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The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is
addressed by deriving an improved type of approximants. The derivation is based on the self-similar approxi-
mation theory, which presents the passage from one approximant to another as the motion realized by a
dynamical system with the property of group self-similarity. The derived approximants, because of their form,
are called self-similar factor approximants. These complement the obtained earlier self-similar exponential
approximants and self-similar root approximants. The specific feature of self-similar factor approximants is
that their control functions, providing convergence of the computational algorithm, are completely defined
from the accuracy-through-order conditions. These approximants contain theftadgimants as a particular
case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced
by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class
of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this
exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy
surpasses significantly that of the most accurate” Rggheoximants. This is illustrated by a number of ex-
amples showing the generality and accuracy of the factor approximants even when conventional techniques
meet serious difficulties.
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[. INTRODUCTION theorythat is now widely employed for various applications
[3—16]. The second pivotal idea is to consider the successive

The problem of reconstructing functions from their per- passage from one approximation to the next one as a dy-
turbative asymptotic expansions in powers of a parameter aramical evolution on the manifold of approximants, which is
a variable is so frequently encountered in physics and apformalized by the notion ofyroup self-similarity[17-22.
plied sciences that there is no necessity to explain its imporAnd the third principal point is the introduction of control
tance. The best known methods for such a reconstruction afanctions in the course of rearranging perturbative
the Padeapproximation and Borel summation, including asymptotic expansions by means alffyebraic transforms
their variants and combinatiof$,2]. These techniques usu- [23—-27. Because of their specific scaling properties typical
ally require that a large number of terms of an asymptoticof fractals [28,29, the algebraic transforms can also be
expansion be available. The Borel summation demands, inalledfractal transforms[30]. By using this technique, two
addition, that the high-order expansion coefficients be givertypes of approximants have been obtairgslf-similar expo-
and the analytic properties of the sought function on thenentialsandself-similar roots[24—27.
complex plane be prescribed. However, the overwhelming In the present paper, we suggest a different approximation
majority of realistic physical problems are too complicatedscheme resulting in what may be namsalf-similar factor
and perturbation theory is only able to derive a few firstapproximants These approximants possess an important
terms. And the luxury of knowing in advance the analytic principal property distinguishing them from the self-similar
properties of an unknown function, together with its high-approximants mentioned above: the control parameters, en-
order expansion coefficients, as is required for the Boretering the self-similar factors, can be completely defined
summation, is practically never available. Because of the latrom a given asymptotic expansion by the so-called
ter, Padeapproximants are more often employed in applica-accuracy-through-order matching method. This is in contrast
tions, although their usage also confronts several difficultieswith the self-similar exponentials whose controls, designed
among which the most notorious are the appearance of spte improve convergence, are defined from additional optimi-
rious poles and the poor recovery of noninteger critical exzation conditions. This method of accuracy-through-order is
ponents. also different from the determination of the control param-

An alternative approach to the problem of reconstructingeters of the self-similar roots which are determined by
functions has been developed, whose basic ideas are as fohatching two asymptotic expansions valid in the neighbor-
lows. First of all, to improve the convergence property of ahood of two different asymptotic points. Being based on the
perturbative sequence, it is necessary to introdcmetrol  sole initial asymptotic expansion, the self-similar factors
functionsdefined by an optimization proceduf@-5]. This  have the advantage of simplicity, which makes their usage
idea forms the foundation of theptimized perturbation quite interesting. Furthermore, these approximants allow one
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to reconstrucexactlya wide class of functions. And when Let us consider the finite seri€$) as a polynomial over the
they do not yield exact answers, they provide very accuratéield of complex numbers. Then, by the fundamental theorem
approximations, essentially more accurate than given byf algebra[31], such a polynomial can be split in a unique
Padeapproximants. way into a product of the irreducible facto{), so that

We first give in the following section the mathematical ‘
foundation of the self-similar factor approximants. Sections
[l and IV are devoted to examples chosen for their illustra- ‘Pk(x)zpﬂl Pip(X¥)  (k=1,2,...). ©
tive properties, the difficulties they pose to the more conven-
tial Padetechnique, and their relevance to several physicairhe representatiofs) possesses the scaling property accord-
problems(polymers, state- and velocity-dependent solid fric-ing to which if Prp— N Pip. thenp,— N\ @,. Such a scaling
tion dynamics, critical phenomena in field theory, and Isingproperty is the simplest rudimental example of functional
models. self-similarity. In this way, the surf2) can be rewritten as a

product

Il. MATHEMATICAL FOUNDATION K
A. Derivation of factor approximants f(X)zfol_[l [erp(X)+ -] (6)
p=

Assume that we are solving a complicated problem, aim-
ing at finding a real functiorf(x) of a real variablex. Be-  Now, instead of accomplishing the self-similar summation
cause of the complexity of the problem, the only thing wefor the whole right-hand side of E¢2), we may perform it
are able to do is to invoke a kind of perturbation theory forfor each factor in the produ¢6). Thus, we define the fractal
obtaining approximate expression§(x) of order k  transform
=0,1,2 ..., valid in the asymptotic vicinity ok=0. Usu- s
ally, the asymptotic approximantg(x) can be presented as Pip(X,8) =Xpip(X), @)

a power series of and written in the form construct an approximate cascade whose trajectory is bijec-

k tive to the sequencgd,,(x,s)}, embed the cascade into an
f(X)=foor(X),  @c(X)= 2 ax", ) approximation flow, integrate the flow evolution equation,
n=0 and realize the inverse fractal transform. All this machinery,
with all details, has been expounded in previous paffs
whereg,(x) is a dimensionless function with,=1. Writing ~ 27], and we therefore do not repeat it here. As a result, each

down the sought function as an asymptotic series factor (4) can be shown to be renormalized into
K o) = (L4 AgpX)er, ®
f0=fo 2 ax"+---, 2 _
n=0 where A, and n,, are control parameters, or simply con-

trols. And ak-order approximation for the sought function

wherex— 0, gives little consolation, since in real problems f(x) is given by theself-similar factor approximant
is rarely asymptotically small, but is usually finite and may K
even be very large. How could we reconstruct the function % .
f(x) for fini¥e values ofx from the knowledge of its fk(x):fogl PicplX)- ©)
asymptotic expansion only?

