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Magnetization reversal times in the two-dimensional Ising model
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We present a theoretical framework which is generally applicable to the study of time scales of activated
processes in systems with Brownian type dynamics. This framework is applied to a prototype system: mag-
netization reversal times in the two-dimensional Ising model. Direct simulation results for the magnetization
reversal times, spanning more than five orders of magnitude, are compared with theoretical predictions; the two
agree in most cases within 20%.
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I. INTRODUCTION

Activated processes that can be described with some
of Brownian dynamics are abundant in the world around
Well-known examples are the nucleation of droplets in
undercooled gas or of crystals in an undercooled liqu
chemical reactions and the escape of a protein from a m
folded state. A prototype system to study such phenom
numerically is the well-known Ising model. Above the s
called critical temperature, in absence of an external m
netic field, up- and down-pointing spins are roughly equa
abundant. Below the critical temperature, the system pre
to be in either of two states: one state with a positive m
netization in which most spins are pointing up, and one s
with a negative magnetization. As long as the system s
remains finite, reversals of the magnetization—transitio
between positive and negative magnetization—are poss
and will occur at a certain average frequency. These p
cesses are activated, since configurations with magnetiza
close to zero have a higher free energy than typical confi
rations with a magnetization close to either of the equil
rium values.

In this manuscript, we study the time scales associa
with magnetization reversal. A theoretical framework is o
lined which is generally applicable to activated processe
systems with Brownian type dynamics, and compared
high-accuracy computer simulations. From a practical po
of view magnetization reversals are also of great interest
cause of applications in memory devices and the like. O
wants to have rapid switching of magnetization under rev
sals of an external field, but no spontaneous reversals o
magnetization, even if the external field has been turned
In the literature much attention has been paid to reversal t
distributions in the presence of a driving field@1,2#. In the
fieldless case, much work has been done exactly at the c
cal temperature, see for instance Ref.@3#. Here, large-scale
fluctuations in the magnetization decay at a time proportio
to Lz, wherez is the dynamical critical exponent. Howeve
spontaneous reversals below the critical temperature in
absence of a field have hardly been studied. Here we c
sider the latter case for the prototypical case of an Is
model with periodic boundary conditions. We identify th
leading scenario for reversals of the magnetization and s
that the process may be described to a good approxima
1063-651X/2003/67~2!/026119~8!/$20.00 67 0261
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by a one-dimensional diffusion process over a potential b
rier.

Our manuscript is organized as follows. In Sec. II, w
describe the model that we study in detail. In Sec. III, w
outline the theoretical framework which is generally app
cable to activated processes in systems with Brownian t
dynamics. We then apply this framework to our prototypic
model—magnetization reversal in the Ising model. In S
IV we compare the theoretical predictions with hig
accuracy computational results.

II. DETAILED DESCRIPTION OF THE MODEL

We consider the Ising model on aB3L rectangular lattice
with periodic~helical! boundary conditions, with the Hamil
tonian

H52J(
^ i , j &

s is j , ~1!

in which s i561 is the spin at sitei and J is the coupling
constant. The summation runs over all pairs of neare
neighbor sites; those of sitei are j 5 i 61 moduloN and j
5 i 6B modulo N, with N5BL. The magnetization is de
fined as M[( is i ; it can take valuesM52N,2N
12, . . . ,N; all through this manuscript, we restrict ourselv
to systems in which bothB and L are even. As a conse
quence,M takes only even values, and summations ove
range of possible magnetizations only run over even nu
bers, with an increment of 2.

A well-known property of the model is that at sufficient
low temperatures, the distribution of the magnetizationM
[( is i becomes bimodal—the spins in a configuration te
to align around the two preferred values6M0. For infinite
systems this occurs at all temperatures below the crit
temperatureTc5J/(0.440 69kB), for finite systems this
range starts at slightly different temperatures.

