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Magnetization reversal times in the two-dimensional Ising model
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We present a theoretical framework which is generally applicable to the study of time scales of activated
processes in systems with Brownian type dynamics. This framework is applied to a prototype system: mag-
netization reversal times in the two-dimensional Ising model. Direct simulation results for the magnetization
reversal times, spanning more than five orders of magnitude, are compared with theoretical predictions; the two
agree in most cases within 20%.
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[. INTRODUCTION by a one-dimensional diffusion process over a potential bar-
rier.

Activated processes that can be described with some type Our manuscript is organized as follows. In Sec. II, we
of Brownian dynamics are abundant in the world around usdescribe the model that we study in detail. In Sec. Ill, we
Well-known examples are the nucleation of droplets in arPutline the theoretical framework which is generally appli-
undercooled gas or of crystals in an undercooled liquidcable to activated processes in systems with Brownian type
chemical reactions and the escape of a protein from a miglynamics. We then apply this framework to our prototypical
folded state. A prototype system to study such phenomen@odel—magnet|zat|0n reversa_l in the Isln_g mode_l. In _Sec.
numerically is the well-known Ising model. Above the so- 'V We compare the theoretical predictions with high-
called critical temperature, in absence of an external mag2¢curacy computational results.
netic field, up- and down-pointing spins are roughly equally
abundant. Below the critical temperature, the system prefers [l. DETAILED DESCRIPTION OF THE MODEL

to be in either of two states: one state with a positive mag- . . .
netization in which most spins are pointing up, and one state We cansider the Ising model or< L rectangular lattice

with a negative magnetization, As long as the system siz%\”th periodic (helical) boundary conditions, with the Hamil-

) 7 N ..~ “Tonian

remains finite, reversals of the magnetization—transitions
between positive and negative magnetization—are possible
and will occur at a certain average frequency. These pro- H:_JE oioy, (1)
cesses are activated, since configurations with magnetization (N
close to zero have a higher free energy than typical configu-
rations with a magnetization close to either of the equilib-in which o= *1 is the spin at sité andJ is the coupling
rium values. constant. The summation runs over all pairs of nearest-

In this manuscript, we study the time scales associatedeighbor sites; those of siiearej=i=1 moduloN and |
with magnetization reversal. A theoretical framework is out-=i*B modulo N, with N=BL. The magnetization is de-
lined which is generally applicable to activated processes ifined as M=Z0;; it can take valuesM=-N,—-N
systems with Brownian type dynamics, and compared tot2, ... N; all through this manuscript, we restrict ourselves
high-accuracy computer simulations. From a practical point0 systems in which botls and L are even. As a conse-
of view magnetization reversals are also of great interest beduence,M takes only even values, and summations over a
cause of applications in memory devices and the like. Onéange of possible magnetizations only run over even num-
wants to have rapid switching of magnetization under reverbers, with an increment of 2. _ o
sals of an external field, but no spontaneous reversals of the A Well-known property of the model is that at sufficiently
magnetization, even if the external field has been turned offow temperatures, the distribution of the magnetizatidn
In the literature much attention has been paid to reversal tim& Z;o; becomes bimodal—the spins in a configuration tend
distributions in the presence of a driving figl#,2]. In the o align around the two preferred valuesM,. For infinite
fieldless case, much work has been done exactly at the critfystems this occurs at all temperatures below the critical
cal temperature, see for instance R@]. Here, large-scale temperatureT,=J/(0.4406%g), for finite systems this
fluctuations in the magnetization decay at a time proportionafange starts at slightly different temperatures.
to L?, wherez is the dynamical critical exponent. However, ~ The system evolves in time according to single-spin-flip
spontaneous reversals below the critical temperature in thdynamics with Metropolis acceptance probabilitjds5]. If
absence of a field have hardly been studied. Here we cori is the configuration after proposed spin flips, a trial
sider the latter case for the prototypical case of an IsingonfigurationC;, , is generated by flipping a single spin at a
model with periodic boundary conditions. We identify the random site. This trial configuration is then either accepted
leading scenario for reversals of the magnetization and sho@C; ,,=C/, ;) or rejected C;.,=C;); the acceptance prob-
that the process may be described to a good approximatioability is given by
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Ill. THEORETICAL FRAMEWORK

-
\

i *
r.'

