
PHYSICAL REVIEW E 67, 026109 ~2003!
Self-similar factor approximants
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The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is
addressed by deriving an improved type of approximants. The derivation is based on the self-similar approxi-
mation theory, which presents the passage from one approximant to another as the motion realized by a
dynamical system with the property of group self-similarity. The derived approximants, because of their form,
are called self-similar factor approximants. These complement the obtained earlier self-similar exponential
approximants and self-similar root approximants. The specific feature of self-similar factor approximants is
that their control functions, providing convergence of the computational algorithm, are completely defined
from the accuracy-through-order conditions. These approximants contain the Pade´ approximants as a particular
case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced
by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class
of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this
exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy
surpasses significantly that of the most accurate Pade´ approximants. This is illustrated by a number of ex-
amples showing the generality and accuracy of the factor approximants even when conventional techniques
meet serious difficulties.
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I. INTRODUCTION

The problem of reconstructing functions from their pe
turbative asymptotic expansions in powers of a paramete
a variable is so frequently encountered in physics and
plied sciences that there is no necessity to explain its imp
tance. The best known methods for such a reconstruction
the Pade´ approximation and Borel summation, includin
their variants and combinations@1,2#. These techniques usu
ally require that a large number of terms of an asympto
expansion be available. The Borel summation demands
addition, that the high-order expansion coefficients be gi
and the analytic properties of the sought function on
complex plane be prescribed. However, the overwhelm
majority of realistic physical problems are too complicat
and perturbation theory is only able to derive a few fi
terms. And the luxury of knowing in advance the analy
properties of an unknown function, together with its hig
order expansion coefficients, as is required for the Bo
summation, is practically never available. Because of the
ter, Pade´ approximants are more often employed in applic
tions, although their usage also confronts several difficult
among which the most notorious are the appearance of
rious poles and the poor recovery of noninteger critical
ponents.

An alternative approach to the problem of reconstruct
functions has been developed, whose basic ideas are a
lows. First of all, to improve the convergence property o
perturbative sequence, it is necessary to introducecontrol
functionsdefined by an optimization procedure@3–5#. This
idea forms the foundation of theoptimized perturbation
1063-651X/2003/67~2!/026109~13!/$20.00 67 0261
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theory that is now widely employed for various application
@3–16#. The second pivotal idea is to consider the success
passage from one approximation to the next one as a
namical evolution on the manifold of approximants, which
formalized by the notion ofgroup self-similarity@17–22#.
And the third principal point is the introduction of contro
functions in the course of rearranging perturbati
asymptotic expansions by means ofalgebraic transforms
@23–27#. Because of their specific scaling properties typic
of fractals @28,29#, the algebraic transforms can also b
called fractal transforms@30#. By using this technique, two
types of approximants have been obtained,self-similar expo-
nentialsandself-similar roots@24–27#.

In the present paper, we suggest a different approxima
scheme resulting in what may be namedself-similar factor
approximants. These approximants possess an import
principal property distinguishing them from the self-simil
approximants mentioned above: the control parameters,
tering the self-similar factors, can be completely defin
from a given asymptotic expansion by the so-call
accuracy-through-order matching method. This is in contr
with the self-similar exponentials whose controls, design
to improve convergence, are defined from additional optim
zation conditions. This method of accuracy-through-orde
also different from the determination of the control para
eters of the self-similar roots which are determined
matching two asymptotic expansions valid in the neighb
hood of two different asymptotic points. Being based on
sole initial asymptotic expansion, the self-similar facto
have the advantage of simplicity, which makes their usa
quite interesting. Furthermore, these approximants allow
©2003 The American Physical Society09-1
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to reconstructexactlya wide class of functions. And whe
they do not yield exact answers, they provide very accu
approximations, essentially more accurate than given
Padéapproximants.

We first give in the following section the mathematic
foundation of the self-similar factor approximants. Sectio
III and IV are devoted to examples chosen for their illust
tive properties, the difficulties they pose to the more conv
tial Padétechnique, and their relevance to several phys
problems~polymers, state- and velocity-dependent solid fr
tion dynamics, critical phenomena in field theory, and Is
models!.

II. MATHEMATICAL FOUNDATION

A. Derivation of factor approximants

Assume that we are solving a complicated problem, a
ing at finding a real functionf (x) of a real variablex. Be-
cause of the complexity of the problem, the only thing w
are able to do is to invoke a kind of perturbation theory
obtaining approximate expressionsf k(x) of order k
50,1,2, . . . , valid in the asymptotic vicinity ofx50. Usu-
ally, the asymptotic approximantsf k(x) can be presented a
a power series ofx and written in the form

f k~x!5 f 0wk~x!, wk~x!5 (
n50

k

anxn, ~1!

wherewk(x) is a dimensionless function witha051. Writing
down the sought function as an asymptotic series

f ~x!. f 0(
n50

k

anxn1•••, ~2!

wherex→0, gives little consolation, since in real problemsx
is rarely asymptotically small, but is usually finite and m
even be very large. How could we reconstruct the funct
f (x) for finite values of x from the knowledge of its
asymptotic expansion only?

An answer to this question can be provided by the s
similar approximation theory@17–22#, with control param-
eters introduced by means of the fractal transform@23–
27,30#, defined as

Fk~x,s![xsf k~x!. ~3!

This leads to the self-similar exponential and self-simi
root approximants. Now, we shall follow a slightly differe
procedure, which is actually motivated by the very idea
group self-similarity underlying the construction of se
similar approximants.