The system evolves in time according to single-spin-fl
dynamics with Metropolis acceptance probabilities@4,5#. If
Ci is the configuration afteri proposed spin flips, a tria
configurationCi 118 is generated by flipping a single spin at
random site. This trial configuration is then either accep
(Ci 115Ci 118 ) or rejected (Ci 115Ci); the acceptance prob
ability is given by
©2003 The American Physical Society19-1
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BRENDEL, BARKEMA, AND van BEIJEREN PHYSICAL REVIEW E67, 026119 ~2003!
Pa5min†1,exp@2b„E~Ci 118 !2E~Ci !…#‡, ~2!

in which b51/(kBT) with Boltzmann constantkB and tem-
peratureT. The time scale is set such that in one unit of tim
on average each spin is proposed to be flipped once. S
our system, in one unit of time we performBL Monte Carlo
steps.

Our current interest in the Ising model with single-sp
flip dynamics stems from the fact that in finite systems,
configurations will occasionally switch between states
which the magnetization is either negative or positiv
through an activated process. The dominant pathway at
temperatures consists of the formation of a single pair
closed interfaces in the shorter periodic direction~for B
ÞL), which perform a relative diffusive motion around th
longer periodic direction and annihilate after meeting ea
other through the periodic boundary. A series of snapsh
illustrating this process, is presented in Fig. 1.

FIG. 1. Snapshots of the transition from a state with most sp
down to a state with most spins up in the 16364 Ising model, taken
at equal time intervals of 500 attempted spin flips per site, at inve
temperaturebJ50.5.
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,
in

e

,
w
f

h
s,

III. THEORETICAL FRAMEWORK

To study the behavior of times between magnetizat
reversals at temperatures below the critical one we may c
sider an ensemble of a large number of systems prepare
states with a magnetization close to the equilibrium va
2M0 and study the rate at which these systems reach
value M5M0, after which they are removed from the e
semble. Alternatively, the behavior of times between z
crossings of the magnetization can be studied, as discu
below. The spin-flip dynamics described above may be r
resented by a master equation for the probability distribut
P(s) of finding a system in the states at timet. Due to the
huge number of possible states this master equation ca
be solved analytically or even numerically for system siz
of practical interest. Therefore, as an approximation we
sume that we may replace the exact master equation b
approximate master equation for the probabilityP(M ,t) of
finding a system with magnetizationM at timet. The form of
this equation is

dP~M ,t !

dt
5GM ,M12P~M12,t !1GM ,M22P~M22,t !

2~GM12,M1GM22,M !P~M ,t ! ~3!

with GM8,M the transition rate fromM to M 8. It ignores the
fact that the actual transition rates will depend on the geo
etry of the state under consideration, with the idea tha
typical cases spin states of very similar geometry will dom
nate the set of states with givenM. Besides onM andb the
transition rates will depend on the geometry of the syste
that is onB andL. To estimate the scaling behavior of the
dependencies we make two further simplifying assumpti
as follows.

~i! First of all, requiringB<L, we assume that states wit
MÞ6M0 consist of a single strip of opposite magnetizati
separated by two phase boundaries of lengthB from the ma-
jority spin phase. The relevant changes ofM then will be
caused by displacements of these boundaries due to flip
spins along them. The total number of spins available for t
will be proportional toB, hence the transition rates shou
also be proportional toB and independent ofL.

This approximation will not be valid for values ofM that
are too close to6M0, as for these the opposite magnetiz
tion will typically be found in a closed cluster rather than
a strip. It will turn out though that the contributions from
theseM values to the reversal frequency are very small
systems of reasonable length. Therefore, using the appr
mationG;B also here does not harm. Further we neglect
possibility of having more than one strip of opposite magn
tization. When the temperature gets close to the critical o
when B becomes small or whenL becomes very large, this
may not be a good approximation. We will come back to t
in Sec. V. In our further theoretical treatment we will assum
that we are in a situation where the single-strip approxim
tion is justified.

~ii ! Further we neglect changes due to fluctuations of
magnetization caused by the growth and shrinkage of sm
clusters of the minority spin type. On average these do
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MAGNETIZATION REVERSAL TIMES IN THE TWO- . . . PHYSICAL REVIEW E 67, 026119 ~2003!
contribute to magnetization reversals, so this approxima
should be allowed. In case one considers the first pas
frequency through zero magnetization there is a small eff
to which we will come back in Sec. V too.

