baranyai calculated these exp
sions for temperatures in the mentioned fluid system of
spheres at various values of the shear rate, and found tha
configurational temperature is higher than the kinetic te
perature, whereas the situation is opposite in systems
charge current. Furthermore, these temperatures turned o
be anisotropic: that is, they take different values for differe
spatial directions. In our situation, the relation between
configurational and the kinetic temperatures depends on
ratio V/v. In general, as Baranyai has discussed, they
depend on the characteristics of the system and the exte
forcing responsible for the nonequilibrium situation.

In addition, Baranyai has proposed an operational te
perature by devising the concrete model that emulate
physical thermometer in contact with the fluid. The th
mometer consists of the same particles as the fluid’s, bu
not feel the effect of shear flow nor the thermostatting: th
interact only with the fluid particles. This thermometer see
to read definite values of temperature regardless of the m
and the number of thermometer particles. However, the
pendency of interaction potential between the fluid and
thermometer is not discussed. Taking our result into con
eration, the operational temperature will depend on the in
action between the system and thermometers. Ind
Hoover et al. have discussed the ideal gas thermome
which reads the kinetic temperature@14#, while Baranyai’s
thermometer reads the value that is closer to the config
s

a
er
, s
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tional temperature. However, since Hooveret al. ignored the
anisotropy of the kinetic energy, it is not apparent what va
the ideal gas thermometer reads when it is actually in con
with a nonequilibrium system. More numerical simulatio
and real experiments on the operational temperature
needed for the clarification of nonequilibrium temperatu
and the underlying nonequilibrium thermodynamics.

In summary, we have found that the operational tempe
ture depends on the details of interaction between the sys
and a thermometer, which is never seen in equilibrium s
ations. The fact may shove a strong restriction on the ex
sion of the zeroth law for nonequilibrium systems. Of cour
as our analysis is confined to one-dimensional systems, t
may arise another problem for two- or three-dimensio
systems regarding the relation between the anisotropy
temperatures and the operational temperature. In addi
the Gaussian approximation of the distribution functio
make especially easy to define temperatures, while additio
conceptual problems would appear if the distribution fun
tion deviates far from the Gaussian. For instance, there h
been some maximum-entropy analyses of nonequilibrium
diation, where nonequilibrium temperature or quasitempe
ture per mode have been defined in terms of the nonequ
rium populations of the different modes, in the context o
generalized Planck statistics instead of a classical Boltzm
statistics@15#. The present situation has the advantages of
higher simplicity and of the possibility of devising numeric
simulations concerning operational temperature which h
not been done before.
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