To study the behavior of times between magnetization
reversals at temperatures below the critical one we may con-
sider an ensemble of a large number of systems prepared in
states with a magnetization close to the equilibrium value
—Mg and study the rate at which these systems reach the
value M=M,, after which they are removed from the en-
semble. Alternatively, the behavior of times between zero
crossings of the magnetization can be studied, as discussed
below. The spin-flip dynamics described above may be rep-
resented by a master equation for the probability distribution
P(o) of finding a system in the stak at timet. Due to the
huge number of possible states this master equation cannot
be solved analytically or even numerically for system sizes
of practical interest. Therefore, as an approximation we as-
sume that we may replace the exact master equation by an
approximate master equation for the probabiftgM,t) of
finding a system with magnetizatidv at timet. The form of
this equation is

r

dP(M, 1)

at =y m+2PIM+20)+Ty m-2P(M—2}1)

—(ImiomtTvm—2m)P(M,1) (3

with 'y  the transition rate fronM to M'. It ignores the
fact that the actual transition rates will depend on the geom-
etry of the state under consideration, with the idea that in
typical cases spin states of very similar geometry will domi-
nate the set of states with givévh. Besides orM and 8 the
transition rates will depend on the geometry of the system,
that is onB andL. To estimate the scaling behavior of these
dependencies we make two further simplifying assumptions
as follows.

(i) First of all, requiringB=<L, we assume that states with
N\ + M o consist of a single strip of opposite magnetization
down to a state with most spins up in thex164 Ising model, taken ¢4 -t by two phase boundaries of ler@jffrom the ma-
at equal time intervals of 500 attempted spin flips per site, at inverse
temperature3]—0.5. jority spin phase. The relevant changeshéfthen will be

caused by displacements of these boundaries due to flips of
spins along them. The total number of spins available for this

P,=min[1,exd — B(E(C{,,) —E(C)]], (2)  will be proportional toB, hence the transition rates should
also be proportional t® and independent df.
This approximation will not be valid for values ™ that

in which 8=1/(kgT) with Boltzmann constanikg and tem-  are too close ta- M, as for these the opposite magnetiza-
peratureTl. The time scale is set such that in one unit of time,tion will typically be found in a closed cluster rather than in
on average each spin is proposed to be flipped once. So @ strip. It will turn out though that the contributions from
our system, in one unit of time we perfof&L Monte Carlo  theseM values to the reversal frequency are very small for
steps. systems of reasonable length. Therefore, using the approxi-

Our current interest in the Ising model with single-spin- mationI"~ B also here does not harm. Further we neglect the
flip dynamics stems from the fact that in finite systems, thepossibility of having more than one strip of opposite magne-
configurations will occasionally switch between states intization. When the temperature gets close to the critical one,
which the magnetization is either negative or positive,whenB becomes small or wheh becomes very large, this
through an activated process. The dominant pathway at lownay not be a good approximation. We will come back to this
temperatures consists of the formation of a single pair ofn Sec. V. In our further theoretical treatment we will assume
closed interfaces in the shorter periodic directidar B that we are in a situation where the single-strip approxima-
#L), which perform a relative diffusive motion around the tion is justified.
longer periodic direction and annihilate after meeting each (ii) Further we neglect changes due to fluctuations of the
other through the periodic boundary. A series of snapshotsnagnetization caused by the growth and shrinkage of small
illustrating this process, is presented in Fig. 1. clusters of the minority spin type. On average these do not
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contribute to magnetization reversals, so this approximatiohe summations oven andM are dominated by values of
should be allowed. In case one considers the first passagtose to zero, combined with values fdrclose to— My, for
frequency through zero magnetization there is a small effectyhich the sum oven is basically independent ah. There-
to which we will come back in Sec. V too. fore, the reversal frequency may be obtained as

In order that the equilibrium distribution be a stationary
solution of the master equation we impose the condition of ~ I'a a—2Po(A—2)
detailed balance V=

