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Scaling properties in the packing of crumpled wires
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Statistical properties of configurations of a metallic wire injected into a transparent planar two-dimensional
cavity for three different injection geometries are investigated with the aid of high-resolution digital imaging
techniques. The observed patterns of folds are studied as a function of the packing fraction of the wire within
the cavity. In particular, we have examined the dependence of the mass of wire within a circle oR;aakus
well as the dependence of the number of contacts wire-wire with the packing fraction. The distribution function
n(s) of connected loops with internal aredormed as a consequence of the folded structure of the wire, and
the average coordination number for these loops are also examined. Several scaling laws connecting variables
of physical interest are obtained and discussed and a relation of this problem with disordered two-dimensional
foam and random packing of disks is examined.
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[. INTRODUCTION ture. The geometrical, statistical, and physical aspects of
crumpled wires in 3D space were examined ten years ago

Dense disordered packing of identical spheres is of basifom the point of view of experimental work and analogic
importance to many branches of industry and science, angimulations, and in particular some robust scaling laws and
theoretical, experimental, and technological investigations ofractal dimensions associated with these disordered systems
this problem have traditionally attracted much attention oveivere observed19]. The geometric aspects observed in the
the centurie§1]. Packing of rigid spheres is important in the Packing of crumpled wires may be relevant to biological
microscopic theory of fluids, glasses, and crystalsas well ~ applications, as for example, in the study of DNA compac-
as in determining the macroscopic granular structure of powtion in the chromosomes, as well as in the study of super-
ders and other porous materials. This type of packing is curcoiled DNA structures in the processes of replication and
rently studied in physics and mathematics from the point of€combinatior{20,21]. _
view of computer simulationg3], simple and innovative ex- N the present paper, we report the results of an extensive
periments4], and sophisticated theoretical to¢&. Three- ~ experimental analysis of the packing of 2D crumpled struc-
dimensional(3D) packings of nonspherical objects, such astures obtained by irreversible squeezing of macroscopic
ensembles of spheroid$], rods[7], cuboids[8], crumpled pieces of copper wires within @vo-dimensionatransparent
wires and crumpled surfacd8], among others, have also cavity. Irreversibility here means that if thg constraints due to
been studied with many types of algorithms. Higher-the cavity are.remo.ved, the _crumpled wire dpes not restore
dimensional versions of dense packings of spheres are @fe initial configuration. In this work we use high-resolution
current interest in dual theory and superstring theory, as wefligital images to study quantitatively some important aspects
as in problems arising in digital communicatiof. of the statistical physics of the packing structure of 2D

Two-dimensional packing of hard discs has been comecrumpled wires. These structures ammarkably different
paratively much less studied, despite its intrinsic theoreticaffom crumpling processes of sheets in 3D. Some of our con-
interest and its importance in the structure of monomoleculag!usions(mostly related to a single injection geomethave
films [2] and its connection with several different packing been summarized elsewhe22]. Here we give a more de-
problems in geometry10]. A number of other 2D packing tailed exposition, and present some results. In particular, a
problems involving random mixtures of disgsl], squares Ccomparison is made between the packing process of
[12], and regular polygonkl3] have also been discussed in crumpled wires and the classical problems of the random
the literature. packing of disks and disordered 2D foam.

On the other hand, in Spite of the great scientific and The outline of the article is as follows. In Sec. Il we
technological importance of phenomena associated wit§escribe the experimental details of the problem, and in Sec.
crumpled structures of microscopic and macroscopic materill We present our experimental results and a discussion of
als, our understanding of the geometric and physical behayur main findings. Section IV is devoted to a discussion con-
ior of these systems is still limited. In the last years, theoretcerning some similarities observed in the geometric and me-
ical and experimental aspects of the condensed mattéhanical properties of crumpled wires, packing of disks, and
physics of crumpled sheets have been a subject of growingisordered 2D foam. In Sec. V we summarize our major
interest in many areas of study, e.g., acoustic emigsidh ~ conclusions.
continuous mechanicgl5], growth models[16], packing
problem_s [9], polymer, membrane, and interface physics Il EXPERIMENTAL DETAILS
[17], universality[18], among others. Crumpled structures
with different topologies, as exemplified by a squeezed ball The experimental apparatus used in our work to register
of wire, have been much less studied in the physics litera2D configurations of crumpled wires is shown in Fig. 1. It
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180 injection channels 2R,. Second, as more wire is injected, there is a critical
lengthL=h,; when the wire touches itself forming the first
loop. If we define the ratiap=h,/27R, we then obtainy
=0.68+0.01; 0.90-0.01; and 1.130.02, for #=180°,
90°, and 10°, respectively. These numerical estimates;for
screws come from averages on 20 experiments whose intent was to
determine the critical length;. An additional indicator of
the statistical fluctuations o, is given by the minimum
——————————— (maximum values obtained along the 20 measurements of
: ; this quantity: 7min (7may assume, respectively, the values
0.67 (070, for §=180°, 0.89(0.90, for 6=90°, and 1.1