An answer to this question can be provided by the self-The controlsA,, andn,, are determined by expanding the
similar approximation theory17-22, with control param- approximant(9) in powers ofx and comparing this expan-

eters introduced by means of the fractal transfd28—  sion with the serie$2). For short, this can be called a reex-
27,30, defined as pansion procedure, which sometimes is also named the

accuracy-through-order relationship. The equations defining

Fi(X,9)=x5f(X). (3)  the amplitudes\,, and exponents,, can be cast in the form
k
This leads to the self-similar exponential and self-similar no_ n+1
n =(—1 nb,, 10

root approximants. Now, we shall follow a slightly different le A=~ 1) 3 (10

procedure, which is actually motivated by the very idea of

group self-similarity underlying the construction of self- where

similar approximants. "
For a more efficient use of group self-similarity, we pro- b= ilimd—nln 2 ax™

pose to present an initially given asymptotic expansion in the n— nbodx" m

most symmetric way. To this end, we introduce faetor

functions As is easy to check, Eq§10) and(11) follow from equating

the asymptotic expansions for the logarithms of the factor
erp(X)=1+bx (p=12,...k=1). (4) approximani(9) and of serie$2). For each givelk, there are

. (11

m=0
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2k unknowns on the left-hand side of Eq0). Hence, inthe  Hence the latter pertains to the cla8s And if a function is
series(2), one should havekRnontrivial terms, which makes exactly reproducible by an approximaf®), this function
n=1,2,...,X. The series of odd orderkz 1 can also be must be from the clasgk.
processed, for which one needs to consided) — f,, instead By construction, all parametefsoefficients and poweys
of f(x). The factor approximants, based on even and od@f the approximant(9) are defined by equating its
numbers of terms of a series with alternating signs, ofterasymptotic, inx—0, expansion with that of the function
bracket the sought function from below and above. Thig12). An asymptotic expansion in the sense of Poindare
bracketing is analogous to that occurring for self-similar ex-uniquely defined by the function itself. Two functions having
ponential approximants based on even or odd numbers efn identical dependence on the variable and coinciding
asymptotic term$26,32. asymptotic expansions coincide. That is, a function from the
The control parameters may be complex valued, since, foglassR is exactly reproducible by a factor approximay.
obtaining the factorized forrtb), the sum(1) was treated as Finally, if a function f(x) exactly equals an approximant
a polynomial over the field of complex numbers. But, sincef;(v(x) of the orderk=p, then the higher approximants, with
the considered function is real, all complex-valued factorsk>p, derived from the same asymptotic expansion of the
should arise in complex conjugate pairs, so that their productgme functiorf(x), will coincide with each other.

is always real. RemarksThe classR of the functions, exactly reproduc-
ible by means of the self-similar factor approximants, is sig-
B. Exactly reproducible class of functions nificantly wider than the class of rational functions that can

be exactly reproduced by Padpproximants. In addition to

The structure of the self-similar factor approximarc@s tional funct the clas® also includ laebrai
suggests that there exists a whole class of functions that ag lonal Tunctions, the clasi also Includes nonaigebraic

exactly reproducible by means of these approximants. Thi Linctions, whe_n some of th_e POWETS In E82) are complex.
class is defined as follows. L& (x) be an irreducible poly- ecause of this, the self-similar factor approximants should

nomial in a real variable of degreen over the field of real provide a better accuracy for a wider class of functions, as

numbers and lety, and B; be complex numbers. Compose compared to Padapproximants. In what follows, we shall

the real-valued products of powers of such irreducible poly-'”ulitc:?tz tgil\'/sezyrzgl?\;:%gf aes)(;nr?p?tlst?c. serié® of a real

nomials aSHiPMIi(X) and HJQ@](X)’ whereZiMi=M and ¢ tion f(x), the factor approximantd), by construction,
2;N;=N. This implies that complex powers, if any, always are real in the asymptotic region &f~0. However, they
come in complex conjugate pairs. Let these products have n@ay become complex for finite. If an approximantf ¥ (x)
common divisors, such that the ratio becomes complex fax>x,, this implies that the region of
validity of f; (x) is restricted by the intervdl0, x,].
IT Py 0

fﬁnﬁr\J(X)El— (12) C. Relation to the Park method

H Qﬁi_(x) Factors(8) are appropriate for describing the behavior of
i ] functions in the vicinity of critical points. A valug=x. is
termed a critical point of a functiof(x) if at this point the
is irreducible. Denote byR a class of functions, which is Jatter is either zerof(x.) =0, or possesses an algebraic sin-
composed of all products of the fornis2) that play the role  gularity, that is,f(x)~(1—x/x.) ~# asx—x., where g is
of the prime representatives for this class. positive. This fact was, actually, employed by PE3B] who
Theorem A function f(x) can be exactly reproduced by suggested a method for locating the critical points and cal-
the self-similar factor approximant®) if and only if this  culating the critical exponents. His method is formulated as
function belongs to the clasg, with the prime representa- follows. Assume thati) a real functionf(x) has a critical
tives (12) being exactly reproducible b§j (x) in all orders  point x.; (ii) in the neighborhood of the critical point, the