> Po(M)
| NVRVES M=A-2
FM’+2M =exd B(F(M)—-F(M+2))], (4) A2 ol BE()] 1
' = _— - BF . (8
where BF(M) = —In Pe(M), with P.((M) the equilibrium m;Mo Fmiom  ndA-2 eXfL= AR ®

probability of magnetizatioM. In Sec. IV B it will be ex- o _

plained how this condition may be combined with simulation The restriction of the summation oven to values m>

results for interface diffusion to obtain approximations for all ~Mo is needed to avoid large spurious contributions from

transition rates that lead to a good overall prediction of then<—My. The result in Eq(8) is well-known. It is usually

reversal times. derived by considering a state with a stationary current in
The long-time reversal frequency as predicted by mastewhich mass is inserted at a constant rate on one(side, at

equation(3) follows as the largest eigenvalue of this equa-M=—BXL in our cas¢and taken out as soon as it reaches

tion, supplemented with an absorbing boundaryVat A, the absorbing boundafgee, e.g., Ref6], Sec. IV B. In that

with eitherA=M, or A=0. The first choice corresponds to case the replacement of the sum oveby a constant is

a real reversal of the magnetization, the second one to a fir§Xact.

return to the valueM =0. After this the system will have

equal probabilities to actually reverse its magnetization or to IV. SIMULATIONS AND RESULTS

return to the equilibrium magnetization value it came from, .

hence this return frequency should be twice the reversal fre- In order to apply the above theoretical framework to mag-

uency. The absorbing boundary condition is im Iemente(ﬁ'etizaﬂon_ reversa] times in Fhe -Ising modell,.the two ingredi-
gy set%;ngFA 2A equalgto zero y P ents required are(i) the equilibrium probabilityP. (M) to

The largest eigenvalue » of I'y, - in Eq. (3), as well as find the system in a state with magnetizatidnand (ii) the

the corresponding eigenvectBg(M), may be found by re- :Ere_ms#]lon r&;tef’.\""'v‘ gpmtmagn(tet|zag%mﬂ tOtM : Weto?— |
quiring that the net current away from magnetizatidras- o 'Mes€ tWo Ingredients via two difierent computationa

sumes the valuePy(M). Using conservation of probability approaches.
one easily checks that this may be expressed as
A. Free energy landscape
TysomPo(M) =Ty ms2Po(M+2)=v > Po(m), For various values of andB and various temperatures
m<M we make histograms of the distribution of the magnetization

(5  M=3,0; and the energy. Since the probability that a state
with energyE occurs at an inverse temperaty#ds propor-

6) tional to the Boltzmann weight exp(8E), a histogram made
at a certain temperature provides information about the prob-
ability distribution at nearby temperatures as well. We use
the multiple histogram methol] to combine the informa-

In Eq. (5) Po(m) on the right-hand side may be approxi- tion from simulations at various temperatures. In this way,
mated, up to a normalization factor, by @xBF(m)], be-  histograms for the magnetization over a wide range of tem-
cause the sum is dominated by the terms with simedlal- ~ peratures can be obtained. As defined above, the free energy
ues, for which this approximation is excellent. This one mayF (M) is related to the probability that a certain magnetiza-
check in hindsight against the solution obtained. With thistion M occurs byP.(M)=e A" The method of deter-
approximation the equation may be solved recursively fomining free energies of configurations constrained to some
Po(M) in terms of Po(A—2) for M=A—4,A—6, etc. with  value of a coordinate along a pathway through phase space
the result has been used extensively, for instance by Auer and Frenkel

[8]. In Fig. 2 the free energy as a function of the magnetiza-
Fan-2 tion per spinm=M/N is plotted at two different tempera-
Po(M)= DY exf B(F(m)—F(M))] tures and three different values bfB.

M=m=A-2 I'miom -
In order to compare these results with theory we note that

_ Faa-2Po(A=2)

14

the probabilityP.4(0) of finding the system in a state with
n;m Xy~ BF(n)] M =0 can be obtained from E@.23 of chapter V of Ref.
X Po(A—=2). (7)  [9] as follows. First note that this equation gives the follow-
2 exg — BF(n")] ing approximation for the partition function of a periodic
n'<A-2 antiferromagnetic system with one phase bounddr],
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O O 1 For square systems this result has to be modified, because
BI=0.45 B1=0.50 there are two ways to make a strip with opposite magnetiza-

tion: the interfaces can lie in the horizontal as well as in the
vertical direction. This gives an additional factor 2 in the
equation forP¢4(0).