In order that the equilibrium distribution be a stationa
solution of the master equation we impose the condition
detailed balance

GM ,M12

GM12,M
5exp@b„F~M !2F~M12!…#, ~4!

where bF(M )52 ln Peq(M), with Peq(M ) the equilibrium
probability of magnetizationM. In Sec. IV B it will be ex-
plained how this condition may be combined with simulati
results for interface diffusion to obtain approximations for
transition rates that lead to a good overall prediction of
reversal times.

The long-time reversal frequency as predicted by ma
equation~3! follows as the largest eigenvalue of this equ
tion, supplemented with an absorbing boundary atM5A,
with eitherA5M0 or A50. The first choice corresponds t
a real reversal of the magnetization, the second one to a
return to the valueM50. After this the system will have
equal probabilities to actually reverse its magnetization o
return to the equilibrium magnetization value it came fro
hence this return frequency should be twice the reversal
quency. The absorbing boundary condition is implemen
by settingGA22,A equal to zero.

The largest eigenvalue2n of GM ,M8 in Eq. ~3!, as well as
the corresponding eigenvectorP0(M ), may be found by re-
quiring that the net current away from magnetizationM as-
sumes the valuenP0(M ). Using conservation of probability
one easily checks that this may be expressed as

GM12,MP0~M !2GM ,M12P0~M12!5n (
m<M

P0~m!,

~5!

n5
GA,A22P0~A22!

(
m<A22

P0~m!

. ~6!

In Eq. ~5! P0(m) on the right-hand side may be approx
mated, up to a normalization factor, by exp@2bF(m)#, be-
cause the sum is dominated by the terms with smallm val-
ues, for which this approximation is excellent. This one m
check in hindsight against the solution obtained. With t
approximation the equation may be solved recursively
P0(M ) in terms ofP0(A22) for M5A24,A26, etc. with
the result

P0~M !5 (
M<m<A22

GA,A22

Gm12,m
exp@b„F~m!2F~M !…#

3

(
n<m

exp@2bF~n!#

(
n8<A22

exp@2bF~n8!#

P0~A22!. ~7!
02611
n
ge
t,

f

l
e

er
-

rst

o
,
e-
d

y
s
r

The summations overm andM are dominated by values ofm
close to zero, combined with values forM close to2M0, for
which the sum overn is basically independent ofm. There-
fore, the reversal frequency may be obtained as

n5
GA,A22P0~A22!

(
M<A22

P0~M !

5S (
m52M0

A22
exp@bF~m!#

Gm12,m
(

n<A22
exp@2bF~n!# D 21

. ~8!

The restriction of the summation overm to values m.
2M0 is needed to avoid large spurious contributions fro
m,2M0. The result in Eq.~8! is well-known. It is usually
derived by considering a state with a stationary current
which mass is inserted at a constant rate on one side~e.g., at
M52B3L in our case! and taken out as soon as it reach
the absorbing boundary~see, e.g., Ref.@6#, Sec. IV E!. In that
case the replacement of the sum overn by a constant is
exact.

IV. SIMULATIONS AND RESULTS

In order to apply the above theoretical framework to ma
netization reversal times in the Ising model, the two ingre
ents required are:~i! the equilibrium probabilityPeq(M ) to
find the system in a state with magnetizationM and ~ii ! the
transition ratesGM8,M from magnetizationM to M 8. We ob-
tain these two ingredients via two different computation
approaches.

A. Free energy landscape

For various values ofL and B and various temperature
we make histograms of the distribution of the magnetizat
M5( is i and the energy. Since the probability that a st
with energyE occurs at an inverse temperatureb is propor-
tional to the Boltzmann weight exp(2bE), a histogram made
at a certain temperature provides information about the pr
ability distribution at nearby temperatures as well. We u
the multiple histogram method@7# to combine the informa-
tion from simulations at various temperatures. In this w
histograms for the magnetization over a wide range of te
peratures can be obtained. As defined above, the free en
F(M ) is related to the probability that a certain magnetiz
tion M occurs byPeq(M )5e2bF(M ). The method of deter-
mining free energies of configurations constrained to so
value of a coordinate along a pathway through phase sp
has been used extensively, for instance by Auer and Fre
@8#. In Fig. 2 the free energy as a function of the magneti
tion per spinm5M /N is plotted at two different tempera
tures and three different values ofL/B.