> (1.19, for #=10°. Alternately, the first-contact problem in-
S troduced in this paragraph can be specified by giving the
4 corresponding packing-fractiomdefined as

10° inj ection channels
p= (projected area of the crumpled wire/area of the cavity

={LI7R3. (1)

90° inj ection channels

FIG. 1. Diagram of the 2D injection cell used in the experiments

discussed in this paper. See Sec. Il for details. For the first contact,pﬂpfczghlle% 27¢IRy=0.014
+0.001, 0.0180.001, and 0.02830.001, for injection at
consists of a transparent cell formed by the superposition 0t80°, 90°, and 10°, respectively.
two disks of Plexiglass with a total height of 1.8 cm, an  For increasing (or L), the wire begins to crumple pro-
external radius of 15 cm and a circular cavity with radiusgressively into a highly contorted shape as we will show
Rp,=10 cm and 0.11 cm of height, which can accommodatenext. In order, for the reader, to develop some insight about
configurations of ainglelayer of crumpled wire. The cavity the nature of the crumpling process that is considered here,
of the cell was polished and the copper wire used in theve show in Fig. 2 typical 2D configurations for some differ-
experiments#19AWG) had a diametez=0.10 cm and a ent values of the packing fractign[lengthL (cm)] = 0.016
varnished surface, in order to reduce the friction. Cavity and50] [(a), (e), (i)]; 0.048[150] [(b), (f), (j)]; 0.095[300] [(c),
wire operated in dry regime, free of any lubricant. Four ra-(9), (K)]; and pyad )[Lmax 6)(cm)]=0.150 [470], for 6
dial channels were made to provide three different ways of= 180° (d); 0.125[394], for §=90° (h); and 0.13(409], for
injection of wire into the cell at the angles=10°, 90°, and 6=10° (I). Figures 2a), 2(e), and Zi) indicate the early
180°, as suggested in Fig. 1. The photographs were takestages of the crumpling process as we inject the wire into the
with an Olympus C-3040ZOOM digital camera with resolu- 2D cavity. Irrespective of the geometry, the experiments be-
tion of 2048x 1536 pixels, which was assembled 30 cm overgin fitting a straight wire in the corresponding channels as-
the cell. To avoid picture artifacts by light reflections a cy- sociated with a particular geometry and subsequently push-
lindrical paper screen was placed around the cell as well aigig manually and uniformly the wire on both sides of the cell
lighting was carefully controlled. Afterwards the digital im- toward the interior of the cavity. The patterns of crumpled
ages were transferred to a personal computer where imagegdre observed within the cavity are basically due to the for-
were digitally processed. This stage, in general, consists ghation of a cascade of loops of decreasing size. During the
five steps. In step 1, lighting corrections are performed. Thigrogressive injection of wire into the cavity, the cascade of
is quite worth because the light reflections on the varnishetbops evolves in such a way that it is common to observe
surface of the wire become the boundary wire image somdocalized or large(globa) rearrangements of the loops pre-
what undefined. In step 2, the circular area corresponding teiously formed, particularly for the cas@=180°. For ¢
the cavity is removed. In step 3, the length of the wire is=10° and 90°, the global rearrangements are much more
computed by counting imaging pixels and the result is com+are. The reader can also observe that the sharp creases and
pared to the length of wire, previously measured. We haveidges found in crumpling of sheets are absent in the 2D
accepted a image as valid data when the percent relativgumpled wires shown in Fig. 2. Figuresi2-2(I) show a
error is less than or equal to 3%. In step 4, we have contypical sequence of injection at 10°. The sequence starts
verted the original RGB image standard into binary imageforming a circlelike configuration that collapses into a
The cavity background and wire become white and blackdouble wire structure that contains loops. This new structure
respectively. In step 5, all subsequent specific processing tevolves almost as if it were one single cascade of loops, until
compute mass-size relation, box counting for 2D, number ofhe size of loops approach the distance between injection
loops, perimeter of loops, etc., are implemented. At thispoints in the cell, which is=1.7 cm. At this point, the pat-
point, it is interesting to discuss briefly some basic and qualitern splits up onto two small cascades. The dynamics of
tative aspects of the 2D crumpled structures studied in thisrumpling for 90° injection shown in Fig.(B) is quite simi-
paper. First, when a thin flexible wire of lengthis injected lar to that shown in Fig. @) in the sense that two isolated
inside a cavity of the type shown in Fig. 1, the wire bends ifcascades of small loops are localized near the injection
its length is slightly larger than the diameter of the cavity, points. The initial injection velocity of wire at each channel
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FIG. 2. Typical 2D configurations of crumpled wire for some different values of the packing frazfitemgth L (cm)] = 0.016[50]
[(@),(e),()]; 0.048[150] [(b),(F),()]; 0.095[300] [(c),(9),(K)]; and Pmax ¢l Lmaxs (cM)] = 0.150[470], for #=180° (d); 0.125[394], for ¢
=90° (h); and 0.137409], for #=10° (I). See Sec. Il and Il for details.