k=M + N. function can be represented as

Proof. To prove the proposition for the whole claBs it
is necessary and sufficient to prove it for the prime represen- f(x)=f 1-B.x) P (x—x
tatives(12). According to the fundamental theorem of alge- (x) Ol_p[ ( pX) (X=Xe),

bra[31], each polynomial in one real variable, over the field

of real numbers, can be split into factors of the first andwith all B, and 8, being realiii) the physical critical point
second degree over the field of real numbers, and into facto@erresponds to that which is the closest to the origin, such
of the first degree over the field of complex numbers. Thisthat, arranging3,, in the descending order of their absolute
allows us to split each polynomial entering the prime reprevalues,|B,|>|B,.4|, one hasx,=B;'. Then, defining the
sentative(12) into a product of first-degree factors with com- coefficientsb, by the expansion

plex coefficients. Since, by definition, the rafib?) is irre- .

ducible, it can be presented as a productMf-N first- Inf(x)=2 box"

degree factors. After this, it acquires the form identical to the =t

factor approximan{9) of the orderk=M +N, taking into

account that the exponentg, in Eg. (8) can be negative. one obtains
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b )

n—-1

by .
B,=Ilimi—, pg;=Ilimn
-1

n-1°
n

n—o n—o

The proof of this statement is based on the generalizéghPo 1 1°
theorem[34], which extends the theorem by Ipa[35], ini-
tially proved for entire functions of the genus zero, when all
Bp=—1, to the case of reg@,. The Park method for defin-
ing the critical points and critical indices is closely related to
the Padeanalysis of logarithmic derivatives of a series,
though in the latter case there is no prior knowledge for the™ -15- 418
convergence of estimates from Padpproximants[36],
which would be analogous to the generalizedyRaheorem.
The principal difference of our approach from the Park . . . . . . . 20
method is the following. First of all, we never require that 0 5 10 15 20
the sought function be exactly factorizable, but we derive the X
form_ (9) as an apprOXImatlon to this fun(_:tlon. Second, we d_o FIG. 1. Percentage errors of the self-similar factor approximant
not impose a}_constrglnt that.the function r_nust necessqulyg(x) (solid line) and of the PadepproximantP|y(x) (dotted
possess a critical point, and if so, we consider the funcuorhne)’ as compared with functiofL3).
not solely in the neighborhood of the latter, but in the whole
region[0,X.]. Third, since we deal with a much more gen- Ay =1.986, Ayy=0.721, ny=1.562, ny,=0.818.
eral case, the amplitude%,, and exponentials,, are not ' ' '

compulsorily real, but may be complex valued. And for the factor approximarft; (x), constructed by means
of series(2) of sixth order, we find

-10 4-10

Percentage error

IIl. EXAMPLES

. A31:2, A32: 0960, A33: 0321,
Any function from the clas® can be reproduced, accord-

ing to the theorem in Sec. Il B, exactly, provided that there N3;=1.503, nNsp=0.583, nas=0.398.

are enough terms in seri€®. However, a reproducible func-

tion may not be exactly reproduced when the asymptoticThe best Padapproximant that can be built of the sixth-
expansior(2) does not contain enough terms. In other words,order series(2) is Pra;z)(X), whose accuracy is compared
a function to be recovered may be exactly reproducible, inwith that of f% (x) in Fig. 1. As is evident, the factor approx-
principle, but in practice, we may have access to only a fewmant is essentially more accurate, although not yet exact.

terms in the asymptotic expansion. Then an important quessyt in the next order, we obtaiff; (x), with
tion to ask is how well the factor approximants are able to

approximate such a function, and also it is interesting to Ap=2, Ap=1, Ap=05, Ayu=01,
observe how the factor approximants converge to the exact

result. This problem will be considered in the following sec- 3 1 1 1
tion. Na=5, Na2=5, Nag=3, Nu=g,

Those functions that are not from the cla8scannot be
reproduced exactly, but they can be very well approximatedvhich coincides with the exact functiqi3).
by the self-similar factor approximan{8), as we illustrate in

the following sections. B. Combination of functions from R with exponentials

The combination of functions frorfk and exponentials

A. Convergence to exact result . .
are approximated with very good accuracy. As an example,

Consider the function let us consider
f(x)=(1+2x)¥(1+x) Y41+ 0.5)3(1+0.1x) ¥4, 14 Ax+ B2\ ™
(13 f(X)=| —————=| exp(—x), 14
0 14+ Cx+Dx? P=) 19
which is from the clas®R. Its expansion of eighth order has
the coefficients,=1 and The choice of the coefficients and the poweis not impor-
tant, since the factor multiplying the exponential pertains to
a;=3.692, a,=3.521, a;=0.410, a,=0.025, the classR of exactly reproducible functions. For concrete-
ness, let us takeA=0.5, B=0, C=0.5,D=0.1, andm
as=—0.091, ag=0.145, a;,=-0.220, ag=0.335, =0.5. Then, in the asymptotic seri€®, we havef,=1 and
whose behavior is rather irregular. If we take into account a;=—1.750, a,=2.419, az=-—3.659,
only four terms of serie$2), then we get the approximant
f3(x), with a,=6.060, as=-—10.499, ag=18.622.
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FIG. 2. Percentage errors of the self-similar factor approximant ~ FIG. 3. Percentage errors of the factor approxinfdrk) (solid
f%(x) (solid line) and of the Pad@pproximantsP(,5(x) (dashed line) and of the PadeapproximantsPys(x) (dotted ling and