For a more efficient use of group self-similarity, we pr
pose to present an initially given asymptotic expansion in
most symmetric way. To this end, we introduce thefactor
functions

wkp~x![11bkpx ~p51,2, . . . ,k>1!. ~4!
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Let us consider the finite series~1! as a polynomial over the
field of complex numbers. Then, by the fundamental theor
of algebra@31#, such a polynomial can be split in a uniqu
way into a product of the irreducible factors~4!, so that

wk~x!5 )
p51

k

wkp~x! ~k51,2, . . .!. ~5!

The representation~5! possesses the scaling property acco
ing to which if wkp→lwkp , thenwk→lkwk . Such a scaling
property is the simplest rudimental example of function
self-similarity. In this way, the sum~2! can be rewritten as a
product

f ~x!. f 0)
p51

k

@wkp~x!1•••#. ~6!

Now, instead of accomplishing the self-similar summati
for the whole right-hand side of Eq.~2!, we may perform it
for each factor in the product~6!. Thus, we define the fracta
transform

Fkp~x,s![xswkp~x!, ~7!

construct an approximate cascade whose trajectory is b
tive to the sequence$Fkp(x,s)%, embed the cascade into a
approximation flow, integrate the flow evolution equatio
and realize the inverse fractal transform. All this machine
with all details, has been expounded in previous papers@17–
27#, and we therefore do not repeat it here. As a result, e
factor ~4! can be shown to be renormalized into

wkp* ~x!5~11Akpx!nkp, ~8!

where Akp and nkp are control parameters, or simply con
trols. And ak-order approximation for the sought functio
f (x) is given by theself-similar factor approximant

f k* ~x!5 f 0)
p51

k

wkp* ~x!. ~9!

The controlsAkp and nkp are determined by expanding th
approximant~9! in powers ofx and comparing this expan
sion with the series~2!. For short, this can be called a ree
pansion procedure, which sometimes is also named
accuracy-through-order relationship. The equations defin
the amplitudesAkp and exponentsnkp can be cast in the form

(
p51

k

nkpAkp
n 5~21!n11nbn , ~10!

where

bn[
1

n!
lim
x→0

dn

dxn
lnS (

m50

`

amxmD . ~11!

As is easy to check, Eqs.~10! and~11! follow from equating
the asymptotic expansions for the logarithms of the fac
approximant~9! and of series~2!. For each givenk, there are
9-2
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SELF-SIMILAR FACTOR APPROXIMANTS PHYSICAL REVIEW E67, 026109 ~2003!
2k unknowns on the left-hand side of Eq.~10!. Hence, in the
series~2!, one should have 2k nontrivial terms, which makes
n51,2, . . . ,2k. The series of odd orders 2k11 can also be
processed, for which one needs to considerf (x)2 f 0, instead
of f (x). The factor approximants, based on even and
numbers of terms of a series with alternating signs, of
bracket the sought function from below and above. T
bracketing is analogous to that occurring for self-similar e
ponential approximants based on even or odd number
asymptotic terms@26,32#.

The control parameters may be complex valued, since
obtaining the factorized form~5!, the sum~1! was treated as
a polynomial over the field of complex numbers. But, sin
the considered function is real, all complex-valued fact
should arise in complex conjugate pairs, so that their prod
is always real.

B. Exactly reproducible class of functions

The structure of the self-similar factor approximants~9!
suggests that there exists a whole class of functions tha
exactly reproducible by means of these approximants. T
class is defined as follows. LetPn(x) be an irreducible poly-
nomial in a real variablex of degreen over the field of real
numbers and leta i and b j be complex numbers. Compos
the real-valued products of powers of such irreducible po
nomials as) i PMi

a i (x) and ) jQNj

b j (x), where( iM i5M and

( jNj5N. This implies that complex powers, if any, alway
come in complex conjugate pairs. Let these products hav
common divisors, such that the ratio

f MN
ab ~x![

)
i

PMi

a i ~x!

)
j

QNj

b j ~x!

~12!

is irreducible. Denote byR a class of functions, which is
composed of all products of the forms~12! that play the role
of the prime representatives for this class.

Theorem. A function f (x) can be exactly reproduced b
the self-similar factor approximants~9! if and only if this
function belongs to the classR, with the prime representa
tives ~12! being exactly reproducible byf k* (x) in all orders
k>M1N.

Proof. To prove the proposition for the whole classR, it
is necessary and sufficient to prove it for the prime repres
tatives~12!. According to the fundamental theorem of alg
bra @31#, each polynomial in one real variable, over the fie
of real numbers, can be split into factors of the first a
second degree over the field of real numbers, and into fac
of the first degree over the field of complex numbers. T
allows us to split each polynomial entering the prime rep
sentative~12! into a product of first-degree factors with com
plex coefficients. Since, by definition, the ratio~12! is irre-
ducible, it can be presented as a product ofM1N first-
degree factors. After this, it acquires the form identical to
factor approximant~9! of the orderk5M1N, taking into
account that the exponentsnkp in Eq. ~8! can be negative
02610
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Hence the latter pertains to the classR. And if a function is
exactly reproducible by an approximant~9!, this function
must be from the classR.

By construction, all parameters~coefficients and powers!
of the approximant ~9! are defined by equating it
asymptotic, inx→0, expansion with that of the function
~12!. An asymptotic expansion in the sense of Poincare´ is
uniquely defined by the function itself. Two functions havin
an identical dependence on the variable and coincid
asymptotic expansions coincide. That is, a function from
classR is exactly reproducible by a factor approximant~9!.
Finally, if a function f (x) exactly equals an approximan
f k* (x) of the orderk5p, then the higher approximants, wit
k.p, derived from the same asymptotic expansion of
same functionf (x), will coincide with each other.