40 40

B. Interface diffusion coefficient

20

<20

(Ftc)/J

The second ingredient for the theoretical framework in
Sec. Il consists of the transition rat€s,  from magneti-
zationM to M'. As discussed there, we are actually mostly
interested in the contribution to the transition rates that arises
from the diffusion parallel to the longer periodic direction of
interfaces that span the shorter one. To estimate this diffusion
coefficient numerically, we study systems with antiperiodic
boundary conditions: the spins in two neighboring sites
_ _ _ _ <N-1andj=i+1, orini<N-B andj=i+B are aligned

FIG. 2. Free energy¥in units ofJ) as a function of magnetiza- if oi=0;, whereas the spins in two neighboring sitesN
tion at inverse temperaturggl=0.45 andBJ=0.50. The number _ 1 andj=0, orini=N-B andj=i+B—N, are aligned if
of spins is kept constant at 1024. The upper curves represent tr@i =—gj.
32x 32 system, the middle curves represent thx 68 system, and The interface locatior(0) is initially defined as the mag-
the lower curves represent thex828 system. The free energies at netizationM (0). As long asM e[ —0.8N,0.8N], stepsAx
M =0 corresponding to Eq10) are also indicated. A constaatis in the interface location are equal to ,chan D,H in the
added to the free energy curves, such that the minimal value Orﬂa netization, i.e., x(t+At)—x(t)=M(t+At)—M(t)
F(M)+c is zero in all cases. 9 S S ’

Once the interface gets close to the antiperiodic boundary,
D . . . .the magnetization does not uniquely determine the interface
which is equivalent to a ferromagnetic system with an anti-, . . ; .
eriodic boundary: location. As soon agM is no .Ion'ger. in the interval
P ‘ [—0.8N,0.8N], we shift the antiperiodic boundary away
A(K)— VAZ(K)— Cz) B/2 from the interface over half the system sizéhich will bring

D

-1 0 1 -1 0 1
m m

2L
Z,
Zi=5 2,

(99  the magnetization back in this rangand then continue.
In practice, we achieve this by switching from monitoring
M to monitoringM’'=3N2 15— N1 & | and|x(t+At)
where —X(t)|=|M’(t+At)—M’(t)|. The sign of the steps ix(t)
} depends on the location of the interface: in the lower half this
. 212 o T sign will be unchanged, whereas in the upper half it will be
Ak)=(1+2)"-22(1-2z )Cos reversed. As soon a¥’ leaves the interval —0.8N,0.8N]
we switch back to measuring steps in the original magneti-
c=2z(1-72%), zationM. Also here, the sign of the stepst) depends on
the location of the interface. Note thais not confined to the
interval [ —N,N]. The diffusion coefficientD is then ob-
tained from the time-dependent interface locatigt) as

A(K) + VA%(k)—c?

z=tanhpJ,

andZ, the partition function for a homogeneous syste ((x(t)—x(0))?)
Eqg. (4.20 of Ref. [9]). Neglecting the possible interaction D=Iim | (11
between two phase boundariés interfaces we conclude too

that the partition functioiz, for a system with two interfaces ) o o
is given byZ,/Z,=(1/2)(Z,/Z,)% The factor 1/2 arises be- We expect that the_ mterface_ dlffusmr_l coe_ff|C|ent is indepen-
cause otherwise we would count each configuration twicedent ofL, and that it grows linearly witt8 since the number
interchanging the locations of the two interfaces does noff Sités where a spin flip moves the interface grows linearly
give a different configuration. If we leave the positions of theWith its width; however, for smalB corrections arise due to
two interfaces completely free, the magnetization is distribhe periodicity(or helicity) of the boundaries. Consequently,
uted almost uniformly over all possible even values betweeN/€ expect

—Mygy andMy. Therefore, fixingM to O leads to a reduction
of the partition function by a factor d¥1,. Thus we arrive at
the following result forP¢(0):

D(B,L,B8J)=9g(BJ)B+c. (12

For temperatures close t6, and smallB, the system

2L A2 2\ Bl2]2 might occasionally contain more than a single interface. In
P (0)= Z2 = ! Alk) — vAT(k) —¢C that case, Eq(11) would overestimate the diffusion coeffi-
el MoZ, 8M JAZ 2 i i i iti
040 o| k=1 \ A(k)+ VA“(k)—c cient of an interface. Since the additional free energy cost of