in the experiments was of the order of 1 cntsHowever, eral oil. The results in this case perfectly agree with the
the observed phenomena are widely independent of the irfiry-regime onespy,,=0.14=0.02, irrespective of geom-
jection speed for all interval of injection velocity compatible etry. We can observe from Fig. 2 that the differences in the
with a manual process. When the length of wire within thegeometric patterns of crumpled wires for different injection
cavity increases{=0.10), the difficulty of injecting more angles are more evident far<0.05 (L=150 cm). Wherp

wire rises, with a corresponding reduction in the velocity ofincreases, these differences attenuate, although the particular
injection. Forp nearpnay, the difficulty in the injection rises  Symmetry signatures associated to the three geometries of
abruptly and the crumpled structures finally become rigidinjection studied remain evident. It is important to notice,
the crumpled wire becomes completely jammed within thehowever, that the critical exponents obtained in the following
cavity and it is practically impossible to continue with the sections arendependent(within typical statistical fluctua-
injection of wire forp>pmax. Thus, the mechanical behav- tions of 5-10%) on the particular type of injection symme-
ior of the samples is quite different whether we are near ofry considered. A detailed quantitative study of the configu-
well below py,ax. The particular moment when the injection rations of 2D crumpled wires is made in the following
velocity goes rapidly to zero leads totight-packing (TP) section.

configuration for the crumpled wire, as shown in Fig&d)2

2(h), and 2l). Experimental estimates of the maximuaa-

erage(over seven equivalent experiments for each geometry [ll. RESULTS AND DISCUSSION

of injection) packing fraction for the three different geom-
etries studied give;,,=0.14+0.01, 0.11-0.02, and 0.14
+0.02, for 180°, 90°, and 10°, respectively. Our overall One of the most basic physical properties when dealing
estimate points t@,,,,=0.14+ 0.02, irrespective of the ge- with growth models, polymer configurations, and fractal
ometry of injection. To rule out any possibility of the TP structures presenting some degree of statistical isotropy is
configurations being a consequence of friction effects, wéhe dependenc# (R) of the mass of the system within a
carried out experiments where the cavity was filled with min-circle of radiusR. This quantity is shown in the log-log plots

A. Mass-size relation
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FIG. 3. Mass-size dependence for seven equivalent configurations of crumpled wires in the TP lijatefaige p [L(cm)]=0.139
[438], 0.116[363], and 0.135423]; respectively ford=180° (a), 90° (b), and 10°(c). The averaged mass in the scaling regidelimited
by dotted lines in the figujebehaves adl (R)~RP, with D=1.9+0.2, for #=180°, andD=1.8+0.2, for §=90°, and 10°. See Sec. Il A
for details.