Remarks. The classR of the functions, exactly reproduc
ible by means of the self-similar factor approximants, is s
nificantly wider than the class of rational functions that c
be exactly reproduced by Pade´ approximants. In addition to
rational functions, the classR also includes nonalgebrai
functions, when some of the powers in Eq.~12! are complex.
Because of this, the self-similar factor approximants sho
provide a better accuracy for a wider class of functions,
compared to Pade´ approximants. In what follows, we sha
illustrate this by a variety of examples.

For a given real-valued asymptotic series~2! of a real
function f (x), the factor approximants~9!, by construction,
are real in the asymptotic region ofx→0. However, they
may become complex for finitex. If an approximantf k* (x)
becomes complex forx.xk , this implies that the region o
validity of f k* (x) is restricted by the interval@0,xk#.

C. Relation to the Park method

Factors~8! are appropriate for describing the behavior
functions in the vicinity of critical points. A valuex5xc is
termed a critical point of a functionf (x) if at this point the
latter is either zero,f (xc)50, or possesses an algebraic s
gularity, that is, f (x);(12x/xc)

2b as x→xc , whereb is
positive. This fact was, actually, employed by Park@33# who
suggested a method for locating the critical points and c
culating the critical exponents. His method is formulated
follows. Assume that~i! a real functionf (x) has a critical
point xc ; ~ii ! in the neighborhood of the critical point, th
function can be represented as

f ~x!. f 0)
p

~12Bpx!2bp ~x→xc!,

with all Bp andbp being real;~iii ! the physical critical point
corresponds to that which is the closest to the origin, s
that, arrangingBp in the descending order of their absolu
values,uBpu.uBp11u, one hasxc5B1

21. Then, defining the
coefficientsbn by the expansion

ln f ~x!5 (
n51

`

bnxn,

one obtains
9-3
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B15 lim
n→`

bn

bn21
, b15 lim

n→`

n
bn21

n

bn
n21

.

The proof of this statement is based on the generalized P´lya
theorem@34#, which extends the theorem by Po´lya @35#, ini-
tially proved for entire functions of the genus zero, when
bp521, to the case of realbp . The Park method for defin
ing the critical points and critical indices is closely related
the Pade´ analysis of logarithmic derivatives of a serie
though in the latter case there is no prior knowledge for
convergence of estimates from Pade´ approximants@36#,
which would be analogous to the generalized Po´lya theorem.

The principal difference of our approach from the Pa
method is the following. First of all, we never require th
the sought function be exactly factorizable, but we derive
form ~9! as an approximation to this function. Second, we
not impose a constraint that the function must necessa
possess a critical point, and if so, we consider the func
not solely in the neighborhood of the latter, but in the who
region @0,xc#. Third, since we deal with a much more ge
eral case, the amplitudesAkp and exponentialsnkp are not
compulsorily real, but may be complex valued.

III. EXAMPLES

Any function from the classR can be reproduced, accord
ing to the theorem in Sec. II B, exactly, provided that the
are enough terms in series~2!. However, a reproducible func
tion may not be exactly reproduced when the asympt
expansion~2! does not contain enough terms. In other wor
a function to be recovered may be exactly reproducible
principle, but in practice, we may have access to only a
terms in the asymptotic expansion. Then an important qu
tion to ask is how well the factor approximants are able
approximate such a function, and also it is interesting
observe how the factor approximants converge to the e
result. This problem will be considered in the following se
tion.

Those functions that are not from the classR cannot be
reproduced exactly, but they can be very well approxima
by the self-similar factor approximants~9!, as we illustrate in
the following sections.

A. Convergence to exact result

Consider the function

f ~x!5~112x!3/2~11x!1/2~110.5x!1/3~110.1x!1/4,
~13!

which is from the classR. Its expansion of eighth order ha
the coefficientsf 051 and

a153.692, a253.521, a350.410, a450.025,

a5520.091, a650.145, a7520.220, a850.335,

whose behavior is rather irregular. If we take into acco
only four terms of series~2!, then we get the approximan
f 2* (x), with
02610
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A2151.986, A2250.721, n2151.562, n2250.818.

And for the factor approximantf 3* (x), constructed by mean
of series~2! of sixth order, we find

A3152, A3250.960, A3350.321,

n3151.503, n3250.583, n3350.398.

The best Pade´ approximant that can be built of the sixth
order series~2! is P[4/2](x), whose accuracy is compare
with that of f 3* (x) in Fig. 1. As is evident, the factor approx
imant is essentially more accurate, although not yet ex
But in the next order, we obtainf 4* (x), with

A4152, A4251, A4350.5, A4450.1,

n415
3

2
, n425

1

2
, n435

1

3
, n445

1

4
,

which coincides with the exact function~13!.

B. Combination of functions from R with exponentials

The combination of functions fromR and exponentials
are approximated with very good accuracy. As an exam
let us consider

f ~x!5S 11Ax1Bx2

11Cx1Dx2D m

exp~2x!, ~14!

The choice of the coefficients and the powerm is not impor-
tant, since the factor multiplying the exponential pertains
the classR of exactly reproducible functions. For concret
ness, let us takeA50.5, B50, C50.5, D50.1, and m
50.5. Then, in the asymptotic series~2!, we havef 051 and

a1521.750, a252.419, a3523.659,

a456.060, a55210.499, a6518.622.