(10 interfaces increases linearly wiy this unwanted contribu-
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6 — I R I . TABLE |. Estimated values for the magnetization reversal
B % § 1 times.
= ¢ . BJ 32x32 16x 64 16x32
4l § _| 0.46 1.66<10° 1.74x10" 1.19x10"
L i 1 0.47 1110 4.21x10° 3.15x 10
. ¢ %5 ] 0.48 8.88< 10° 1.25<10° 9.96x 10°
S % 5 ] 0.49 7.38 107 3.97x10° 3.31x10°
. 200 0.50 6.4% 10° 1.31x 10° 1.12x10°
2— 0— 0.51 5.8 10° 4.19x 10° 3.61x 10°
- 1 0.52 5.3x 10%° 1.23x 10 1.05x 10
i ] 0.53 5.7% 10" 3.78x 107 3.11x 10
i ] 0.54 7.6 10" 1.23x10¢ 9.60x 10
1 SR (I R —— BJ 16X 16 8X 64 8x 32
0.45 0.50 0.55 0.60
I 0.46 4.43%10° 2.76x10° 1.24x10°
0.47 1.06< 104 3.26x10° 1.73x 16°
F_IG. 3. Monte Carlo measurements of th_e diffusion coefficient g 48 3.0% 10¢ 4.72< 103 2.88x 10°
per interface lengtlg(BJ), as a function of inverse temperature 0.49 9.56¢ 10" 745 10 5.11x 107
B 0.50 3.0 10° 1.26x 10¢ 9.47% 10°
0.51 9.60< 10° 2.12x 10 1.69%x 10*

tion to D decreases exponentially witB. Taking this into

account, our approach is to measure for various values of 0.52 2.710° 3.32x10¢ 2.77x10¢
BJ, B, andL the diffusion coefficienD via Eq. (11). Next 0.53 8.06¢ 10;5 5.50x 10¢ 4.71x10°
we determine the functiog(J) in Eqg. (12); the results are 0.54 2.5 107 9.69< 10" 8.43<10"
plotted in Fig. 3. Indeed we find that for increasiBagand at 0.55 7.64<10 1.70<10° 1.49¢10°
temperatures not too close Tg the diffusion coefficient rap- 0.56 2.30<10° 2.96<10° 2.61x10°
idly becomes independent afwithin the range oL values 0.57 7.20<10° 5.38x10° 4.75<10°
we considered. In our theoretical framework we then use an 0-58 1.9¢10° 8.37x10° 7.39<10°
approximation for the jump rates 0.59 5.54<10° 1.42¢10° 1.25¢<10°

0.60 1.7 10 2.66x10° 2.34x10°

J)B
MO Ty 2 Dol = St (13

and are specifically interested in the escape tim&/e ob-
This may be understood from the observations that on onin this quantity via a fitting procedure, in which we ignore
hand one haB =4T", because the jumps in magnetization goth€ data up to a timg, chosen such th&(t) shows expo-
by units of 2, on the other hand satisfies Eq(12) with B~ nential time behavior fot>t,. Then we determine the time
replaced by B because there are two interfaces. The above

equation, in combination with Eq4) and the free energy as 9605 prr T T T T T
a function of magnetization, specifies all the transition rates. 1000 £ E
Using Eq.(8) we can now predict the magnetization reversal ]
times. The results are shown in Table I. Bt )
C. Magnetization reversal times 100 Ee Ny E
[ s g
We measure the magnetization evéfyattempted spin c SR ]

flips. We look for events, where the magnetization crosses
from positive (more than half the spins yfgo negative or 10
vice versa between two consecutive measurements.

We make histograms of the times between two occur- [ Nomdeo ]
rences of magnetization reversal events. The histogram ob- - m gomo o o o
tained in a system containing ¥&4 spins, at the tempera- ST ST B VI NP, NP DD,
ture corresponding t@@J=0.45, is shown in Fig. 4. For 0 20000 40Ao?o 60000 80000

comparison we also show a histogram of the times measured

between the first time the system reaches a free energy mini- £ig_ 4. Histogram of the times between zero crossings of the
mum, and the first time after this it reaches the other minimagnetizatiorisquare} and the times between first occurrence of a
mum. We will come back to this in our discussion. The figurefree energy minimuncircles in the 16<64 Ising model at3J

shows that at long times the decay functidit) behaves as =0.45. The solid lines depict the fit to the data, obtained as de-
f(t)~exp(~t/7). Here, we focus on the long-time behavior, scribed in the text.
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TABLE II. Directly measured values for the magnetization re-

versal times.

