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Hierarchical organization in complex networks
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Many real networks in nature and society share two generic properties: they are scale-free and they display
a high degree of clustering. We show that these two features are the consequence of a hierarchical organization,
implying that small groups of nodes organize in a hierarchical manner into increasingly large groups, while
maintaining a scale-free topology. In hierarchical networks, the degree of clustering characterizing the different
groups follows a strict scaling law, which can be used to identify the presence of a hierarchical organization in
real networks. We find that several real networks, such as the Worldwideweb, actor network, the Internet at the
domain level, and the semantic web obey this scaling law, indicating that hierarchy is a fundamental charac-
teristic of many complex systems.
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[. INTRODUCTION distribution, and the average clustering coeffici€(iN) de-
creases a®l ! with the number of nodes in the network.

In the past few years, an array of discoveries have redeScale-free networks, capturing the power-law degree distri-
fined our understanding of complex networfsr reviews, bution, predict a much larger clustering coefficient than a
see Refs[1,2]). The availability of detailed maps, capturing random network. Indeed, numerical simulations indicate that
the topology of such diverse systems as the [@H6], the  for one of the simplest model42,13, the average clustering
Worldwideweb[7], or the sexual network8] have offered coefficient depends on the system size G@N)~N~75
scientists for the first time the chance to address in quantitg4,2], significantly larger for largeN than the random net-
tive terms the generic features of real networks. As a resultwork predictionC(N)~N~1. Yet, this prediction still dis-
we learned that networks are far from being random, but aregrees with the finding that for several real syste@ss
governed by strict organizing principles that generate sysindependent ofN [1].
tematic and measurable deviations from the topology pre- Here, we show that the fundamental discrepancy between
dicted by the random graph theory of Esdand Reyi  models and empirical measurements is rooted in a previously
[9,10], the basic model used to describe complex webs in thelisregarded, yet generic feature of many real networks: their
past four decades. hierarchical topology. Indeed, many networks are fundamen-

Two properties of real networks have generated considettally modular: one can easily identify groups of nodes that
able attention. First, measurements indicate that mosire highly interconnected with each other, but have only a
networks display a high degree of clustering. Definingfew or no links to nodes outside of the group to which they
the clustering coefficient for nodé with k; links as belong to. In society, such modules represent groups of
Ci=2n;/k;(kj—1), wheren; is the number of links between friends or co-worker$17]; in the WWW, they denote com-
the k; neighbors ofi, empirical results indicate tha&; aver-  munities with shared interesf48,19; in the actor network,
aged over all nodes is significantly higher for most real netthey characterize specific genres or simply individual mov-
works than for a random network of similar sig#,2,11]. ies. Some groups are small and tightly linked, others are
Furthermore, the clustering coefficient of real networks is tdarger and somewhat less interconnected. This clearly iden-
a high degree independent of the number of nodes in thefiable modular organization is at the origin of the high clus-
network (see Fig. 9 in Ref[1]). At the same time, many tering coefficient seen in many real networks. Yet, models
networks of scientific or technological interest, ranging fromreproducing the scale-free property of real networks]
the Worldwideweb[7] to biological networks[3—6] have distinguish nodes based only on their degree, and are blind to
been found to be scale-frdd2,13, which means that the node characteristics that could lead to a modular topology.

probability that a randomly selected node habnks (i.e., In order to bring modularity, the high degree of clustering,
degreek) follows P(k)~k™ 7, wherey is the degree expo- and the scale-free topology under a single roof, we need to
nent. assume that modules combine into each other in a hierarchi-

The scale-free property and clustering are not exclusivecal manner, generating what we calheerarchical network

for a large number of real networks, including metabolicThe presence of a hierarchy and the scale-free property im-
networks [3,4], the protein interaction networks,6], the  pose strict restrictions on the number and the degree of co-
World Wide Web[7], and even some social networks4—  hesiveness of the different groups present in a network,
16], the scale-free topology and high clustering coexist. Yetwhich can be captured in a quantitative manner using a scal-
most models that proposed to describe the topology of coming law, describing the dependence of the clustering coeffi-
plex networks have difficulty capturing simultaneously thesecient on the node degree. We use this scaling law to identify
two features. For example, the random network m@aigl0]  the presence of a hierarchical architecture in several real net-
can account neither for the scale-free nor for the clustereworks, and the absence of such hierarchy in geographically
nature of real networks, as it predicts an exponential degreerganized webs.
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central node of the old moduléig. 1(c)], obtaining a new
module of 125 nodes. These replication and connection steps
can be repeated indefinitely, in each step, increasing the
number of nodes in the system by a factor 5.