line) and P54;(x) (dotted ling, compared with functiori14). Pr24(x) (dashed ling compared with functiorf15).
The first-order approximar(®) is clearly too simple to pro- =135, As=— s, 8= 5090

vide a good approximation for complicated functions. There- ) _
fore, here and in what follows, we start the analysis with the™0r the second-order approxima®, we find
second-order approximant. For the considered case, we get _ ok _
in the second order A,;=—0.350+0.5871, A,,=A3;, n,=0.036
+083]l, n22: n;l.
A21= 1976, A22= _0077, nle _0471, n22= 10.651
And for the third order, we obtain
and in the third order
ABl: —0.0033# 0650, A32: A;l’ A33: 0071,
A31: 1945, A32: 0501, A33: 0.000 986,
n31: _0871+ 0023, n32: ngl, n33: _13777
I’l31= _0500, n32= 0497, n33= —1039. . . ,
Again, we compardj (x) with the most accurate Pade-

Both approximantsfs(x) and f%(x) perfectly reproduce Proximants, which for this case aRys(x) and Pzq(X).
function (14). The corresponding percentage errors are shown in Fig. 3.

For comparison, we construct the Padpproximants Again, we see that3(x) has a much higher accuracy than
based on the same number of terms in the séflesAmong  the best Padapproximants. The most accurate of the latter,
all possible PadeapproximantsPyyy;(x), we select the Pz (X), becomes negative for>6, which is qualitatively
most accurate one for the case considered. Note that the bagtong.
Padeapproximants are not necessarily diagonal. Here, these A combination of a logarithm and an exponential yields a
are Pys)(X) and Py (x). The percentage errors of these honmonotonic function
approximants, together with the error fdf(x), are shown in
Fig. 2. One can observe that the accuracy’d(fx) is incom- F)=In(1+x)exp(—x). (16
parably higher than that of the best Padpproximants, The coefficients of the related asymptotic expang@nare
whose errors grow fast witl, reaching amplitudes of the fo=1 and
order of 100%. In addition, the approximaRf{y.(x) be-
comes negative fok>5, which is qualitatively wrong for a=—3, a,=3, az=-1,
the positive function(14).

=15, As= 1, 8= 1260-

C. Exponential multiplied by functions not from the class R .
P P Y For the parameters of the factor approximéh¢x), we get

As an example of a function having no factors from the

classR, let us consider A,1=0.930, A,,=0.013, ny,;=—0.466, n,,= —83.334,
f(x) = tanh(x)exp(—X). (15  and for those of%(x), we find
In its asymptotic serie€?), we havef,=1 and A31=0.973, A;,=0.574, A33=0.002 12,
a;=—1, a,=g, asz=sz, Nz;=—0.363, nz=-—0.215, nz3=—483.556.
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FIG. 4. Percentage errors &% (x) (solid line) and Py5(x)

FIG. 5. P lid i P
(dashed ling approximating functior(16). G. 5. Percentage errors 6&(x) (solid line) and Ppp(x)

(dotted ling, compared with functiori17).

The most accurate Padgproximant here i®[15(x). The
corresponding percentage errors are presented in Fig. 4, fro
where it is seen thdt; (x) is significantly more accurate than

Prus)(X)- N1+ Nop=0.133, Ngy+ Nyt Nag=0.086,

Notice that, passing to higher approximations, the sum
pNip decreases,

D. Functions not from the classR which converge to a

. Nyt Nyt NygtNyy= 0.063,
constant at |nf|n|ty

The previous functions converge to zero at infinity. Let uswhich is the correct trend, since in the limit it should be
now consider the function

1
f(x)=ex;{ 1- \/m

which increases at infinity to a finite value. In the expansio
(2), we havefy=1 and

k
lim 2 Np=0.
: 17 k—oeeP=1

The accuracy of the factor approximants can also be im-
"oroved by assuming the validity of the conditiahyn,,=0
for finite k.

a;=0.5, a,=-0.25, a3z=0.146, a,=-—0.091, ) ) )
E. Classical example of¢p* theory with strongly divergent

as=0.059, ag=—0.038, a;=0.025 ag=—0.016. seres

A classical example of a strongly divergent series is pro-
For the second-order factor approximant, we find vided by the asymptotic expansion, in powers of a coupling
parameter, of generating functionals in field theory or of par-
A,1=0.570, A,,=1.097, n,;=—0.671, ny,,=0.805, tition functions in statistical mechanics. The generic structure
of such divergent expansions is exemplified by expanding, in

and forf3 (x), we have powers of the coupling, the generating functional

Az;=1.041, A3,=0.794, A33=0.265, 1 [+
* > ” (="1=] ea-¢*-gelde. (19

n31: 1243, n32: _0922, n33: _0235

. . ) typical of ¢* field theory. In the asymptotic serié®), with g
The best PadepproximantP,,(X) is less accurate than jhctead ofx, the coefficients aré,=1 and

f3(x), as is shown in Fig. 5. The accuracy becomes even

better forf} (x), for which (—1)"
=—=T|2n+3].
A4=0.151, Ag=1.023, A,3=0.881, A,=0.516, Jan!
_ _ _ _ The latter grows withn—« as a,~n". Such a series is
=-0.1 =1.67 =-11 = n
M= —0.150, Nyp=1.675, Nug 95 Nas divergent for any finiteg. For the second-order approximant
—0.267. 15(g), we find
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wr—r 02 2 15(9)=081Q 1% (g—). (21
12 i P Note that the diagonal Padg@proximants are always finite at
. e ; infinity, thus allowing the approximation of only a very nar-
10 410 row class of functiong37]. Contrary to this, the factor ap-
S g 1 proximants immediately catch the correct behavior at infin-
E 84 78 ity, their accuracy increasing with the approximation order.
g e 1 Hence, the self-similar factor approximants, being based on
§ 6'_ ] & an asymptotic expansion at zero, can correctly reproduce the
E o 4 behavior of the sought function for the whole range of its
] variable, including the behavior at infinity.
24
F. Expansion factor of a three-dimensional polymer chain
0