FIG. 1. Percentage errors of the self-similar factor approxim
f 3* (x) ~solid line! and of the Pade´ approximantP[4/2](x) ~dotted
line!, as compared with function~13!.
9-4
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The first-order approximant~9! is clearly too simple to pro-
vide a good approximation for complicated functions. The
fore, here and in what follows, we start the analysis with
second-order approximant. For the considered case, we
in the second order

A2151.976, A22520.077, n21520.471, n22510.651

and in the third order

A3151.945, A3250.501, A3350.000 986,

n31520.500, n3250.497, n33521039.

Both approximantsf 2* (x) and f 3* (x) perfectly reproduce
function ~14!.

For comparison, we construct the Pade´ approximants
based on the same number of terms in the series~2!. Among
all possible Pade´ approximantsP[ M /N] (x), we select the
most accurate one for the case considered. Note that the
Padéapproximants are not necessarily diagonal. Here, th
are P[1/5](x) and P[2/4](x). The percentage errors of thes
approximants, together with the error off 3* (x), are shown in
Fig. 2. One can observe that the accuracy off 3* (x) is incom-
parably higher than that of the best Pade´ approximants,
whose errors grow fast withx, reaching amplitudes of the
order of 100%. In addition, the approximantP[2/4](x) be-
comes negative forx.5, which is qualitatively wrong for
the positive function~14!.

C. Exponential multiplied by functions not from the classR
As an example of a function having no factors from t

classR, let us consider

f ~x!5tanh~x!exp~2x!. ~15!

In its asymptotic series~2!, we havef 051 and

a1521, a25 1
6 , a35 1

6 ,

FIG. 2. Percentage errors of the self-similar factor approxim
f 3* (x) ~solid line! and of the Pade´ approximantsP[1/5](x) ~dashed
line! andP[2/4](x) ~dotted line!, compared with function~14!.
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a45 1
120, a552 31

360, a65 1
5040.

For the second-order approximant~9!, we find

A21520.35010.587i , A225A21* , n2150.036

10.831i , n225n21* .

And for the third order, we obtain

A31520.003 3710.650i , A325A31* , A3350.071,

n31520.87110.023i , n325n31* , n335213.777.

Again, we comparef 3* (x) with the most accurate Pade´ ap-
proximants, which for this case areP[1/5](x) and P[2/4](x).
The corresponding percentage errors are shown in Fig
Again, we see thatf 3* (x) has a much higher accuracy tha
the best Pade´ approximants. The most accurate of the latt
P[1/5](x), becomes negative forx.6, which is qualitatively
wrong.

A combination of a logarithm and an exponential yields
nonmonotonic function

f ~x!5 ln~11x!exp~2x!. ~16!

The coefficients of the related asymptotic expansion~2! are
f 051 and

a152 3
2 , a25 4

3 , a3521,

a45 89
120, a552 83

144, a65 593
1260.

For the parameters of the factor approximantf 2* (x), we get

A2150.930, A2250.013, n21520.466, n225283.334,

and for those off 3* (x), we find

A3150.973, A3250.574, A3350.002 12,

n31520.363, n32520.215, n3352483.556.

t FIG. 3. Percentage errors of the factor approximantf 3* (x) ~solid
line! and of the Pade´ approximantsP[1/5](x) ~dotted line! and
P[2/4](x) ~dashed line!, compared with function~15!.
9-5



fro
n

u

io

n
ve

um

im-

ro-
ing
ar-
ure
, in

nt

S. GLUZMAN, V. I. YUKALOV, AND D. SORNETTE PHYSICAL REVIEW E67, 026109 ~2003!
The most accurate Pade´ approximant here isP[1/5](x). The
corresponding percentage errors are presented in Fig. 4,
where it is seen thatf 3* (x) is significantly more accurate tha
P[1/5](x).

D. Functions not from the classR which converge to a
constant at infinity

The previous functions converge to zero at infinity. Let
now consider the function

f ~x!5expS 12
1

A11x
D , ~17!

which increases at infinity to a finite value. In the expans
~2!, we havef 051 and

a150.5, a2520.25, a350.146, a4520.091,

a550.059, a6520.038, a750.025, a8520.016.

For the second-order factor approximant, we find

A2150.570, A2251.097, n21520.671, n2250.805,

and for f 3* (x), we have

A3151.041, A3250.794, A3350.265,

n3151.243, n32520.922, n33520.235.

The best Pade´ approximantP[2/2](x) is less accurate tha
f 3* (x), as is shown in Fig. 5. The accuracy becomes e
better for f 4* (x), for which

A4150.151, A4251.023, A4350.881, A4450.516,

n41520.150, n4251.675, n43521.195 n445

20.267.

FIG. 4. Percentage errors off 3* (x) ~solid line! and P[1/5](x)
~dashed line!, approximating function~16!.
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Notice that, passing to higher approximations, the s
(pnkp decreases,

n211n2250.133, n311n321n3350.086,

n411n421n431n4450.063,

which is the correct trend, since in the limit it should be

lim
k→`

(
p51

k

nkp50.

The accuracy of the factor approximants can also be
proved by assuming the validity of the condition(pnkp50
for finite k.

E. Classical example off4 theory with strongly divergent
series

A classical example of a strongly divergent series is p
vided by the asymptotic expansion, in powers of a coupl
parameter, of generating functionals in field theory or of p
tition functions in statistical mechanics. The generic struct
of such divergent expansions is exemplified by expanding
powers of the couplingg, the generating functional

I ~g!5
1

Ap
E

2`

1`

exp~2w22gw4!dw, ~18!

typical of w4 field theory. In the asymptotic series~2!, with g
instead ofx, the coefficients aref 051 and

an5
~21!n

Apn!
GS 2n1

1

2D .