of Figs. 3a)—3(c) in arbitrary units, for TP configurations of n(s)~s 1%%!js expected. In fact, this scaling distribution
2D crumpled wires associated with 7 equivalent samples$or n(s) is not significantly different from the experimental
with averagemaximum packing fractior{length given by  resultn(s)~s™ *%2reported in Ref[22], and discussed in
p[L(cm)]=0.139438], 0.116[363], and 0.135[423]; re-  Sec. Il E. Before concluding this section, some additional
spectively, ford=180°, 90°, and 10°. In the plots of Fig. 3 information on the method used to obtdih(R) in Fig. 3 is

we can observe that the magsr projected argaof the in order. The measurementbfas a function oR was made
crumpled structures display a tendency to scale as a powét two steps: for 4 crtR<10 cm, M(R) was measured
law in R over two decades, fronR=0.1 cm to R=Ry  within a single circle with origin at the geometrical center of
=10 cm. From these figures, we obtaih(R)~RP, with  the cell; and for 0.1 crt R<4.0 cm,M(R) was taken as the
D(#=180°)=1.9+0.2, andD(#=90°)=D(6=10°)=1.8 average mass within 5 or 6 equivalent disjoint circles whose
+0.2, within the scaling interval delimited by the dotted centers were localized in different points of the wire taken at

lines in Fig. 3. Our overall estimate is random but subject to the further constraint of nonoverlap
5 with the border of the cell. This procedure is important to
M~R", D=1.9+0.2, (20 counterbalance an expected distortion leading to a depletion

of the mass near the center of the cell if a single circle is
used. The effect due to one-center sampling is illustrated in
Fig. 4, which shows the same type of plot as that in Fig),3
but with M (R) measured only in circles whose centers coin-
cide with the center of the cell. In order to give a better
account of the mass-size dependence in these packing pro-
cesses, we exhibit in Fig. 5 the mass-size relation for wires
fith p[L(cm)]=0.0477150], for all types of injection stud-
ied. In these cases we obtain sensibly different effective ex-
ponents, namely, D(6=180°)=1.35+0.10, and D(#
=90°)=D(6=10°)=1.45+-0.10. A possible guess regard-
ing the nature of the configurations of crumpled wires in our
experiments includes an analogy with the conformations of
self-avoiding random walks or linear polymef23]. Self-

in the TP limit for all injection geometry. Of course, the true
mass-size exponent for the TP configurations in(gcould
be the Euclidean exponeBtz=2.

The exponenD in Eq. (2) can be related to the distribu-
tion functionsn(s) or n(l), giving the respective number of
loops of internal area or perimeterl, and to the energ{e
needed to form a loop of a certain size. To see this, first not
that the work needed to form a TP configuration with a
length L of wire injected into the cavity is simplyV
=FcXL, whereFg,, is the available(constant average
external force to perform the packing process. The watk
can also be calculated as

Imax Smax
szlmm n(I)E(I)dI=L n(s)E(s)ds,

min

wheren(l)dl=n(s)ds. If we use the simple scaling hypoth- 10'F

eses for the TP limits~12 (to be confirmed in Sec. Il o

n(s)~s~ " (such a power law is in conformity with the cas- @10

cade of loops mentioned in Sec. II; see also Sec.)|lEBd = L

E(s) ~s% a>0; with s,,;, dependent on the length scdle :

and sy~ R?, we obtain 102

W~M~RP, D=2(1+a— 7). ) b1 R b 10

From Egs.(3) and(2) we conclude thatr= 7 within typical FIG. 4. The same mass-size relation for the crumpled wires as in

statistical fluctuations of 10% iD. If we adopt a simple Fig. 3@ (TP limit, §=180°), but using only circles with origin at

elastic energy quadratic in the linear size, i.e., WBR1?  the center of the cell: the quality of the scaling relation reduces. See
~s% a=1, a distribution function for loops decaying as Sec. Il A for details.
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FIG. 5. Mass-size relation for wires wigh[ L(cm)]=0.0477150],
different effective exponent@s compared with those of Fig): D=
and 10°(c). These values are reminiscent of the Flory exponent 4
details.