In order to compare these results with theory we note t
the probabilityPeq(0) of finding the system in a state wit
M50 can be obtained from Eq.~4.23! of chapter V of Ref.
@9# as follows. First note that this equation gives the follo
ing approximation for the partition function of a period
antiferromagnetic system with one phase boundary@10#,
9-3
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BRENDEL, BARKEMA, AND van BEIJEREN PHYSICAL REVIEW E67, 026119 ~2003!
which is equivalent to a ferromagnetic system with an a
periodic boundary:

Z15
Z0

2 (
k51

2L S A~k!2AA2~k!2c2

A~k!1AA2~k!2c2D B/2

, ~9!

where

A~k!5~11z2!222z~12z2!cos
pk

L
,

c52z~12z2!,

z5tanhbJ,

andZ0 the partition function for a homogeneous system~cf.
Eq. ~4.20! of Ref. @9#!. Neglecting the possible interactio
between two phase boundaries~or interfaces! we conclude
that the partition functionZ2 for a system with two interface
is given byZ2 /Z05(1/2)(Z1 /Z0)2. The factor 1/2 arises be
cause otherwise we would count each configuration tw
interchanging the locations of the two interfaces does
give a different configuration. If we leave the positions of t
two interfaces completely free, the magnetization is distr
uted almost uniformly over all possible even values betw
2M0 andM0. Therefore, fixingM to 0 leads to a reduction
of the partition function by a factor ofM0. Thus we arrive at
the following result forPeq(0):

Peq~0!5
Z2

M0Z0
5

1

8M0
F (

k51

2L S A~k!2AA2~k!2c2

A~k!1AA2~k!2c2D B/2G 2

.

~10!

FIG. 2. Free energy~in units of J) as a function of magnetiza
tion at inverse temperaturesbJ50.45 andbJ50.50. The number
of spins is kept constant at 1024. The upper curves represen
32332 system, the middle curves represent the 16364 system, and
the lower curves represent the 83128 system. The free energies
M50 corresponding to Eq.~10! are also indicated. A constantc is
added to the free energy curves, such that the minimal valu
F(M )1c is zero in all cases.
02611
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For square systems this result has to be modified, bec
there are two ways to make a strip with opposite magnet
tion: the interfaces can lie in the horizontal as well as in
vertical direction. This gives an additional factor 2 in th
equation forPeq(0).

B. Interface diffusion coefficient

The second ingredient for the theoretical framework
Sec. III consists of the transition ratesGM8,M from magneti-
zationM to M 8. As discussed there, we are actually mos
interested in the contribution to the transition rates that ar
from the diffusion parallel to the longer periodic direction
interfaces that span the shorter one. To estimate this diffu
coefficient numerically, we study systems with antiperiod
boundary conditions: the spins in two neighboring sitei
,N21 andj 5 i 11, or in i ,N2B and j 5 i 1B are aligned
if s i5s j , whereas the spins in two neighboring sitesi 5N
21 andj 50, or in i>N2B and j 5 i 1B2N, are aligned if
s i52s j .

The interface locationx(0) is initially defined as the mag
netizationM (0). As long asMP@20.8N,0.8N#, stepsDx
in the interface location are equal to changesDM in the
magnetization, i.e., x(t1Dt)2x(t)5M (t1Dt)2M (t).
Once the interface gets close to the antiperiodic bound
the magnetization does not uniquely determine the interf
location. As soon asM is no longer in the interval
@20.8N,0.8N#, we shift the antiperiodic boundary awa
from the interface over half the system size~which will bring
the magnetization back in this range! and then continue.

In practice, we achieve this by switching from monitorin
M to monitoringM 85( i 50

N/221s i2( i 5N/2
N21 s i , and ux(t1Dt)

2x(t)u5uM 8(t1Dt)2M 8(t)u. The sign of the steps inx(t)
depends on the location of the interface: in the lower half t
sign will be unchanged, whereas in the upper half it will
reversed. As soon asM 8 leaves the interval@20.8N,0.8N#
we switch back to measuring steps in the original magn
zationM. Also here, the sign of the steps inx(t) depends on
the location of the interface. Note thatx is not confined to the
interval @2N,N#. The diffusion coefficientD is then ob-
tained from the time-dependent interface locationx(t) as

D5 lim
t→`

F ^„x~ t !2x~0!…2&
2t G . ~11!