As another physical example, let us consider the expan-
sion factora(z) for a three-dimensional polymer chain with
excluded-volume interaction, where is a dimensionless

FIG. 6. Percentage errors ¢} (g) (solid ling) and Pj35(g)  coupling parametdi38,39. An asymptotic series of the form
(dashed ling compared with the numerical values of integiE8). (2), derived by means of perturbation the$B88], yields the
coefficientsfy=1 and

Az]_: 19141, A22:4.859, Ny1=— 0.008 62,
a,=%, a,=—2.075385396, az=6.296879676,

n22: _0120
a,= —25.057 25072, as=116.134785,

And for 15 (g), we obtain
ag= —594.716 63.

A31=31.220, A3,=13.317, Azz=3.464,
In the strong-coupling limit, it has been established numeri-

nz;=—0.000526, nz,=-—0.022, ngz=-—0.125. cally [37,3§ that «(z) can be accurately represented by

The most accurate Padgproximant, constructed with the a(z)=1.5310%%4+0.184 %5% (z—x). (22
same number of asymptotic termsHAgg3(g). This is com-
pared withl% (g) in Fig. 6.

Again, we see that the accuracy of the factor approximant _ _ _ _
highly surpasses that of the Paaleproximant. This is espe- A21=6.064, Azp=2.962, nz=0.105, nz,=0.235,
cially noticeable for large couplingg, where the Padap-  \ith the strong-coupling limit
proximant completely fails. ActuallyP(s3;(g) is finite for
g—oe, which is in contradiction with the behavior bfg) at a3 (2)=1.56Q%3%+ 0,151z %50 (z) (23
large g, where the integrall?) tends to zero,

For the approximan&? (z), we have

being very close to the exact numerical value. In the next
1(9)=1.0237 %% (g—). (19 order, the parameters of} (z) are

The factor approximants also decrease in the strong-coupling A3=7.019, A;,=4.635, Ag=2.262,
limit as

13(9)=0.806~"'%%  13(g)=0.80">'** (g—0).
(20 And the strong-coupling limit gives

n3l: 0033, n32:0.164, n33: 0151

Let us emphasize that all parameters of the self-similar factor a%(2)=1.551%38+0.166 %52 (z—x). (29
approximants are defined only through the weak-coupling
expansion. It looks almost doubtful that they can reasonabljgoth the coefficients as well as the powers of the strong-
extrapolate the behavior at the strong-coupling limit. Thecoupling divergence are very accurate, as compared to the
accuracy of the approximant) increases with their order. numerically determined behavior ef(z), with a percentage
Thus, for the approximanit (g), we arrive at the parameters error of 1%. The best Padgproximant here i®(3/3(2). In

Fig. 7, the percentage errors of;(z) and Pg;3(z) are

A41=43.965, A4p=23.064, A43=10.294, A4y=2.677, shown, compared with the numerically fitt89] equation
ngs;=—0.000025, ny=—0.00259, ny=—0.035, a(z)=(147.524+ 11.06%)01172 (25)
Na,=—0.124. As is evident, the factor approximant dramatically outper-
forms the Padepproximant. The latter completely fails at
In the strong-coupling limit, this yields large z— o, where it is finite, whilea(z) diverges. On the
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FIG. 7. Percentage errors of the approximants for the expansion FIG. 8. Percentage errors of the approximants for f_rictfqr(l)
factor a (2) (solid line) andPy33)(z) (dashed ling compared with ~ (solid lin€), Ppo7(t) (dotted ling, andPys/3(t) (dashed ling com-
numerical values. pared with an exact numerical solution of Eg7).

contrary, the factor approximant; (z) possesses the correct ~ Consider, first, the casm<1. Let m=0.85, 8=0.526,
behavior in the strong-coupling limit. Moreover, not only the @nd the initial conditiorf (0)=0.5. Equation(27) allows us
main asymptotic, ag—, term is very accurate, but the tO derive the short-time expansion fbt), presented as the
next term, describing the so-called correction to scaling, i$€ries(2) in powers of timet, simply by using the Taylor
also of good accuracy. Of special interest is the stmngexpansion formula and by taking successive derivatives of
coupling exponent Eq. (27). This givesf,=f(0) and

a;=—0.750, a,=0.102, a;=0.012,

(26)
ze a,=0.00226, as=0.000455, a=0.000086 1.

which is a kind of critical index for the polymer chajd0].
According to Muthukumar and Nickel'§38,39 numerical
estimate,vyy=0.5886. For the self-similar factor approxi-
mants, we have

By the standard procedure, we obtain the factor approximant
5 (t), with

AZl: —0.391+ 0116 y A22: A;l’ n21: 0.682
v; =0.585, v3 =0.587. +0.932, ny=n3;.