BJ 32x32 16X 64 16x32

0.46 2.09(6x 10° 1.52(3)x 10 1.37(1)x 10
0.47 2.02(6)x 1¢° 5.14(5)x 10 4.18(4)x 10*
0.48 1.97(6 Kk 10 1.68(1)x 10° 1.32(1)x 10°
0.49 5.20(5x 10° 4.26(6)x 10°
0.50 1.62(5)x 1¢° 1.33(2)x 10°
0.51 5.2(1)x 10° 4.28(6)x 1¢°
0.52 1.59(5)x 107 1.32(3)x 10°
0.53 4.5(2)x 10 4.0(1)x 10
0.54 1.40(6x 1¢° 1.13(4)x 10°

16X 16 8x 64 8x32

0.46 6.83(7x 1C° 1.21(1)x 16° 1.23(1)x 10°
0.47 1.81(2xk 10 2.10(2)x 10° 2.08(2)x 1¢°
0.48 4.8(2)x 10 3.75(3)x 16° 3.61(4)x 1C°
0.49 1.35(4x 10° 6.70(7)x 106° 6.30(6)x 10°
0.50 4.45(4K10° 1.20(1)x 10 1.11(1)x 10
0.51 1.26(1)x 1¢° 2.07(2)x 10* 1.99(2)x 10*
0.52 3.82(5x 1¢° 3.66(3)x 10 3.37(3)x 10*
0.53 1.13(2x 10 6.36(6)x 10 5.87(5)x 10
0.54 2.97(6x 10 1.09(1)x 10° 1.04(2)x 10°
0.55 9.7(3X 10/ 1.95(3)x 10° 1.68(3)x 10°
0.56 1.9(2)x 1¢° 3.26(6)x 10° 3.05(9)x 10°
0.57 5.40(8 K 10° 45(1)x10°
0.58 9.2(2Xx10° 8.3(2)x 10°
0.59 1.61(2)x 1¢° 1.41(3)x 10°
0.60 2.67(5x10° 2.64(8)x 10°

t’ at which half of the remaining events have taken place
The escape time is then obtained fromr=(t' —ty)/In(2).
Instead we could have made a linear fit of all the data point

beyondt,, but this makes no significant difference.
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FIG. 6. Ratio of the magnetization reversal timesand
exp(BAF), as a function of inverse temperatugd, for various
system sizes. The squares represent systemsBvitB, the dia-
monds represent systems widl+ 16, and the circles represent sys-
tems withB=32.

The resulting reversal times, for several system sizes and
inverse temperatures, are presented in Table Il and plotted in
Fig. 5. One sees by comparing the results of Tables | and I
that in most cases the two agree within 20% for temperatures
not too close to the critical temperature.

A commonly used first approximation to the description
of the time scales of activated processes is Arrhenius’ law,
which states that the typical time scaléncreases exponen-
tially with the height of the(free) energy barrierAF
=F(M=0)-F(M=M,), with a prefactorf that depends in
a mild way on temperature and system size,

7="1(8,B,L)exp(BAF). (14)

If we straightforwardly use the free ener§{M) as defined
before we can obtain the heights of the free-energy barriers
directly from the histograms of the magnetization distribu-
tion. To check the accuracy of this, we have plotted in Fig. 6
the ratio ofr and expBAF) as a function of inverse tempera-
?ure,BJ, for various system sizes. Clearly, if the prefadta
assumed to be constant, this simple approximation fails to
even predict the magnetization reversal times within an order
of magnitude.