We expect that the interface diffusion coefficient is indepe
dent ofL, and that it grows linearly withB since the number
of sites where a spin flip moves the interface grows linea
with its width; however, for smallB corrections arise due to
the periodicity~or helicity! of the boundaries. Consequentl
we expect

D~B,L,bJ!5g~bJ!B1c. ~12!

For temperatures close toTc and smallB, the system
might occasionally contain more than a single interface.
that case, Eq.~11! would overestimate the diffusion coeffi
cient of an interface. Since the additional free energy cos
interfaces increases linearly withB, this unwanted contribu-

he
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MAGNETIZATION REVERSAL TIMES IN THE TWO- . . . PHYSICAL REVIEW E 67, 026119 ~2003!
tion to D decreases exponentially withB. Taking this into
account, our approach is to measure for various value
bJ, B, andL the diffusion coefficientD via Eq. ~11!. Next
we determine the functiong(bJ) in Eq. ~12!; the results are
plotted in Fig. 3. Indeed we find that for increasingB and at
temperatures not too close toTc the diffusion coefficient rap-
idly becomes independent ofL within the range ofL values
we considered. In our theoretical framework we then use
approximation for the jump rates

min@GM ,M12 ,GM12,M#5
g~bJ!B

2
. ~13!

This may be understood from the observations that on
hand one hasD54G, because the jumps in magnetization
by units of 2, on the other handD satisfies Eq.~12! with B
replaced by 2B because there are two interfaces. The ab
equation, in combination with Eq.~4! and the free energy a
a function of magnetization, specifies all the transition ra
Using Eq.~8! we can now predict the magnetization rever
times. The results are shown in Table I.

C. Magnetization reversal times

We measure the magnetization everyN attempted spin
flips. We look for events, where the magnetization cros
from positive ~more than half the spins up! to negative or
vice versa between two consecutive measurements.

We make histograms of the times between two occ
rences of magnetization reversal events. The histogram
tained in a system containing 16364 spins, at the tempera
ture corresponding tobJ50.45, is shown in Fig. 4. Fo
comparison we also show a histogram of the times meas
between the first time the system reaches a free energy m
mum, and the first time after this it reaches the other m
mum. We will come back to this in our discussion. The figu
shows that at long times the decay functionf (t) behaves as
f (t);exp(2t/t). Here, we focus on the long-time behavio

FIG. 3. Monte Carlo measurements of the diffusion coeffici
per interface lengthg(bJ), as a function of inverse temperatu
bJ.
02611
of

n

e

e

s.
l

s

r-
b-

ed
ni-
i-

and are specifically interested in the escape timet. We ob-
tain this quantity via a fitting procedure, in which we igno
the data up to a timet0, chosen such thatf (t) shows expo-
nential time behavior fort.t0. Then we determine the time

t

TABLE I. Estimated values for the magnetization revers
times.

bJ 32332 16364 16332

0.46 1.663105 1.743104 1.193104

0.47 1.123106 4.213104 3.153104

0.48 8.883106 1.253105 9.963104

0.49 7.383107 3.973105 3.313105

0.50 6.493108 1.313106 1.123106

0.51 5.833109 4.193106 3.613106

0.52 5.3131010 1.233107 1.053107

0.53 5.7731011 3.783107 3.113107

0.54 7.6931012 1.233108 9.603107

bJ 16316 8364 8332

0.46 4.433103 2.763103 1.243103

0.47 1.063104 3.263103 1.733103

0.48 3.093104 4.723103 2.883103

0.49 9.563104 7.453103 5.113103

0.50 3.093105 1.263104 9.473103

0.51 9.603105 2.123104 1.693104

0.52 2.733106 3.323104 2.773104

0.53 8.063106 5.503104 4.713104

0.54 2.503107 9.693104 8.433104

0.55 7.643107 1.703105 1.493105

0.56 2.303108 2.963105 2.613105

0.57 7.203108 5.383105 4.753105

0.58 1.923109 8.373105 7.393105

0.59 5.543109 1.423106 1.253106

0.60 1.7731010 2.663106 2.343106

FIG. 4. Histogram of the times between zero crossings of
magnetization~squares!, and the times between first occurrence o
free energy minimum~circles! in the 16364 Ising model atbJ
50.45. The solid lines depict the fit to the data, obtained as
scribed in the text.
9-5
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BRENDEL, BARKEMA, AND van BEIJEREN PHYSICAL REVIEW E67, 026119 ~2003!
t8 at which half of the remaining events have taken pla
The escape timet is then obtained fromt5(t82t0)/ln(2).
Instead we could have made a linear fit of all the data po
beyondt0, but this makes no significant difference.