R (tm)

10

for all types of injection studied. In these cases we obtain sensibly
1.35+0.10, for#=180° (a), andD¢¢;=1.45+0.10, for6=90° (b)

/3 for self-avoiding random walks in two dimensions. See Sec. IIl A for

avoiding random walks properly weights the conformationsquence of wire-wire contacts also grows. The experimental

available to a real linear chain polymé4]. Crumpled wires

dependence af, with p (averaged on seven equivalent ex-

and real polymers are expected to be similar in some sengegeriments (M) and the corresponding fluctuations are

because both systems refer to unbranched flexible chains

shown in Fig. 7. The log-log plot afi(p) shows two differ-

matter submitted to elastic and excluded-volume interationstnt behaviors: a shoulder I%ﬂﬁg.OSZ and a power-law
The Flory analysis for this type of polymer predicts a massasymptotic dependencg ~p~>~"< for 0.032<p=0.140.

size exponend = 4/3 in two dimension§23]. This last value

is in close agreement with the numerical resultdgf; re-
ported in Fig. 5, which is for crumpled wires associated with
packing fractions greater tham. (1.4% to 2.3%) and less
than ppmay (13% to 15%).

B. Box counting for 2D crumpled wires

The geometric properties of the crumpled wires were ad
ditionally studied with the box-counting methd@5] by
counting the numbeN(e) of squares of size& needed to

cover the crumpled structures. We exemplify in Fig. 6 the

corresponding log-log plot of theaverageflN(e) versuse
associated with the structures studied in Fi@) Xhat is, for
the TP limit, and#=180°. The plot in Fig. 6 shows that

N(e) scales ag P', whereD’ is the fractal dimension of

the 2D crumpled wire. The exponebt’ has the values 1.8
+0.2; i.e.,,D’' is the same as the mass-size exponent
within the statistical fluctuations. The mass-size expoient
is equal to the exponem’ obtained from the box counting
(within statistical fluctuations of 10%also for the geom-

etries with#=90° and 10°.

C. Number of loops

As the packing fraction of the wire injected into the cavity
increases, the total number of loopsformed as a conse-

The rate of loop formation presents the largest value in the
beginning of the first region, when the incipient CW behaves
as a soft structure. The number of loopgis needed to
calculate the average coordination number in the following
section.

D. Number of contacts wire-wire and number of coordination

_ Two important statistical quantities are the number of
wire-wire contactsn,,, as a function ofp, as well as the

3

10

10°

0
r4
10

1

05 1 10 30

€ (cm)
FIG. 6. Log-log plot of the(average numberN(e) of boxes of

size e needed to cover each one of the seven equivalent configura-

tions of 2D crumpled wire associated to Figl@B (TP limit, 6

=180°) as a function o€. The scaling expone®’'=1.8+0.2 in

N(e)~e P agrees with the mass-size exponBrof Fig. 3(a). See

Sec. |l B for details.

026110-5



C. C. DONATO, M. A. F. GOMES, AND R. E. de SOUZA PHYSICAL REVIEW &7, 026110(2003
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0.01 0.02 P 0.1
FIG. 7. The dependence of the number of loapswith the
packing fractiomp, averaged on seven equivalent experimel3,(
and the corresponding fluctuations.
) ) _ _0'01"1 ' ' '2'""1|0 20
averaged number of different loops which are in contact with s (cm")
a single loop or, simply, the average coordination numjger
both are particular cases of the kissing number profgn FIG. 9. Distribution functiomn(s) for loops with areas in the

In Fig. 8 we exhibitn,,,, as a function op; n,,, is greater TP limit. The straight line represents the adjns) ~s~**%2 See
than the number of contacts loop-loop presented in Ref. Sec. Il E for details.