Recent numerical estimatep40,41] give the value v
=0.5877:0.0006, which is very close to} .

And the parameters fdi} (t) are

Az=—0.430+0.118, Ag=A%, Ag=—0.149,

G. Nonlinear differential equation for state-dependent solid

friction n3;=0.790+0.471,

n32: ngl, n33: —0.272.

Let us now demonstrate how the self-similar factor ap-The accuracy of the approximants can be checked against the
proximants can be employed for solving nonlinear differen-direct numerical solution of Eq27). In Fig. 8, we compare
tial equations. Let us consider the Ruina-Dieterich law ofthe percentage errors df (t) with those of the best Pade
solid friction between two solid surfaces sliding against eaCfapproximantsP[z,Z](t) and P35 (t). As we see, the factor
other (see Refs[42,43). The Ruina-Dieterich law involves approximant is considerably more accurate.
the so-called state variable denoted heréiasa dimension-
less form, which is usually thought to quantify the true area
of contacts of the asperities of two solid surfaces. The state
variablef obeys the following simple nonlinear differential
equation(put in dimensionless form both fdrandt):

IV. CRITICAL BEHAVIOR

Solutions to physical problems often display a critical be-
havior, when a functiorf(x) tends, at a critical poink,,
either to zero or to infinity. Self-similar factor approximants
df 1-m make it possible to describe these two types of critical be-
a:'g_f ' 27 havior, providing accurate estimates for the critical points as

well as for critical indices. If one is interested solely in the
where 8 andm are parameters. Equatid®7) possesses two critical behavior, then our approach reduces to the Park
qualitatively different types of solutions corresponding tomethod, as is discussed in Sec. Il. However, we would like to
m<1 andm>1. stress that the factor approximants not only describe well the
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critical neighborhood, but also provide an accurate approxi- % % = 10 = 18 =~ 20 =~ 25,
mation in the whole regiofi0,x.]. It is also important to
realize that, in order to achieve an accurate description, ont
does not necessarily require the knowledge of a large numbe %1 15
of terms in an asymptotic series, but only a few terms are
often sufficient. This applies to both types of critical points, 8 | 0
either zeros or singularities. 5
[o]
&
[=
A. Critical behavior near zero g 7 1°
An example of the first type is the function - ° N
f(x)=(cosyx)", (28) |
tending to zero at the critical point = w2/4=2.467 with the P ws | 10 15 2o a8
critical index 1/3. the coefficients of the asymptotic se(®s X axis title

arefo=1 and
0 FIG. 9. Percentage errors &% (x) (solid line) and Pz(x)

a,=—0.167, a,=—0.014, a;=—0.00355, (dotted ling as compared to functio(28).
B B B which diverges at the critical point;=1, with the critical
a,=—0.000982, as=-0.000295, ag=-0.0000937. jngex 1/2. The asymptotic seri¢®) has the coefficients,

=1 and
Notice that all coefficients here are negative. Such
asymptotic series with all coefficients of the same sign are a.=0637 a,=0.405 a.=0.364
known to be very difficult for any kind of resummation pro- ! P2 r ’
cedure{2]. But, with the factor approximant®), there is no 2,=0.299, ac=0281, as=0.248.

problem in approximating the sought function in the whole

]r::;gmn fromx=0 to the critical point. For the approximant This is again the case of a series with constant-sign coeffi-
2(x), we get cients, which is a difficult problem for resummation. For the
approximantf? (x), we find

Ayg=—0.405, Ayy= —0.024, Nyy=0.334, n,,=1.333. pproximants (), we fi

A,1=—0.990, A,,=0.778, ny;=—0.514, n,,=0.164.
In this approximation, the critical point,=|A,;| ~1=2.469 2 2 2 22
IS aI_ready close to the exact valu€/4f2.4_67. The SaMe  Thjs gives the critical point,=|A,;| ~*=1.010 and the criti-
quality of resglts is gbtamed for the critical indey;, which index|n,4| in a very good agreement with the exact val-
almost coincides with the exact index 1/3. For the next apy,es In the next order, with an accuracy up to three decimal

proximationf3 (x), we find digits, we obtain
Az;=—0.405, Az=—0.044, Az;=—0.005 41, Ay;=—1, A3=00912, Az=0.363,
N3 =0.333, nz=0.375, ng=2.791. Ng;=—0.501, n3,=0.091, ng3=0.146.

The approximant (x) is practically indistinguishable from The critical pointx,=|A3| =1 coincides with the exact
function (28) in the whole regiorf 0,x.]. The critical point  value, and the critical indejns,| is also practically equal to
X.=|Asy| “1=2.467 yields the exact value?/4 with a pre- the exact index 1/2. The best PaaigproximantPy;(x) is
cision of about 10°. The corresponding critical indems;  much less accurate, yielding the critical poigt= 1.064 and
differs from the exact index in the seventh decimal digit. Thea bad estimate for the critical index, equal to 1 instead of
best PadepproximantP(s;;(x) is much less accurate, giv- 1/2. The accuracy of the approximarfts(x) and Pay(X)

ing the critical pointx.=2.507 and a very inaccurate critical are compared in Fig. 10.

index equal to 1 instead of 1/3. The accuracie$ydfx) and

Plaiz(x) are compared in Fig. 9. C. Critical behavior in nonlinear differential equation
B. Critical singular behavi Critical behavior may arise in solutions of differential
- Critical singular behavior equations. For instance, the Ruina-Dieterich law of solid
In several physical problemg?2], the critical behavior is friction, given by Eq.(27), is qualitatively different form
described by the function <1 andm>1. Form<1, the solution has no zeros. But for

m>1, the solution becomes zero at a critical timeap-
proached with the critical index . Let m=1.5 and all

f(x)= e
) other parameters be the same as for the noncritical case con-

2arccox’ (29
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(dotted ling with respect to functiori29). (dotted ling compared with the numerical solution of E&7).