FIG. 5. Magnetization reversal timest as a function of inverse
temperaturebJ, for various system sizes. The diamonds repres
systems withL516, the circles represent systems withL532, and
the squares represent systems withL564.

TABLE II. Directly measured values for the magnetization r
versal times.

bJ 32332 16364 16332

0.46 2.09(6)3105 1.52(3)3104 1.37(1)3104

0.47 2.02(6)3106 5.14(5)3104 4.18(4)3104

0.48 1.97(6)3107 1.68(1)3105 1.32(1)3105

0.49 5.20(5)3105 4.26(6)3105

0.50 1.62(5)3106 1.33(2)3106

0.51 5.2(1)3106 4.28(6)3106

0.52 1.59(5)3107 1.32(3)3107

0.53 4.5(2)3107 4.0(1)3107

0.54 1.40(6)3108 1.13(4)3108

16316 8364 8332

0.46 6.83(7)3103 1.21(1)3103 1.23(1)3103

0.47 1.81(2)3104 2.10(2)3103 2.08(2)3103

0.48 4.8(2)3104 3.75(3)3103 3.61(4)3103

0.49 1.35(4)3105 6.70(7)3103 6.30(6)3103

0.50 4.45(4)3105 1.20(1)3104 1.11(1)3104

0.51 1.26(1)3106 2.07(2)3104 1.99(2)3104

0.52 3.82(5)3106 3.66(3)3104 3.37(3)3104

0.53 1.13(2)3107 6.36(6)3104 5.87(5)3104

0.54 2.97(6)3107 1.09(1)3105 1.04(2)3105

0.55 9.7(3)3107 1.95(3)3105 1.68(3)3105

0.56 1.9(2)3108 3.26(6)3105 3.05(9)3105

0.57 5.40(8)3105 4.5(1)3105

0.58 9.2(2)3105 8.3(2)3105

0.59 1.61(2)3106 1.41(3)3106

0.60 2.67(5)3106 2.64(8)3106
02611
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The resulting reversal times, for several system sizes
inverse temperatures, are presented in Table II and plotte
Fig. 5. One sees by comparing the results of Tables I an
that in most cases the two agree within 20% for temperatu
not too close to the critical temperature.

A commonly used first approximation to the descripti
of the time scales of activated processes is Arrhenius’ l
which states that the typical time scalet increases exponen
tially with the height of the ~free! energy barrierDF
[F(M50)2F(M5M0), with a prefactorf that depends in
a mild way on temperature and system size,

t5 f ~b,B,L !exp~bDF !. ~14!

If we straightforwardly use the free energyF(M ) as defined
before we can obtain the heights of the free-energy barr
directly from the histograms of the magnetization distrib
tion. To check the accuracy of this, we have plotted in Fig
the ratio oft and exp(bDF) as a function of inverse tempera
turebJ, for various system sizes. Clearly, if the prefactorf is
assumed to be constant, this simple approximation fails
even predict the magnetization reversal times within an or
of magnitude.

A little thought reveals that, in the present case, this w
of determining the free energy barrier is not entirely satisf
tory. The reason is that for magnetization values aroundM
5M0 the free energy increases with system size because
range of values through whichM typically fluctuates, in-
creases as the square root of system size. As a consequ
the probability of finding any specificM-value decreases
Around M50 on the other hand, no similar effect occur
due to the wide plateau of the free energy as function ofM.
As a result of this the decrease of probability of finding
given magnetization value for given relative position of t
two interfaces is precisely compensated by the probabili
of finding this same magnetization value at different relat
positions. Therefore, it makes more sense in this case to
fine the Arrhenius factor in an alternative way
exp@bF(M50)#. With this definition, where againbF(M )
52 ln@Peq(M)#, it may be interpreted indeed as the equili
rium probability of finding two interfaces dividing the sys
tem into equal areas. But please notice that if, instead o