[22], because now we need to addnip the number of con- o _ _ _ _
tacts to form all the loops=[1 contact per loop<[n,  contact coordination found in many 2D packing of discs with
loopg=n, contacts and the number of contacts of a loop Size distribution studied by Bideau and Troacﬂﬂaﬂ:]. More-
with a nonloop. As shown in Fig. 8, scales as,,,  °Ver the valuey~1.5 for crumpled_ wire in the T_P limit is
~p202:01 glong one decade, with small statistical fluctua-Very close to thg number of coordination found in some 2_D
tions. This experimental result is reminiscent of Flory’s meandisordered packings, namely, the face-to-face coordination
field argument, which suggests thag,, should scale with number for regular polygons of 9 facesg{=1.34), and the
the density of repulsive energy within a particular configura-vertex-to-face coordination number for packing of regular
tion of crumpled wire, that is witp? [23]. The average triangles (/3;=1.73)[13].

coordination or kissing numbey=n, /n;, is an important

statistical parameter in disordered packings: in our experi- E. Distribution function for areas of loops

ment, y increases asymptotically ag~p%’~%2 This last
exponent must be considered with a grain of salt because it '§‘t
Qeducgd using the short interval 0.64p=0.140, 'as'shown number of loops varying in the interval, =22 to nj=45,
in the inset of Fig. 8. It can be noticed from this inset thatWi,[h an average(n))~35.5. In all we had 249 loops for

y=~1.5 at the TP limit; this value is less than half the meang, o equivalent experiments of crumpled wires with the
largest packing fractions. If these loops are divided in bins
100¢ T ——— 3 according their respective aregswe obtain the distribution
' T ] functionn(s) which is shown in Fig. 9. The linear fit in this
figure gives an asymptotic power-law behavior over about a
decade:n(s)~s 7, with 7=1.4+0.2. The expected value
for the exponentis 7= (D +d—1)/d=1.45+0.10, in good
agreement with the experimental dd2]. A cascade of
loops satisfying a scaling distribution of sizes seems to opti-
mize the occupation of space by a flexible wire. For many-
loop structures distant from the TP limit, the total number of
loops is smaller, and(s) does not scale as a power law.

We observe that the TP limit in our experiment is associ-
ed with 2D configurations of crumpled wires with a total

ww

10}

F. Perimeter-area relation for loops

i For 2D Euclidean figures of any shape we know that the

! . R ] relation between perimetét and area delimited by the pe-

0.01 0.02 0.1 02  rimeter,s, obeys the scalin® =k s*?, with k dependent on
the particular shape of the figure. In order to quantify the

P

FIG. 8. The average total number of contacts wire-wigg, ~ 9€0metry of the loops in our experiment, we evaluate both
scales asi,,,,~p2®% along one decade. The inset shows the av-Perimeter and area for each loop within the range 20
erage coordination or kissing numbgrwhich increases asymptoti- < S(MnF) <2000 in seven equivalent experiments in the TP
cally asy~p®™%2 in the interval 0.045 p=<0.140. See Sec. Il D limit. This interval ofs assures the 2D character of the pack-
for details. ing: the smallest loops in this interval have a typical length
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Rigid state
200+

(C) v e o e o en = =
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[=]

T

(@) _. Rigid state

Perimeter (mm)

i i -
0 013002 08atoot 1D

| .‘.' FIG. 11. Schematic representation of the soft and rigid domains
[ | | . observed in the three classes of disordered 2D structures discussed
25— 00 — —7000 2000 in Sec. IV: (a) crumpled wire p>0.14+0.02 is inaccessibje (b)
Area (mm’) soap foam, andc) packing of disks p>0.84+0.01 is inacces-
sible).

FIG. 10. Perimeter R)-area(s) relation for loops in the TP

limit. The continuous line in this figure represents the best ﬁtComputer simulation shows that 2D disordered soap foam
P(mmo)=(5.812.1)50-4%0-07 along two decades ins, for ¢  yndergoes a transitiorigid — soft when the condensed-
=180°. See Sec. Il F for details. phaseliquid) reaches a packing fractign.,= 0.16 from be-

considerably larger than the height of the cavity. The depenl®W Or, équivalently, when the packing fraction of the less-
dence between these two variables is exhibited in the Iog-|o§00densed-phas{a|r) reaches the value-10.16=0.84 from

plot of Fig. 10 along two decades of variability i Figure ~ above[27]. If p>0.16, the shear modulus of the foam goes
10 indicates that the shape of the loops is a statistically inf0 Zero, because the Plateau borders formed by liquid perco-
variant property of the loops at least in the two-decade interlate and the system is now formed by isolateirculan