sidered in the preceding section. Then the critical tim&.is temperature. For example, the second derivative of the sus-
=0.33004. For the short-time expansion in powers of time ceptibility with respect to an external field
we havef,=1f(0)=0.5 and

52

a;=—1776, a,=—1.256, a;=—1.706, XE)Z):TleH:O (30)
J
a,=—3.024, a;=-6.114, a,=—13.388. is known[44] as the series expansion containing the powers

17 . . . . .
The asymptotic series strongly diverges. Constructing thé)(f)zv _ug ;?]g - The first coefficients of this expansion are

factor approximant? (t), we get
a;=24, a,=318, a;=3240, a,=28158,
A,=—3.049, A,,=—0.558, ny;=0.616, n,,=—0.181.
as=220680, ag=1604406, a,=11029560,
This gives the critical time,=|A,,| ~1=0.328 and the criti-
cal indexn,;, estimating rather well the corresponding exact ag=72559422.
valuest,=0.330 and Th=0.667, respectively. For the pa-

rameters off% (t), we derive The coefficients are of constant sign and are growing fast.

Applying the method of the factor approximants, we have in

Agy=—3.036, Agy= —1.676, Agg=—0.225, the second order
N 0.630, Mo - 0,086, N 0.260, Ay=—4.602, Ay=7.373, Ny=—4.300, Nny=0.571,
where we limit ourselves by three decimal digits. This gives

The critical timet.=|Ay| ~*=0.3294 approximates the ex- the critical pointv.=|A,; ~1=0.217 at which the function
act numerical value with a good accuracy, the error beingjiverges with the critical indexn,;|. These values can be
only —0.19%. The related critical indexs; is also close to  compared with accurate Monte Carlo calculatips] yield-
the exact index 0.667. The most accurate Paojsroximant ing the critical pointv,=0.218092, and with a refined
Pai3)(t) yields a much worse approximation, with the criti- analysis by means of integral approximafdd] giving the
cal timet.=0.341 34 and the critical index 1 instead of 2/3. critical index 4.37. In the third order, again with an accuracy
The relative accuracies of the approximarfi(x) and up to three decimals, we obtain

Prai3(x) are demonstrated in Fig. 11.
Az1=—4.601, Az=7.375, A= —44.934,

D. Two examples of critical phenomena in statistical physics Ny= —4.301, Ns=0571, na=0.
An analysis of critical behavior would not be complete
without considering critical phenomena of statistical me-Then the critical point i .= |Az,] ~1=0.217 and the critical
chanics. Consider, for instance, the three-dimensional spirindex is|ng;|, which are practically the same as in the sec-
1/2 Ising model with a simple cubic lattice. Thermodynamicond approximation. The best P'adpproximanﬂ?[lm](v) re-
characteristics of this model can be presented in the form ofults in rather inaccurate values for the critical point
high-temperature expansions in powers of the parameter =0.153 and the critical index equal to 1. The fourth-order
=tanh@/kgT), wherel is the exchange integral afidis the  factor approximant does not lead to a noticeable change of
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the critical parameters, as compared to the third-order one, V. DISCUSSION
also givingv.=0.217 and the critical index 4.301. The per-
centage errors of these estimates are about 1%.

As another example of high-temperature series expa
sions, let us consider such series for the-(@@) -dimensional
Ising model, defined by the Hamiltonian

By employing the self-similar approximation theory, we
r,’jave derived a class of approximants, which, because of their
form, we call theself-similar factor approximantsAll con-
trol parameters of this class of approximants are defined by
means of the accuracy-through-order relationship. These ap-
proximants reproducexactlya wide class of functions from
H= EI: (1- U?)_X% Uilffjl_ hz Ui17 BD  the sole knowledge of their asymptotic expansions. For other
: functions not from the exactly reproducible class, the factor
in which o, with «=1,2,3, are Pauli matrices, the index approximants provide a very high accuracy, which is essen-
enumerates the sites on the two-dimensional spatial latticdi@lly higher than that given by the best Paalgproximants
<|J> denotes nearest-neighbor pairs of siteis an effective constructed with the same number of asymptotic terms.
coupling parameter corresponding to the inverse temperature It is worth emphasizing that the class of exactly reproduc-
in the Euclidean formulation of field theory, ahdstands for  ible functions includes all rational functions that are ratios of
magnetic field. Here, we consider the triangular lattice. Letpolynomials. Hence, Padgpproximants are just a particular
us take, e.g., a series in powersxofor the mass ga- at  case of the factor approximants. Therefore, in all those cases

zero magnetic field, where Padapproximants are known to work well, such as,
e.g., the Stieltjes series, the factor approximants work with
F=E1—Eo=F(x), (32 the same accuracy. In the limiting case of rational functions,