The latter grows withn→` as an;nn. Such a series is
divergent for any finiteg. For the second-order approxima
I 2* (g), we find

FIG. 5. Percentage errors off 3* (x) ~solid line! and P[2/2](x)
~dotted line!, compared with function~17!.
9-6
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A21519.141, A2254.859, n21520.008 62,

n22520.120.

And for I 3* (g), we obtain

A31531.220, A32513.317, A3353.464,

n31520.000 526, n32520.022, n33520.125.

The most accurate Pade´ approximant, constructed with th
same number of asymptotic terms, isP[3/3](g). This is com-
pared withI 3* (g) in Fig. 6.

Again, we see that the accuracy of the factor approxim
highly surpasses that of the Pade´ approximant. This is espe
cially noticeable for large couplingsg, where the Pade´ ap-
proximant completely fails. Actually,P[3/3](g) is finite for
g→`, which is in contradiction with the behavior ofI (g) at
largeg, where the integral~17! tends to zero,

I ~g!.1.023g20.25 ~g→`!. ~19!

The factor approximants also decrease in the strong-coup
limit as

I 2* ~g!.0.806g20.129, I 3* ~g!.0.807g20.148 ~g→`!.
~20!

Let us emphasize that all parameters of the self-similar fa
approximants are defined only through the weak-coup
expansion. It looks almost doubtful that they can reasona
extrapolate the behavior at the strong-coupling limit. T
accuracy of the approximants~9! increases with their order
Thus, for the approximantI 4* (g), we arrive at the parameter

A41543.965, A42523.064, A43510.294, A4452.677,

n41520.000 025, n42520.002 59, n43520.035,

n44520.124.

In the strong-coupling limit, this yields

FIG. 6. Percentage errors ofI 3* (g) ~solid line! and P[3/3](g)
~dashed line!, compared with the numerical values of integral~18!.
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I 4* ~g!.0.810g20.161 ~g→`!. ~21!

Note that the diagonal Pade´ approximants are always finite a
infinity, thus allowing the approximation of only a very na
row class of functions@37#. Contrary to this, the factor ap
proximants immediately catch the correct behavior at infi
ity, their accuracy increasing with the approximation ord
Hence, the self-similar factor approximants, being based
an asymptotic expansion at zero, can correctly reproduce
behavior of the sought function for the whole range of
variable, including the behavior at infinity.

F. Expansion factor of a three-dimensional polymer chain

As another physical example, let us consider the exp
sion factora(z) for a three-dimensional polymer chain wit
excluded-volume interaction, wherez is a dimensionless
coupling parameter@38,39#. An asymptotic series of the form
~2!, derived by means of perturbation theory@38#, yields the
coefficientsf 051 and

a15 4
3 , a2522.075 385 396, a356.296 879 676,

a45225.057 250 72, a55116.134 785,

a652594.716 63.

In the strong-coupling limit, it has been established nume
cally @37,38# that a(z) can be accurately represented by

a~z!.1.531z0.354410.184z20.5756 ~z→`!. ~22!

For the approximanta2* (z), we have

A2156.064, A2252.962, n2150.105, n2250.235,

with the strong-coupling limit

a2* ~z!.1.560z0.34010.151z20.660 ~z→`! ~23!

being very close to the exact numerical value. In the n
order, the parameters ofa3* (z) are

A3157.019, A3254.635, A3352.262,

n3150.033, n3250.164, n3350.151.

And the strong-coupling limit gives

a3* ~z!.1.551z0.34810.166z20.652 ~z→`!. ~24!

Both the coefficients as well as the powers of the stro
coupling divergence are very accurate, as compared to
numerically determined behavior ofa(z), with a percentage
error of 1%. The best Pade´ approximant here isP[3/3](z). In
Fig. 7, the percentage errors ofa3* (z) and P[3/3](z) are
shown, compared with the numerically fitted@39# equation

a~z!5~117.524z111.06z2!0.1172. ~25!

As is evident, the factor approximant dramatically outp
forms the Pade´ approximant. The latter completely fails a
large z→`, where it is finite, whilea(z) diverges. On the
9-7
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contrary, the factor approximanta3* (z) possesses the corre
behavior in the strong-coupling limit. Moreover, not only th
main asymptotic, asz→`, term is very accurate, but th
next term, describing the so-called correction to scaling
also of good accuracy. Of special interest is the stro
coupling exponent

n[
1

2
1

1

4
lim
z→`

ln a~z!

ln z
, ~26!

which is a kind of critical index for the polymer chain@40#.
According to Muthukumar and Nickel’s@38,39# numerical
estimate,nMN50.5886. For the self-similar factor approx
mants, we have

n2* 50.585, n3* 50.587.

Recent numerical estimates@40,41# give the value n
50.587760.0006, which is very close ton3* .

G. Nonlinear differential equation for state-dependent solid
friction

Let us now demonstrate how the self-similar factor a
proximants can be employed for solving nonlinear differe
tial equations. Let us consider the Ruina-Dieterich law
solid friction between two solid surfaces sliding against ea
other ~see Refs.@42,43#!. The Ruina-Dieterich law involves
the so-called state variable denoted here asf in a dimension-
less form, which is usually thought to quantify the true ar
of contacts of the asperities of two solid surfaces. The s
variable f obeys the following simple nonlinear differentia
equation~put in dimensionless form both forf and t):

d f

dt
5b2 f 12m, ~27!

whereb andm are parameters. Equation~27! possesses two
qualitatively different types of solutions corresponding
m,1 andm.1.