Precursors to the model described in Fig. 1 have been
proposed in Ref[20] and extended and discussed in Ref.
[21,22] as a method of generating deterministic scale-free
networks. Yet, it was believed that aside from their determin-
istic structure, their statistical properties are equivalent with
the stochastic models that are often used to generate scale-
free networks. In the following, we argue that such hierar-
chical construction generates an architecture that is signifi-
cantly different from the networks generated by traditional
scale-free models. Most important, we show that this new
feature of the model, its hierarchical character, are shared by
a significant number of real networks.

First, we note that the hierarchical network model seam-
lessly integrates a scale-free topology with an inherent

FIG. 1. The iterative construction leading to a hierarchical net-modular structure. Indeed, the generated network has a
work. Starting from a fully connected cluster of five nodes shown inpower-law degree distribution with degree exponest1
(@ (note that the diagonal nodes are also connected —links not_ | 5/In 4=2.161[Fig. 2@)]. Furthermore, numerical simu-
visible), we create four identical replicas, connecting the_ periphera|aﬂOnS indicate that the clustering coefficie@t=0.743 is
nodgs_ of each cluster to the central node of the original C|USteri'ndependent of the size of the netwdfkig. 2(c)]. Therefore,
obtaining a network oN =25 nodesb). In the next step, we create ¢ high degree of clustering and the scale-free property are
e o o o e ey Smulanouslypresent n s etwork

gan, a b ) gina The most important feature of the network model of Fig.
module, obtaining aN=125-node network. This process can be .
continued indefinitely, 1, not shared by elt'helr thg scale—'ﬁ[ac?_,l:ﬂ or random net-
work models[9,10], is its hierarchical architecture. The net-
work is made of numerous small, highly integrated five-node
moduledFig. 1(a)], which are assembled into larger 25-node

We start by constructing a hierarchical network modelmodules[Fig. 1(b)]. These 25-node modules are less inte-
that combines the scale-free property with a high degree ofrated but each of them is clearly separated from the other
clustering. Our starting point is a small cluster of five 25-node modules when we combine them into the even
densely linked nodegig. 1(a)]. Next, we generate four rep- larger 125-node moduld$ig. 1(c)]. These 125-node mod-
licas of this hypothetical module and connect the four exterules are even less cohesive, but again will appear separable
nal nodes of the replicated clusters to the central node of thigom their replicas if the network expands further.
old cluster, obtaining a large 25-node modU{kg. 1(b)]. This intrinsic hierarchy can be characterized in a quanti-
Subsequently, we again generate four replicas of this 25@ative manner using the recent finding of Dorogovtsev, Golt-
node module, and connect the 16 peripheral nodes to theev, and Mende1] that in the deterministic scale-free net-

(b) n=1,
N=25

(c) n=2, N=125

II. HHERARCHICAL NETWORK MODEL
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FIG. 2. Scaling properties of the hierarchical model shown in FigN£56"). (a) The numerically determined degree distribution. The
asymptotic scaling, with slopg=1+1In5/In 4, is shown as a dashed line) The C(k) curve for the model, demonstrating that it follows
Eg.(1). The open circles sho@(k) for a scale-free mod¢lL2] of the same size, illustrating that it does not have a hierarchical architecture.
(c) The dependence of the clustering coeffici€rin the size of the networK. While for the hierarchical modé is independent o ( ¢ ),
for the scale-free model(N) decreases rapidlyX).
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works, the clustering coefficient of a node withlinks  base, we connect any two actors in Hollywood if they acted
follows the scaling law in the same movie, obtaining a network of 392 340 nodes and
o 15345 957 links. Earlier studies indicate that this network is