both Padeand factor approximants coincide with each other.
However, the class of functions that are exactly reproducible
by means of factor approximants is essentially larger, includ-
ing noninteger powers of rational functions, which are not
rational functiong49]. This is why, the class of functions for
which factor approximants work well is much larger than
that where Padapproximants have a reasonable accuracy.
The self-similar factor approximants are able to reproduce
with a good accuracy various kinds of functions, diminishing
and increasing, monotonic and nonmonotonic, on finite or
For the parameters of the second-order factor approximarﬁ't"ﬁ”ite intervals. The. asymptotic series, u_sed for gonstrupt-
F2(x), we find ing the factor approximants, can ha_ve their coeff!ments with
alternating signs or with constant signs. The series can also
A= —4.7404, Ay=1.7404, n,;=0.6582, n,,=0.0691. be strongly divergent. Although the factor approximants are
derived from asymptotic series for a variable in the vicinity
The critical point, following from here, isx;=|A,]~!  of zero, they extrapolate well to the behavior of the sought
=0.2110. The mass gap tends to zeroxatas F~ (X, functions at infinity. The approximants are able to predict the
—X)”, with the critical indexv=n,,. For the third-order occurrence of critical phenomena, providing accurate values

which is the difference between the energy of the first ex
cited level and the ground-state energy. The sé@gfor this
case[46] has the coefficient§,=2 and
a1:_3, a2:_3, a3:_5.25, a4:_15.75,
as=—49.265625, ag=—173.3554688,

a;=—627.602783, ag=—2397.718506.

approximantF3 (x), we have for both the critical points and critical indices.
Note that a natural generalization involves combining the
Az=—4.7826, Az,=—3.5899, Az;=1.5136, factor approximants with the self-similar root approximants
and exponential approximants. The latter can be treated as a
n3;=0.6211, n3=0.0458, n33=0.0890. limiting case of the factor approximants, since the renormal-

ized factor function(8) tends, as,—, to an exponential.
Hence, the critical point isx.;=|Ag '=0.2091 and the The self-similar exponential approximants, as has been re-
critical index isv=nj3;. In the next order, for the parameters cently showr{47], enjoy the property of exactly reconstruct-

of F}(x), we obtain ing exponential functions. Therefore, the factor approxi-
mants, together with their limiting exponential forms, and
Ay=—4.7629, Asp=—2.1880, As3=3.9403, being combined with the self-similar root approximants, pro-
vide a powerful tool for an accurate reconstruction of a very
A4=1.2670, wide class of functions.

Since the self-similar approximation theory is capable of
Ny, =0.6445, n,,=0.0375, nyus=0.0007, n.,=0.1178.  capturing the features of rather complex functions with very
good accuracy from the knowledge of a few numerical coef-
This results in the critical point.=|A4;| ~'=0.2100 and the ficients, one can view this approach as a complexity reduc-
critical index v=n,;. These values can be compared withtion scheme, or better as an encoding-decoding scheme. In
those summarized in Ref44], where x. varies between the language of algorithmic complexity theddg], the dif-
0.2097 and 0.2098, while the indexis between 0.627 and ferentiable functions with only isolated critical points have a
0.641, which is very close to our results. low degree of complexity. And such functions can be effec-

026109-11



S. GLUZMAN, V. I. YUKALOV, AND D. SORNETTE PHYSICAL REVIEW E67, 026109 (2003
tively reconstructed from their asymptotic expansions. when the largex behavior is available, or to the self-similar
We would like to stress that, employing the self-similar factor approximants

approximation theory, we do not postulate the final form of
the resulting approximants but derive them by imposing the
property of self-similarity for the subsequent terms of pertur-
bative expansions. Thus, applying this procedure to a simplé only the smallx expansion is known. In both these cases
series expansion, we obtain the self-similar exponential apall powersny,n,, ... n, are different. And both types of
proximants. When two series expansions at two differenthese formulas do not have the form of a continued function,
points are known, we come to crossover formulas presentelut possess a more general structure. At the same time, in
by the self-similar root approximants. And applying the self-trying to sum an asymptotic series by invoking a continued-
similar approximation theory to a product expansion, we defunction representatiofi50], one confronts the problem of
rive the self-similar factor approximants. The fact that ourchoice, since there is no criterion for preferring some func-
approximants are derived but not postulated constitutes théons to others, among the infinite possibilities. In contrast,
principal difference between them and the continuedsuch an arbitrariness is absent in the self-similar approxima-
function representation discussed by Bender and Orszdépn theory, where the form of approximants is not postulated

(L+A)"(1+AX)"2- - (L+AX) ",

[50]. The idea of this representation is to construct approxibut is derived, so that it is prescribed by the group self-
mants in the following way. Suppose the first approximationsimilarity of perturbative terms.

to a considered problem has the form of a functigfc, ,x),
with ¢, being a constant. Then tHah continued-function
approximation50] is postulated to be

fi(cy,xfi(cy, ... xfi(c,x)) .. .).

For instance, if the first approximation is{Ik;x)", then the
kth continued-function approximation is defined as

{1+cx[1+Cx(1+ - -+cx)"]" 10

with the same powers. Contrary to this, in the self-similar

approximation theory, starting from @c;)" we come to
either the self-similar root approximants

(- (LA "+ AXP "2+ - -+ AXKI K,

At first glance, it may appear streage that, knowing solely
the behavior of a function in the vicinity of zero, it is pos-
sible to correctly predict its behavior at infinity or near a
critical point. However, there is no miracle here. The coeffi-
cients of an asymptotic series contain a great deal of infor-
mation about their parent function, provided that the latter
are differentiable up to sufficiently high order. Then, the
main problem is that this information is hidden, encoded.
And one needs to possess a guide and a key for decoding that
information. The idea ofiroup self-similarityfor subsequent
approximationg17—27 serves as a guide pointing at the
general properties of the sought function, which allows for
the extrapolation of the given approximations. And the self-
similar factor approximants are a practical key for realizing
this extrapolation.
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