FIG. 7. Percentage errors of the approximants for the expan
factora3* (z) ~solid line! andP[3/3](z) ~dashed line!, compared with
numerical values.
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Consider, first, the casem,1. Let m50.85, b50.526,
and the initial conditionf (0)50.5. Equation~27! allows us
to derive the short-time expansion forf (t), presented as the
series~2! in powers of timet, simply by using the Taylor
expansion formula and by taking successive derivatives
Eq. ~27!. This givesf 05 f (0) and

a1520.750, a250.102, a350.012,

a450.002 26, a550.000 455, a650.000 086 1.

By the standard procedure, we obtain the factor approxim
f 2* (t), with

A21520.39110.116i , A225A21* , n2150.682

10.932i , n225n21* .

And the parameters forf 3* (t) are

A31520.43010.118i , A325A31* , A33520.149,

n3150.79010.471i , n325n31* , n33520.272.

The accuracy of the approximants can be checked agains
direct numerical solution of Eq.~27!. In Fig. 8, we compare
the percentage errors off 3* (t) with those of the best Pad´
approximantsP[2/2](t) and P[3/3](t). As we see, the facto
approximant is considerably more accurate.

IV. CRITICAL BEHAVIOR

Solutions to physical problems often display a critical b
havior, when a functionf (x) tends, at a critical pointxc ,
either to zero or to infinity. Self-similar factor approximan
make it possible to describe these two types of critical
havior, providing accurate estimates for the critical points
well as for critical indices. If one is interested solely in th
critical behavior, then our approach reduces to the P
method, as is discussed in Sec. II. However, we would like
stress that the factor approximants not only describe well

on FIG. 8. Percentage errors of the approximants for friction,f 3* (t)
~solid line!, P[2/2](t) ~dotted line!, andP[3/3](t) ~dashed line!, com-
pared with an exact numerical solution of Eq.~27!.
9-8
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critical neighborhood, but also provide an accurate appro
mation in the whole region@0,xc#. It is also important to
realize that, in order to achieve an accurate description,
does not necessarily require the knowledge of a large num
of terms in an asymptotic series, but only a few terms
often sufficient. This applies to both types of critical poin
either zeros or singularities.

A. Critical behavior near zero

An example of the first type is the function

f ~x!5~cosAx!1/3, ~28!

tending to zero at the critical pointxc5p2/452.467 with the
critical index 1/3. the coefficients of the asymptotic series~2!
are f 051 and

a1520.167, a2520.014, a3520.003 55,

a4520.000 982, a5520.000 295, a6520.000 093 7.

Notice that all coefficients here are negative. Su
asymptotic series with all coefficients of the same sign
known to be very difficult for any kind of resummation pro
cedure@2#. But, with the factor approximants~9!, there is no
problem in approximating the sought function in the who
region fromx50 to the critical point. For the approximan
f 2* (x), we get

A21520.405, A22520.024, n2150.334, n2251.333.

In this approximation, the critical pointxc5uA21u2152.469
is already close to the exact valuep2/452.467. The same
quality of results is obtained for the critical indexn21, which
almost coincides with the exact index 1/3. For the next
proximation f 3* (x), we find

A31520.405, A32520.044, A33520.005 41,

n3150.333, n3250.375, n3352.791.

The approximantf 3* (x) is practically indistinguishable from
function ~28! in the whole region@0,xc#. The critical point
xc5uA31u2152.467 yields the exact valuep2/4 with a pre-
cision of about 1023. The corresponding critical indexn31
differs from the exact index in the seventh decimal digit. T
best Pade´ approximantP[3/2](x) is much less accurate, giv
ing the critical pointxc52.507 and a very inaccurate critica
index equal to 1 instead of 1/3. The accuracies off 3* (x) and
P[3/2](x) are compared in Fig. 9.

B. Critical singular behavior

In several physical problems@42#, the critical behavior is
described by the function

f ~x!5
p

2arccosx
, ~29!
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which diverges at the critical pointxc51, with the critical
index 1/2. The asymptotic series~2! has the coefficientsf 0
51 and

a150.637, a250.405, a350.364,

a450.299, a550.281, a650.248.

This is again the case of a series with constant-sign co
cients, which is a difficult problem for resummation. For t
approximantf 2* (x), we find

A21520.990, A2250.778, n21520.514, n2250.164.

This gives the critical pointxc5uA21u2151.010 and the criti-
cal indexun21u in a very good agreement with the exact va
ues. In the next order, with an accuracy up to three deci
digits, we obtain

A31521, A3250.912, A3350.363,

n31520.501, n3250.091, n3350.146.

The critical pointxc5uA31u2151 coincides with the exac
value, and the critical indexun31u is also practically equal to
the exact index 1/2. The best Pade´ approximantP[4/1](x) is
much less accurate, yielding the critical pointxc51.064 and
a bad estimate for the critical index, equal to 1 instead
1/2. The accuracy of the approximantsf 3* (x) and P[4/1](x)
are compared in Fig. 10.

C. Critical behavior in nonlinear differential equation

Critical behavior may arise in solutions of differenti
equations. For instance, the Ruina-Dieterich law of so
friction, given by Eq.~27!, is qualitatively different form
,1 andm.1. Form,1, the solution has no zeros. But fo
m.1, the solution becomes zero at a critical timetc ap-
proached with the critical index 1/m. Let m51.5 and all
other parameters be the same as for the noncritical case

FIG. 9. Percentage errors off 3* (x) ~solid line! and P[3/2](x)
~dotted line! as compared to function~28!.
9-9
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sidered in the preceding section. Then the critical time istc
50.330 04. For the short-time expansion in powers of timt,
we havef 05 f (0)50.5 and

a1521.776, a2521.256, a3521.706,

a4523.024, a5526.114, a65213.388.