t

FIG. 6. Ratio of the magnetization reversal timest and
exp(bDF), as a function of inverse temperaturebJ, for various
system sizes. The squares represent systems withB58, the dia-
monds represent systems withB516, and the circles represent sy
tems withB532.
9-6
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MAGNETIZATION REVERSAL TIMES IN THE TWO- . . . PHYSICAL REVIEW E 67, 026119 ~2003!
plateau, the free energy has a maximum of a width sm
compared to the range of magnetization fluctuations, the
definition of the Arrhenius factor is to be preferred.

With the second definition the expression for the dec
time in terms of the Arrhenius factor becomes

t5 f 8~b,B,L !exp„bF~M50!…, ~15!

in which again one hopes that the prefactorf 8 depends on
temperature and system dimensions only in a mild way.
the basis of Eqs.~8! and~13! we may conclude that for larg
systemsf 8 should simply be proportional toL and indepen-
dent ofB.

Figure 7 showsf 8 as a function of inverse temperature f
several system sizes. ForL532 and 64 both the approximat
independence ofB and the proportionality toL are quite well
confirmed, especially if one takes into account that the p
teau widths for these system sizes are notably less thaL
~see Fig. 2!. For L516 the plateau becomes so narrow th
the above predictions do not apply.

D. Most slowly decaying mode

To obtain an estimate for the magnetization rever
times, we first estimated the most slowly decaying mode
Eq. ~7!. Besides comparing the magnetization reversal tim
we can also obtain the most slowly decaying eigenm
P0(M ) directly from our Monte Carlo simulations by mea
suring the probability difference between the occurrence
certain magnetizationM and the occurrence of the opposi
magnetization2M , averaged over a time scale compara
to the magnetization reversal timet. SinceP0 decays much
slower than the other antisymmetric~in M ) modes, it will
give the dominant contribution to this probability differenc
Figure 8 compares the most slowly decaying eigenmode
obtained with Eq.~7! with the direct Monte Carlo measure
ments, for the 16364 system atbJ50.5.

FIG. 7. Ratio of the magnetization reversal timest and
exp@bF(0)#[Peq(M50)21, as a function of inverse temperaturebJ,
for various system sizes. The squares represent systems wL
564, the circles represent systems withL532, and the diamonds
represent systems withL516.
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V. DISCUSSION

Our simulations confirm the global picture we sketch
for the process of magnetization reversals in the Ising mo
with stochastic dynamics: a large cluster of opposite mag
tization, originating through a fluctuation develops into a p
of interfaces. These interfaces diffuse around the system
annihilate, leaving the system in the oppositely magneti
phase. Quantitatively this process may be described t
good approximation as a diffusion process in a on
dimensional space with a coordinate describing the to
magnetization in the system.

A few remarks should be made here.
~i! First of all it may seem remarkable that in almost

cases our theoretical prediction gives a shorter reversal
than the simulations. Since the theory neglects processes
enhance the reversal frequency, such as the formation
more than two simultaneous interfaces and spurious pass
of M50 ~see below!, one might expect an overestimate
the reversal time rather than an underestimate. The expl
tion of the latter comes primarily from that part of the pr
cess in which a growing cluster of opposite magnetizat
transforms into a band around the cylinder. As the clus
will at first be typically circular in shape~if the temperature
is not too low! it has to deform into a more elliptical shap
with a longer interface than the band, before the latter can
formed. In Fig. 2 the signs of this are very clear in the fo
of little shoulders on the sides of the plateaus in the f
energies. The transition ratesGM8,M for the formation of
these elliptical shapes will not be proportional toB but much
smaller, since this growth mainly occurs along the short si
of the cluster. The contributions from these terms in the
nominator of Eq.~8! are therefore larger than estimated. N
merically they are important as long as the plateau in the
energy is not too wide. This will give rise to a notable d
crease of the reversal frequencies from our estimated val
Correcting for this in the theoretical expression would
quire better estimates ofGM8,M in the free energy shoulders

FIG. 8. The most slowly decaying eigenmodeP0(M ) divided
by the equilibrium distribution exp@2bF(M)# for the 16364 system
at bJ50.5, obtained in two different ways as described in the te
Since this function is antisymmetric inM, the left-hand side of the
figure (M,0) has been left out for clarity.
9-7
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BRENDEL, BARKEMA, AND van BEIJEREN PHYSICAL REVIEW E67, 026119 ~2003!
which seem fairly complicated to obtain. Also the grow
rates in the magnetization regions beyond the should
where the growing clusters are even smaller, are overe
mated by Eq.~13!, but these are weighted less as the fr
energies there are smaller.