Clk~k™" @ scale-free with an exponential cutoff iR(k) for high k

We argue that this scaling law quantifies the coexistencgl_zl’z_d"z_a' A_S Fig. 3a) indicates, we find _tha(t(k)_ scales as
of a hierarchy of nodes with different degrees of clusteringX -+ indicating that the network has a hierarchical topology.
and applies to the model of Figs(@— 1(c) as well. Indeed, Indeed, the .majorlty of' actors with a fgw linksmall k)
the nodes at the center of the numerous five-node modulgP€ar only in one movie. Each such adtoas a clustering
have a clustering coefficiel@=1. Those at the center of a coefficient equal to one, as all the actorsave links to are
25-node module havie= 20 andC=3/19, while those at the Part of the same cast, and are therefore connected to each
center of the 125-node modules halve 84 andC=3/83, other. The highk nodes include many actors who acted in
indicating that the higher a node’s degree, the smaller is it§€veral movies, and thus, their neighbors are not necessarily
clustering coefficient, asymptotically following theklfaw  linked to each other, resulting in a smalte(k). At high k,
[Fig. 2b)]. In contrast, for the scale-free model proposed inthe C(k) curve splits into two branches, one of which con-
Ref.[12], the clustering coefficient is independentlofi.e.,  tinues to follow Eq.(1), while the other saturates. One ex-
the scaling lam1) does not appl\Fig. 2(b)]. The same is pIaqauon <_)f thl_s Sp|lt.IS the decrea_smg amqunt of.data points
true for the randonfi9,10] or the various small world models available in this region. Indeed, in the highregion, the
[11,23, for which the clustering coefficient is independent of "umber of nodes having the saikes rather small. If one of
the nodes’ degree. these nodes corresponds to an actor who played only in a few
Therefore, the discrete model of Fig. 1 combines within amovies with hundreds in the cast, it will have both higand
single framework, the two key properties of real networks:Nigh C, considerably increasing the average valueCok).
their scale-free topology and high modularity, which resultsThe k values, for which such higki nodes are absent con-
in a system-size independent clustering coefficient. Yet, théinue to follow thek ™ curve, resulting in jumps between the
hierarchical modularity of the model results in the scalinghigh and smallC values for largek. For smallk, these
law (1), which is not shared by the traditional network mod- @ahomalies are averaged out.

els. The question is, could hierarchical modularity, as cap- Language networkRecently, a series of empirical results
tured by this model, characterize real networks as well? have shown that the language, viewed as a network of words,

has a scale-free topolod26—29. Here, we study the net-
Il HIERARCHICAL ORGANIZATION IN work generated conngcting two _words to each_ o'ther if they
REAL NETWORKS appear as synonyms in the Merriam Webster dictiohaw).
The obtained semantic web has 182 853 nodes and 317 658
To investigate if such hierarchical organization is presentinks, and it is scale-free with degree exponert3.25. The
in real networks, we measured tl€k) function for several C(k) curve for this language network is shown in Figb3
networks for which large topological maps are available.indicating that it follows Eq.(1), suggesting that the lan-
Next, we discuss each of these systems separately. guage has a hierarchical organization.
Actor Network.Starting from the www.IMDB.com data- World Wide WebOn the WWW, two documents are con-
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nected to each other if there is a URL pointing from onebackbones, regional networks, and local area networks.
document to the other one. The sample we study, obtained by Our measurements indicate, however, that some real net-
mapping out the www.nd.edu domdin], has 325 729 nodes works lack a hierarchical architecture, and do not obey the
and 1497135 links, and it is scale-free with degree exposcaling law(1). In particular, we find that the power grid and
nents y.,= 2.45 andy;,=2.1, characterizing the out- and the router level Internet topology havé&dependen€(k).
in-degree distribution, respectively. To measure @) Internet at the router levelThe router level Internet has
curve, we made the network undirected. While the obtaine@80 657 nodes connected by 1338100 lip8S]. Measure-
C(k), shown in Fig. &), does not follow as closely the ments indicate that the network is scale-fr[&,_36_| with
scaling law(1) as observed in the previous two examples,d€dree exponeny=2.23. Yet, theC(k) curve [Fig. 4a],

; : ; : apart from some fluctuations, is largely independenk,ah
there is a clear evidence tha(k) decreages rapidly witk &trong contrast with th€(k) observed for the Internet’s do-

. . main level topology{Fig. 3(d)], and in agreement with the
ISor\r/]vae"r leilt-:‘:rinw;r;oaef:‘ﬁ:\?lerl]?rger nodes, which have a muc}}gsults of'VPSV[33,34], who also note the absence of a
. ) hierarchy in router level maps.

_ Indeed, the Web is full of groups of documents that all " p, et Grid. The nodes of the power grid are generators,
link to each other. For example, www.nd.edetworks, our  yansformers, and substations and the links are high voltage
network research dedicated site, has a high clustering coeffiransmission lines. The network studied by us represents the
C|ent,.as'the documents it links to havelllnks to_ each othermap of the Western United States, and has 4 941 nodes and
The site is one of the several network-oriented sites, some of3 188 links[11]. The results again indicate that apart from
which point to each other. Therefore, the network researciuctuations,C(k) is independent ok.
community still forms a relatively cohesive group, albeitless |t is quite remarkable that these two networks share a
interconnected than the www.nd.edunletworks site, thus common feature: a geographic organization. The routers of
having a smalleC. This network community is nested into the Internet and the nodes of the power grid have a well
the much larger community of documents devoted to statisdefined spatial location, and the link between them represent
tical mechanics that has an even smaller clustering coeffiphysical links. In contrast, for the examples discussed in Fig.
cient. Therefore, th& dependen€(k) reflects the hierarchi- 3, the physical location of the nodes was either undefined or
cal nesting of the different interest groups present on thdrelevant, and the length of the link was not of major impor-
Web. Note thaC(k)~k~* for the WWW was observed and tance. For the router level Internet and the power grid, the
briefly noted in Ref[30]. fL_thht_ar are the two nodes from each othgr, the more expen-