The asymptotic series strongly diverges. Constructing
factor approximantf 2* (t), we get

A21523.049, A22520.558, n2150.616, n22520.181.

This gives the critical timetc5uA21u2150.328 and the criti-
cal indexn21, estimating rather well the corresponding exa
valuestc50.330 and 1/m50.667, respectively. For the pa
rameters off 3* (t), we derive

A31523.036, A32521.676, A33520.225,

n3150.630, n32520.046, n33520.269.

The critical timetc5uA31u2150.3294 approximates the ex
act numerical value with a good accuracy, the error be
only 20.19%. The related critical indexn31 is also close to
the exact index 0.667. The most accurate Pade´ approximant
P[3/3](t) yields a much worse approximation, with the cri
cal time tc50.341 34 and the critical index 1 instead of 2/
The relative accuracies of the approximantsf 3* (x) and
P[3/3](x) are demonstrated in Fig. 11.

D. Two examples of critical phenomena in statistical physics

An analysis of critical behavior would not be comple
without considering critical phenomena of statistical m
chanics. Consider, for instance, the three-dimensional s
1/2 Ising model with a simple cubic lattice. Thermodynam
characteristics of this model can be presented in the form
high-temperature expansions in powers of the parametv
[tanh(J/kBT), whereJ is the exchange integral andT is the

FIG. 10. Percentage errors off 3* (x) ~solid line! and P[4/1](x)
~dotted line! with respect to function~29!.
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temperature. For example, the second derivative of the
ceptibility with respect to an external field

x0
(2)5

]2x

]H2
uH50 ~30!

is known@44# as the series expansion containing the pow
of v up to v17. The first coefficients of this expansion a
f 0522 and

a1524, a25318, a353240, a4528 158,

a55220 680, a651 604 406, a7511 029 560,

a8572 559 422.

The coefficients are of constant sign and are growing f
Applying the method of the factor approximants, we have
the second order

A21524.602, A2257.373, n21524.300, n2250.571,

where we limit ourselves by three decimal digits. This giv
the critical pointvc5uA21u2150.217 at which the function
diverges with the critical indexun21u. These values can b
compared with accurate Monte Carlo calculations@45# yield-
ing the critical point vc50.218 092, and with a refined
analysis by means of integral approximants@44# giving the
critical index 4.37. In the third order, again with an accura
up to three decimals, we obtain

A31524.601, A3257.375, A335244.934,

n31524.301, n3250.571, n3350.

Then the critical point isvc5uA31u2150.217 and the critical
index is un31u, which are practically the same as in the se
ond approximation. The best Pade´ approximantP[1/4](v) re-
sults in rather inaccurate values for the critical pointvc
50.153 and the critical index equal to 1. The fourth-ord
factor approximant does not lead to a noticeable chang

FIG. 11. Percentage errors off 3* (x) ~solid line! and P[3/3](x)
~dotted line! compared with the numerical solution of Eq.~27!.
9-10



n
r-

a

tic

tu

Le

ex

a

rs

ith

e
heir

by
ap-

her
tor
en-

uc-
of
r
ses
s,
ith
ns,
er.
ible
ud-
ot
r
n
y.
ce

ng
or
ct-
ith

also
are
ity
ght
the
ues

the
ts
as a
al-

re-
t-
xi-
nd
ro-
ry

of
ry
ef-
uc-
e. In

a
c-

SELF-SIMILAR FACTOR APPROXIMANTS PHYSICAL REVIEW E67, 026109 ~2003!
the critical parameters, as compared to the third-order o
also givingvc50.217 and the critical index 4.301. The pe
centage errors of these estimates are about 1%.

As another example of high-temperature series exp
sions, let us consider such series for the (211)-dimensional
Ising model, defined by the Hamiltonian

H5(
i

~12s i
3!2x(̂

i j &
s i

1s j
12h(

i
s i

1 , ~31!

in which s i
a , with a51,2,3, are Pauli matrices, the indexi

enumerates the sites on the two-dimensional spatial lat
^ i j & denotes nearest-neighbor pairs of sites,x is an effective
coupling parameter corresponding to the inverse tempera
in the Euclidean formulation of field theory, andh stands for
magnetic field. Here, we consider the triangular lattice.
us take, e.g., a series in powers ofx for the mass gapF at
zero magnetic field,

F[E12E05F~x!, ~32!

which is the difference between the energy of the first
cited level and the ground-state energy. The series~2! for this
case@46# has the coefficientsf 052 and

a1523, a2523, a3525.25, a45215.75,

a55249.265 625, a652173.355 468 8,

a752627.602 783, a8522 397.718 506.

For the parameters of the second-order factor approxim
F2* (x), we find

A21524.7404, A2251.7404, n2150.6582, n2250.0691.

The critical point, following from here, isxc5uA21u21

50.2110. The mass gap tends to zero atxc as F;(xc
2x)n, with the critical indexn5n21. For the third-order
approximantF3* (x), we have

A31524.7826, A32523.5899, A3351.5136,

n3150.6211, n3250.0458, n3350.0890.

Hence, the critical point isxc5uA31u2150.2091 and the
critical index isn5n31. In the next order, for the paramete
of F4* (x), we obtain

A41524.7629, A42522.1880, A4353.9403,

A4451.2670,

n4150.6445, n4250.0375, n4350.0007, n4450.1178.