~ii ! The above considerations clearly reveal the possib
that the coordinate parametrizing the ‘‘reaction path’’~here
the magnetization! changes nonmonotonically along this r
action path; one could imagine that the growing cluster,
fore turning into a strip, typically decreases in size for
while. In reality this does not seem to happen, but if t
were the case, parts of the reaction path with different clu
shape but equal magnetization would be lumped toget
and the diffusion process along the cluster size coordin
would no longer correspond to the actual path taken by
cluster. Obviously in such a case the reaction coordinate
to be redefined in such a way that the new coordinate
monotonic along the reaction path indeed. But in comp
cated situations it may not always be clear what is a pro
choice for such a coordinate.

~iii ! As a consequence of magnetization fluctuations in
bulk, passages ofM50 will be registered typically already
short while before the area between the interfaces reache
valueLB/2 corresponding to an equal division of the syste
between areas of positive and negative magnetization.
reason is that the typical time scale for fluctuations of
bulk magnetization is much shorter than that for interfa
diffusion, so for each location of the interfaces the who
range of accessible magnetization values typically will
scanned. Now in most cases this just will give rise to a n
ligible shift of the time at which the situation of equal are
~this is the physically relevant criterion! is reached, but oc-
casionally it may happen thatM50 occurs, but the system
returns to the pure state it came from without ever reach
equal areas. To check the importance of these events we
compare the average first passage time from2M0 to M0 to
that from6M0 to M50. If the effect of magnetization fluc
tuations is negligible the ratio of these should be 2, otherw
it ought to be larger. Note that for the systems conside
here the effect of magnetization fluctuations on the first p
sage time from2M0 to M0 is much smaller than that on th
first passage time from2M0 to M50, because the probabi
ity of returning to2M0 without reaching the pure state o
s
er

.
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positive magnetization, onceM5M0 has been reached, i
extremely small. We have measured this ratio for seve
system sizes and temperatures, excluding those cases w
the occurrence of multiple interfaces is likely, and found th
the mean value is 1.90, with a standard deviation of 0.15

~iv! It is of interest to investigate how the reversal tim
depend on the system size parameters. From Eq.~8! we may
conclude that for long systems~but not so long that multiple
interface pairs will occur frequently! the reversal time will
become independent of the system lengthL. For this one
should notice first of all that forM values on the plateau
exp@bF(M)# is proportional to 1/L, because the number o
ways a pair of interfaces may be placed such that the ave
magnetization equalsM, is proportional toL. On the other
hand the summation overM, which is dominated byM val-
ues on the plateau, gives rise to a factor close toL. Hence to
first approximation the reversal frequencyn is independent
of L. Remarkably this independence ofL in fact is observed
even better by the numerical results than by the theoret
estimates.

In Sec. IV C it was noted already that the productf 8 of
the reversal frequency and the Arrhenius fac
exp„2bF(0)… depends onL and bJ, but is approximately
independent of the system widthB. Notice that square sys
tems may be included in this comparison without proble
as the extra factor of 2 due to the two possible orientation
the interfaces, is properly accounted for in the Arrhenius f
tor.

~v! We already indicated repeatedly that our theory m
be applied only if the probability of having more than tw
interfaces around the cylinder may be neglected compare
the probability of having just two such interfaces. For this
be the case one has to requireZ1 /Z0!1. For large enough
systems this condition may be rewritten asL!exp(bsB),
with s the surface tension of the interface. For large syste
violation of this condition requires extreme aspect ratios,
under normal conditions it will be satisfied, unless the te
perature is very close to the critical one, at which the surf
tension vanishes.

We are presently applying the methods described here
study of nucleation rates in metastable states. We hop
report on this before long.
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