A little thought reveals that, in the present case, this way
of determining the free energy barrier is not entirely satisfac-
tory. The reason is that for magnetization values aroMhd
=M, the free energy increases with system size because the
range of values through whicM typically fluctuates, in-
creases as the square root of system size. As a consequence
the probability of finding any specifidl-value decreases.
Around M =0 on the other hand, no similar effect occurs,
due to the wide plateau of the free energy as functioMof
As a result of this the decrease of probability of finding a
given magnetization value for given relative position of the
two interfaces is precisely compensated by the probabilities
of finding this same magnetization value at different relative
positions. Therefore, it makes more sense in this case to de-
fine the Arrhenius factor in an alternative way as

FIG. 5. Magnetization reversal timesas a function of inverse €xf{BF(M=0)]. With this definition, where agaiBF(M)
temperaturgdJ, for various system sizes. The diamonds represent= —IN[Pe((M)], it may be interpreted indeed as the equilib-

systems withL= 16, the circles represent systems wliti 32, and

the squares represent systems wiith 64.

rium probability of finding two interfaces dividing the sys-
tem into equal areas. But please notice that if, instead of a
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. L . FIG. 8. The most slowly decaying eigenmoBg(M) divided
FIG. 7. Ratio of the magnetization reversal timesand o equilibrium distribution exp- BF(M)] for the 16< 64 system
exp BF(0)]=Pe(M=0) *, as a function of inverse temperaty8d, o 5y_g 5 gptained in two different ways as described in the text.
for varlous_ system sizes. The squar(_es represent sys_temsLW|th Since this function is antisymmetric M, the left-hand side of the
=64, the circles represent systems wlitk- 32, and the diamonds figure (M<0) has been left out for clarity.

represent systems with= 16.
V. DISCUSSION
plateau, the free energy has a maximum of a width small . . . .
compared to the range of magnetization fluctuations, the first Our simulations conflrm the global plctyre we §ketched
definition of the Arrhenius factor is to be preferred. for the process of magnetization reversals in the Ising model
With the second definition the expression for the decayVith stochastic dynamics: a large cluster of opposite magne-
time in terms of the Arrhenius factor becomes tization, originating through a fluctuation develops into a pair
of interfaces. These interfaces diffuse around the system and
r=1'(8,B,L)exp(BF (M =0)), (15) annihilate, leaving the system in the oppositely ma_lgnetized
phase. Quantitatively this process may be described to a
in which again one hopes that the prefactérdepends on 900d approximation as a diffusion process in a one-
temperature and system dimensions only in a mild way. Oslimensional space with a coordinate describing the total
the basis of Eq¥8) and(13) we may conclude that for large Magnetization in the system.
systemsf’ should simply be proportional tb and indepen- A few remarks should be made here.
dent of B. (i) First of all it may seem remarkable that in almost all
Figure 7 shows’ as a function of inverse temperature for cases our theoretical prediction gives a shorter reversal time
several system sizes. For=32 and 64 both the approximate than the simulations. Since the theory neglects processes that
independence d& and the proportionality ta are quite well ~€nhance the reversal frequency, such as the formation of
confirmed, especially if one takes into account that the plamore than two simultaneous interfaces and spurious passages
teau widths for these system sizes are notably less than of M=0 (see below one might expect an overestimate of
(see Fig. 2 For L=16 the plateau becomes so narrow thatthe reversal time rather than an underestimate. The explana-
the above predictions do not apply. tion of the latter comes primarily from that. part of thg pro-
cess in which a growing cluster of opposite magnetization
transforms into a band around the cylinder. As the cluster
will at first be typically circular in shapéf the temperature
To obtain an estimate for the magnetization reversals not too low it has to deform into a more elliptical shape,
times, we first estimated the most slowly decaying mode irwith a longer interface than the band, before the latter can be
Eq. (7). Besides comparing the magnetization reversal timesformed. In Fig. 2 the signs of this are very clear in the form
we can also obtain the most slowly decaying eigenmodef little shoulders on the sides of the plateaus in the free
Po(M) directly from our Monte Carlo simulations by mea- energies. The transition ratddy \, for the formation of
suring the probability difference between the occurrence of ahese elliptical shapes will not be proportionaBdut much
certain magnetizatioM and the occurrence of the opposite smaller, since this growth mainly occurs along the short sides
magnetization— M, averaged over a time scale comparableof the cluster. The contributions from these terms in the de-
to the magnetization reversal time SinceP, decays much nominator of Eq(8) are therefore larger than estimated. Nu-
slower than the other antisymmetrim M) modes, it will  merically they are important as long as the plateau in the free
give the dominant contribution to this probability difference. energy is not too wide. This will give rise to a notable de-
Figure 8 compares the most slowly decaying eigenmode asrease of the reversal frequencies from our estimated values.
obtained with Eq(7) with the direct Monte Carlo measure- Correcting for this in the theoretical expression would re-
ments, for the 18 64 system ap3J=0.5. quire better estimates &fy y in the free energy shoulders,