val of area considered. The continuous line in this figur?ubbles. Boltom and Weaif@7] argued that this valup.,
represents the best fR=(5.8+2.1)s%4% 097 for g=180°, IS associated with the problem of random close packing of

whereP ands are given in mm and mfy respectively. Itis  disks in 2D. In fact, Bideau and Troadec have shown that
interesting to notice that the value=5.38 is significantly ~there is a wide range of random mixtures of hard disks,

greater thank=2mY2=354 ... for circles, and signifi- the condensed phase in the packing of digks which the
cantly greater than the largest value observed for reguldp@cking fraction is 0.840.01, independently of the relative
polygons: k=2x334=4.58 . . ., for equilateral triangles. concentration and size of the disk§l]. In 2D foam, the
For #=90° and 10° we obtain' respectively,=5.14%5 limit p.,=0.16 for the condensed phase is complementary to
and P = 4.9350-50 ' ' 0.84 obtained for disks. We conjecture that 2D crumpled

wires undergo forany mode of injection of the wire in the
cavity, i.e., not only for the three modes of injection studied
in this work, a transitionsoft — rigid when the packing
fraction p associated with the wire approachgg,,=0.14

As we have commented in the end of Sec. Il, the me-+0.02. This concentration is equal [, for foams within
chanical behavior of the samples of crumpled wires is quitdhe statistical fluctuations, and complementary to 0.84
different near and well below the maximum packing fraction+=0.01 for random mixtures of hard disks. Thuspi0.14
Pmax- FOr p<pmax, the structures of wire examined in this =0.02, we can always introduce wire in the cell without
work are soft, and it is relatively easy to introduce wire into much difficulty, but as long as the solid fractiprapproaches
the cavity; forp=<pmax, the rigidity increases rapidly and the critical limit 0.14-0.02, the crumpled wire rapidly
the difficulty to insert more wire increases in the same wayreaches a jamme(igid) state. Our experiments suggest that
Based on our experimental results, we estimate thatpfor this critical limit is robust, and validfrespectiveof the mode
=Pmax=0.14+0.02, for any of the three modes of injection of injection of wire, and the state of lubrication or dryness of
examined, the crumpled structure is so rigid, that the wirghe cavity. Forp>p.x, further injection of wire is impos-
becomes completely jammed within the cavity, being nearlysible for all practical purposes. The conjectured relationship
impossible to continue its injection. among 2D crumpled wire, 2D disordered soap foam, and 2D

The crumpled wires we are dealing with and disorderedandom packing of disks is summarized in Fig. 1i}:Ran-
2D foam have a formal similarity in the sense that both aredlom packing of disks with size distributiaftop horizontal
disordered 2D cellular structures composed of two differentine) can attain a maximum packing fraction of 0:88.01;
phases: a condensed-phasetal in the crumpled wire case, (ii) disordered soap foafntermediate lingcan be observed
and liquid in the foam cageand a less-condensed phasewith packing fraction of the liquid phas) in the entire
(basically air in both casgsIn crumpled wires the mass is interval O0<p=<1. However, foam undergoes a transition
concentrated on the wires, while in froth the mass of liquid isfrom a rigid phase to a soft phase, wheerosses the value
concentrated in Plateau borders and borders jund@@h 0.16 from below, and undergoes a transition from a soft

IV. CRUMPLED WIRE, DISORDERED FOAM,
AND PACKING OF DISKS
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phase to a rigid phase, when the same line is crossed in thHeaction. We conjecture that crumpled wires in 2D attain a
reverse direction. In particulap=0 means a perfectly dry rigid state, as observed for random packing of disks and
foam, whereap= 1 represents the uniform liquid stat@i) disordered 2D soap foaf27], when the packing density of
Crumpled wire can attaifobviously only from below, as wire approaches the value 0#£4.02, irrespective of the
hard disk$ a maximum packing fraction of 0.140.02, irre-  mode of injection and the state of lubrication of the cavity.
spective of the mode of injection and the state of lubricationThis surprisingly low packing fraction is complementary to
of the cavity. that observed in the 2D disordered packing of disks within
the statistical fluctuations.

V. SUMMARY AND CONCLUSION
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