Internet at the AS levellhe Internet is often studied at SIVe it is to connect therfi36]. Therefore, in both systems,

two different levels of resolution. At the router level, we the links are driven by cost considerations, generating a dis-

have a network of routers connected by various physicaﬁance driven structure, apparently excluding the emergence

communication links. At the interdomain or autonomous sys-Of a hierarchical topology. In contrast, the domain level In-

tem (AS) level, each administrative domain, composed ofte_lfgﬁ_t (Ijsol!s;isndISStg?]CtT]gC;/ﬁ(;éajn?:;é?a?[;nsalns, such as the
potentially hundreds of routers, is represented by a singl@‘ n summar, \F/)ve offered evidence that for.four large net-
node. Two domains are connected if there is at least one Y 9

- - 71 -
router that connects them. Both the router and the domai orksC(k) is well apprOX|matgd by(k)~k "%, in contrast
level topology have been found to be scale-fi@#. As Fig. o the k independentC(k) predicted by both the scale-free

3(d) shows, we find that at the domain level, the Intemetand random networks. In addition, there is evidence for simi-

- : : lar scaling in the metabolisrfi37] and protein interaction
consisting of 65520 nodes and 24 412 lifBg], has a hier- e
archical topology a€ (k) is well approximated with Eq(1). networks[38]. This indicates that these networks have an

The scaling of the clustering coefficient wikihfor the Inter- inheren;ly hierarchicall organization. In ComraSt’ h‘efaTChy s
net was earlier noted by Vazquez, Pastor-Satorras, arﬁ’s’?m_ in _networl;]s ‘;Y'tl? lstronhg geogrlaph|cal cqnstrﬁmts, as
Vespignani (VPSV) [33,34, who observedC(k)~k 075 e limitation on the link length strongly constraints the net-

VPSYV interpreted this finding, together with the observationWork topology.

that the average nearest-neighbor connectivity also follows a ~, STOCHASTIC MODEL AND UNIVERSALITY

power law with the node’s degree, as a natural consequence

of the stubandtransit domains that partition the network in The hierarchical model described in Fig. 1 prediCi(k)

a hierarchical fashion into international connections, nationakk !, which offers a rather good fit to three of the four
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C(k) curves shown in Fig. 3. The question is, is this scalingnetwork changes at each iteration, for g1, the average

law (1) universal, valid for all hierarchical networks, or degree of the infinitely large network is finite. Indeed, the

could different scaling exponents characterize the scaling odiverage degree follows:

C(k)? Defining the hierarchical exponeftas

3 1— pn+1
—) (€)

8
kn=—(—+
C(k)~k#, ) (k) 52 1-p

which is finite for anyp<1.

where B=1 is a universal exponent, or can it's value be Interestingly, the scaling aE(k) is not a unique property
changed together witly? In the following, we demonstrate of the model discussed above. A version of the model, where
that the hierarchical exponert can be tuned as we tune we keep the fraction of selected nodpsconstant from it-
some of the network parameters. For this, we propose a steration to iteration, also generatesiependens and y ex-
chastic version of the model described in Fig. 1. ponents. Furthermore, recently, several results indicate that

We start again with a small core of five nodes all con-the scaling ofC(k) is an intrinsic feature of several existing
nected to each oth¢Fig. 1(a)] and in step oner(=1), we  growing network models. Indeed, aiming to explain the po-
make four copies of the five-node module. Next, we ran-tential origin of the scaling it€ (k) observed for the Internet,
domly pick ap fraction of the newly added nodes and con-VSPV note that the fitness modg89,4Q displays aC(k)
nect each of them independently to the nodes belonging tthat appears to scale witk While there is no analytical
the central module. We use preferential attachm&dfl3 to  evidence forC(k)~k™# yet, numerical result§33,34 sug-
decide, to which central node the selected nodes link to. Thajest that the presence of fitness does generate a hierarchical
is, we assume that the probability that a selected node withetwork architecture. In contrast, in a recent model proposed
connect to a nodeof the central module i&; /2 k;, where by Klemm and Eguiluz, there is analytical evidence that the
ki is the degree of nodieand the sum goes over all nodes of network obeys the scaling lal) [41]. In their model, in
the central module. In the second step=2), we again each time step, a new node joins the network, connecting to
create four identical copies of the 25-node structure obtainegll active nodes in the system. At the same time, an active
thus far, but we connect only p? fraction of the newly node is deactivated with probabilig~k ™. The insights
added nodes to the central module. Subsequently, in eadfffered by the hierarchical model can help understand the
iteration n, the central module of size"Ss replicated four  origin of the observed (k) ~k 1. By deactivating the less
times, and in each new modulepa fraction will connectto  connected nodes, a central core emerges to which all subse-
the current central module, requiring the addition op}5  quent nodes tend to link to. New nodes have a l&@gand
new links. small k, thus they are rapidly deactivated, freezing into a