This results in the critical pointxc5uA41u2150.2100 and the
critical index n5n41. These values can be compared w
those summarized in Ref.@44#, where xc varies between
0.2097 and 0.2098, while the indexn is between 0.627 and
0.641, which is very close to our results.
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V. DISCUSSION

By employing the self-similar approximation theory, w
have derived a class of approximants, which, because of t
form, we call theself-similar factor approximants. All con-
trol parameters of this class of approximants are defined
means of the accuracy-through-order relationship. These
proximants reproduceexactlya wide class of functions from
the sole knowledge of their asymptotic expansions. For ot
functions not from the exactly reproducible class, the fac
approximants provide a very high accuracy, which is ess
tially higher than that given by the best Pade´ approximants
constructed with the same number of asymptotic terms.

It is worth emphasizing that the class of exactly reprod
ible functions includes all rational functions that are ratios
polynomials. Hence, Pade´ approximants are just a particula
case of the factor approximants. Therefore, in all those ca
where Pade´ approximants are known to work well, such a
e.g., the Stieltjes series, the factor approximants work w
the same accuracy. In the limiting case of rational functio
both Pade´ and factor approximants coincide with each oth
However, the class of functions that are exactly reproduc
by means of factor approximants is essentially larger, incl
ing noninteger powers of rational functions, which are n
rational functions@49#. This is why, the class of functions fo
which factor approximants work well is much larger tha
that where Pade´ approximants have a reasonable accurac

The self-similar factor approximants are able to reprodu
with a good accuracy various kinds of functions, diminishi
and increasing, monotonic and nonmonotonic, on finite
infinite intervals. The asymptotic series, used for constru
ing the factor approximants, can have their coefficients w
alternating signs or with constant signs. The series can
be strongly divergent. Although the factor approximants
derived from asymptotic series for a variable in the vicin
of zero, they extrapolate well to the behavior of the sou
functions at infinity. The approximants are able to predict
occurrence of critical phenomena, providing accurate val
for both the critical points and critical indices.

Note that a natural generalization involves combining
factor approximants with the self-similar root approximan
and exponential approximants. The latter can be treated
limiting case of the factor approximants, since the renorm
ized factor function~8! tends, asnkp→`, to an exponential.
The self-similar exponential approximants, as has been
cently shown@47#, enjoy the property of exactly reconstruc
ing exponential functions. Therefore, the factor appro
mants, together with their limiting exponential forms, a
being combined with the self-similar root approximants, p
vide a powerful tool for an accurate reconstruction of a ve
wide class of functions.

Since the self-similar approximation theory is capable
capturing the features of rather complex functions with ve
good accuracy from the knowledge of a few numerical co
ficients, one can view this approach as a complexity red
tion scheme, or better as an encoding-decoding schem
the language of algorithmic complexity theory@48#, the dif-
ferentiable functions with only isolated critical points have
low degree of complexity. And such functions can be effe
9-11
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tively reconstructed from their asymptotic expansions.
We would like to stress that, employing the self-simil

approximation theory, we do not postulate the final form
the resulting approximants but derive them by imposing
property of self-similarity for the subsequent terms of pert
bative expansions. Thus, applying this procedure to a sim
series expansion, we obtain the self-similar exponential
proximants. When two series expansions at two differ
points are known, we come to crossover formulas prese
by the self-similar root approximants. And applying the se
similar approximation theory to a product expansion, we
rive the self-similar factor approximants. The fact that o
approximants are derived but not postulated constitutes
principal difference between them and the continu
function representation discussed by Bender and Ors
@50#. The idea of this representation is to construct appro
mants in the following way. Suppose the first approximat
to a considered problem has the form of a functionf 1(c1 ,x),
with c1 being a constant. Then thekth continued-function
approximation@50# is postulated to be

f 1~c1 ,x f1„c2 , . . . ,x f1~ck ,x!… . . . !.

For instance, if the first approximation is (11c1x)n, then the
kth continued-function approximation is defined as

$11c1x@11c2x~11•••1ckx!n#n
•••%n

with the same powersn. Contrary to this, in the self-simila
approximation theory, starting from (11c1)n we come to
either the self-similar root approximants

$@•••~11A1x!n11A2x2#n21•••1Akx
k%nk,
a

ys
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when the largex behavior is available, or to the self-simila
factor approximants

~11A1x!n1~11A2x!n2
•••~11Akx!nk,

if only the smallx expansion is known. In both these cas
all powersn1 ,n2 , . . . ,nk are different. And both types o
these formulas do not have the form of a continued functi
but possess a more general structure. At the same time
trying to sum an asymptotic series by invoking a continue
function representation@50#, one confronts the problem o
choice, since there is no criterion for preferring some fun
tions to others, among the infinite possibilities. In contra
such an arbitrariness is absent in the self-similar approxi
tion theory, where the form of approximants is not postula
but is derived, so that it is prescribed by the group se
similarity of perturbative terms.

At first glance, it may appear streage that, knowing sol
the behavior of a function in the vicinity of zero, it is pos
sible to correctly predict its behavior at infinity or near
critical point. However, there is no miracle here. The coe
cients of an asymptotic series contain a great deal of in
mation about their parent function, provided that the lat
are differentiable up to sufficiently high order. Then, t
main problem is that this information is hidden, encode
And one needs to possess a guide and a key for decoding
information. The idea ofgroup self-similarityfor subsequent
approximations@17–27# serves as a guide pointing at th
general properties of the sought function, which allows
the extrapolation of the given approximations. And the se
similar factor approximants are a practical key for realizi
this extrapolation.
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