D. Most slowly decaying mode
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which seem fairly complicated to obtain. Also the growth positive magnetization, onc®l =M, has been reached, is
rates in the magnetization regions beyond the shouldergxtremely small. We have measured this ratio for several
where the growing clusters are even smaller, are overestsystem sizes and temperatures, excluding those cases where
mated by Eq.(13), but these are weighted less as the freethe occurrence of multiple interfaces is likely, and found that
energies there are smaller. the mean value is 1.90, with a standard deviation of 0.15.

(i) The above considerations clearly reveal the possibility (i) It is of interest to investigate how the reversal times
that the coordinate parametrizing the “reaction pathére depend on the system size parameters. Fron{@qve may
the_ magnetizatio)wchanges n.onmonotonically .along this re- conclude that for long systentbut not so long that multiple
action path; one could imagine that the growing cluster, beTnterface pairs will occur frequentiythe reversal time will

fore turning into a strip, typically decreases in size for Apecome independent of the system lengthFor this one

while. In reality this does not seem to ha_lppe_n, but if thlsshould notice first of all that foM values on the plateau
were the case, parts of the reaction path with different cluster

shape but equal magnetization would be lumped togethe?xq'BF(M)J IS proportlonal to 1, because the number of
and the diffusion process along the cluster size coordinat}glays a pair of mterfaces_ may be placed such that the average
would no longer correspond to the actual path taken by th agnetization quaIM, IS proportlpnal to!_. On the other
cluster. Obviously in such a case the reaction coordinate ha@"d the summation ovéd, which is dominated by val-
to be redefined in such a way that the new coordinate i§€S on the plateau, gives rise to a factor close. tHence to
monotonic along the reaction path indeed. But in compli-first approximation the reversal frequeneyis independent
cated situations it may not always be clear what is a prope®f L. Remarkably this independence lofn fact is observed
choice for such a coordinate. even better by the numerical results than by the theoretical
(iii ) As a consequence of magnetization fluctuations in thestimates.
bulk, passages d¥l =0 will be registered typically already a In Sec. IV C it was noted already that the prodfittof
short while before the area between the interfaces reaches thee reversal frequency and the Arrhenius factor
valueLB/2 corresponding to an equal division of the systemexp(— 8F(0)) depends orL. and 8J, but is approximately
between areas of positive and negative magnetization. Thedependent of the system widih Notice that square sys-
reason is that the typical time scale for fluctuations of thetems may be included in this comparison without problem,
bulk magnetization is much shorter than that for interfaceas the extra factor of 2 due to the two possible orientations of
diffusion, so for each location of the interfaces the wholethe interfaces, is properly accounted for in the Arrhenius fac-
range of accessible magnetization values typically will betor.
scanned. Now in most cases this just will give rise to a neg- (v) We already indicated repeatedly that our theory may
ligible shift of the time at which the situation of equal areasbe applied only if the probability of having more than two
(this is the physically relevant criteriptis reached, but oc- interfaces around the cylinder may be neglected compared to
casionally it may happen thél =0 occurs, but the system the probability of having just two such interfaces. For this to
returns to the pure state it came from without ever reachindpe the case one has to requte/Z,<<1. For large enough
equal areas. To check the importance of these events we maystems this condition may be rewritten bs<exp(BoB),
compare the average first passage time froi, to Mg to  with o the surface tension of the interface. For large systems
that from=Mg, to M=0. If the effect of magnetization fluc- violation of this condition requires extreme aspect ratios, so
tuations is negligible the ratio of these should be 2, otherwis@inder normal conditions it will be satisfied, unless the tem-
it ought to be larger. Note that for the systems consideregerature is very close to the critical one, at which the surface
here the effect of magnetization fluctuations on the first pastension vanishes.
sage time from— M, to M, is much smaller than that on the ~ We are presently applying the methods described here to a
first passage time from My to M =0, because the probabil- study of nucleation rates in metastable states. We hope to
ity of returning to —M_ without reaching the pure state of report on this before long.
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