As Fig. 5 shows, changing alters the slope of botR(k) largeC state. The older, more connected, surviving nodes are
andC(k) on a log-log plot. In general, we find that increas- in contact with a large number of nodes that have already
ing p decreases the exponentand g [Figs. b), 5(d)]. The  disappeared from the active list, and they have si@4#2].
exponentB=1 is recovered fop=1, i.e., when all nodes of Finally, SzabgAlava, and Kertsz have developed a rate
a module gain a link. While the number of links added to theequation method to systematically calcul&ék) for evolv-
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ing network modelg43]. Applying the method to a model tity, the C(k) curve, offering us a relatively straightforward
proposed by Holme and Kirf¥4] to enhance the degree of method to identify the presence of hierarchy in real net-
clustering coefficientC seen in the scale-free modgl2], works. The lam(1) indicates that the number and the size of
they have shown that the scaling 6fk) depends on the the groups of different cohesiveness is not random, but fol-
parametem, which governs the rate, at which new nodeslow rather strict scaling laws.

connect to the neighbors of selected nodes, bypassing pref- The presence of such a hierarchical architecture reinter-
erential attachment. As fgg=0, the Holme-Kim model re- prets the role of the hubs in complex networks. Hubs, the
duces to the scale-free model, Szahkava, and Kertsz find  highly connected nodes at the tail of the power law degree
that in this limit, the scaling o€(k) vanishes. These models distribution, are known to play a key role in keeping com-
indicate that several microscopic mechanisms could generatgex networks together, playing a crucial role from the ro-
a hierarchical topology, just as several models are able tbustness of the networld8,49 to the spread of viruses in

create a scale-free netwoyk,2]. scale-free networkis0]. Our measurements indicate that the
clustering coefficient characterizing the hubs decreases lin-
V. DISCUSSION AND OUTLOOK early with the degree. This implies that while the small nodes

are part of highly cohesive, densely interlinked clusters, the

The |dent|f|ed hierarchical arChiteCtUre OfferS a diﬁerenthubs are not’ as their neighbors have a small chance of link-
perspective on the topology of complex networks. Indeeding to each other. Therefore, the hubs play the important role
the fact that many large networks are scale-free is now welhf pridging the many small communities of clusters into a
established. It is also clear that most networks have a modtg'ngha, integrated network.
lar topology, quantified by the high clustering coefficient |5 many ways, our study offers only a starting point for
they display. Such modules have been proposed to be a fugnderstanding the interplay between the scale-free, hierarchi-
damental feature of biological systeni87,45, but have ca| and modular nature of real networks. While 1Bk
been discussed in the context of the WWWB,46, and  cyrves offer a tool to unearth the presence of a hierarchy, it is
social networks as well17,47. The hierarchical topology ynclear that what are the minimal ingredients at the model
offers a different avenue for bringing under a single roofjeyel for such a hierarchy to emerge. Finally, the role of the
these two concepts, giving a precise and quantitative mearyeometrical factor, which appears to remove the hierarchy,

ing for the network’s modularity. It indicates that we should needs to be elucidated. Further modeling and empirical stud-
not think of modularity as the coexistence of relatively inde-jes should allow us to address these questions.

pendent groups of nodes. Instead, we have many small clus-
ters that are densely interconnected. These combine to form
larger, but less cohesive groups, which combine again to
form even larger and even less interconnected clusters. This
self-similar nesting of different groups or modules into each We benefited from useful discussions with J. KerteZ.
other forces a strict fine structure on real networks. N. Oltvai, and T. Vicsek. We wish to thank S. H. Yook and H.

Most interesting is, however, the fact that the hierarchicalleong for providing us the language database. This research
nature of these networks is well captured by a simple quanwas supported by NSF, DOE, and NIH.
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