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Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice
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Motivated by the large strain shear of loose granular materials, we introduced a model that consists of
consecutive optimization and restructuring steps leading to a self-organization of a density field. The extensive
connections to other models of statistical physics are discussed. We investigate our model on a hierarchical
lattice that allows an exact asymptotic renormalization treatment. A surprisingly close analogy is observed
between the simulation results on the regular and the hierarchical lattices. The dynamics is characterized by the
breakdown of ergodicity, by unusual system size effects in the development of the average density, as well as
by the age distribution, the latter showing multifractal properties.
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[. INTRODUCTION duced a model where consecutive steps of optimization
(finding the weakest part of the sampland restructuring
Slow dynamics with no separation of time scales repre{random rearrangement of grajntakes place. Assuming
sent a major challenge of statistical physics. Experimentairanslational invariance in the shear direction, the model be-
and simulation approaches are extremely difficult, so in mostomes two dimensional. We have studied the model numeri-
cases new ideas and models are needed for the understandoaly in detail on regular latticd$], however, it is difficult to
of this kind of problems. go beyond the simple description of numerical simulations. It
There can be different roots of slow dynamics: systemsurned out to show unexpected properties including ex-
close to the critical point slow down enormously due to thetremely slow dynamics and unusual size dependébieak-
increasing characteristic time. Phase separation is often agown of ergodicity, and it provides interesting predictions
companied by a slow coarsening procgsk In glasses the  for the granular system.
free energy landscape is so complicated and structured that The aim of this paper is to study this same model on a
the system never finds the global minimum and shows &jerarchical diamond lattice both numerically and analyti-
history dependent behavior called agir&}. Slow dynamics  cally, and to compare these results with the simulations on
may also occur in intrinsically dynamic, driven systems lead+the Euclidean lattice. We find that despite the very different
ing to scale free fractal structures. The name ofconnectivities of these two lattices, the qualitative behavior
self-organized criticality covers a whole family of related js much the same; for some properties, there is a quantitative
models[3]. matching as well. The recursive nature of the hierarchical
In this paper we study a modéhtroduced in Ref[4]),  |attice, however, aids the analytical treatment greatly, thus
where the system exhibits a very slow evolution with a ten-he|ping us in getting a deeper understanding of the problem.
dency of getting stuck in metastable states. However, the The paper is organized as follows: In the following sec-
model is different from those studied earlier in the sense thaon we define the model in general and on the hierarchical
there is an element of both energy as well as entropy barriengttice. In Sec. IlI, the relation of the model with other prob-
being present as a result of the rules of evolution. We ar¢ems of statistical physics is discussed. In Sec. IV, the nu-
able to directly link the slow evolution to a breakdown of merical results are shown and compared with the regular
ergodicity in the dynamics. This then leads to several interiattice simulations. In Sec. V we present the exact asymptotic
esting features of the model such as nontrivial system sizgolution of the model. We conclude in Sec. VI. Appendixes A

effects, a multifractal “age” distribution, and a nontrivial and B contain technical details of the calculations used in
temporal evolution. Sec. V.

Motivated by our study of shearing loose granular mate-
rials [4], we report in this paper a mechanism leading to slow
dyr_1amics. In granular materials displa_cement occurs in al0- || THE MODEL AND THE HIERARCHICAL LATTICE
calized manner, in “shear bands” which are formed along
the weakest parts of the samples. During shear, grains can The model that we study in this paper is defined as fol-
rearrange themselves and occasionally strengthen the lodalws: A two-dimensional field is characterized by a single
structure. In such a case, the shear band finds a new configsealar parameter, the densityx,y). Initially this density is
ration that avoids this zone. Based on this picture we introgenerated randomly from the distributign(o). At every
step we search for thminimal path?P* that is defined as
follows. The minimal path is a continuous, directed p#&th
*Present address: Santa Fe Institute, 1399 Hyde Park Road, Saittet spans the system in tRealirection and the surs of the
Fe, NM 87501. local densities along it,
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ogy between the results obtained on both kinds of lattices is
extremely close. Therefore, the analytical solution obtained
here provides a better understanding of the Euclidean lattice
case.

@ (b)

FIG. 1. The zerotha), first (b), and secondc) generations of
the hierarchical lattice.

IIl. RELATION TO OTHER STATISTICAL PHYSICS
MODELS

Before reporting the result of numerical simulations on
the hierarchical lattice, we point out some analogies that can
S(P= > exy), (1) be drawn between our model and other diverse problems of
ye? statistical physics.

The rule of our model, finding the extremal directed span-
is minimal among all possible paths. The minimal path is thening path at every instant, is similar to finding the ground
pathP* for which S(P*) is minimum. state of a directed polymer in a random poteritidl]. How-

Once the minimal path is found the density values of theever, in our case this potential is uncorrelated only at the
points belonging to the minimal patlx,{y) € P* are replaced beginning; it changes in time through the process already
by new densities randomly picked from the distribution described above, of ascribing new densities to all sites along
p: (o). the minimal path. The shape of the path on Euclidean lattices

The above process is repeated as long as desired. A singkefound to be self-affine in the directed polymer problems.
time step consists of both searching for the minimal path, a¥he model studied here changes the underlying potential
well as refreshing the local densities along it. landscape in a self-organized way and naturally induces cor-

In the following we restrict ourselves to the case whgre relations. These in turn change the self-affine exponent of the
andp, are uniform distributions in the interv§D:1]. Our  path. This feature is studied numerically in an earlier paper
model is discretized on a lattice. In R¢b] we report on  [5].
detailed numerical results for various properties of the model The rules of our model can be regarded as a generaliza-
on the Euclidean square lattice. The analytic treatment on thiion of the Bak-Sneppen model of evolutigd2], but in
square lattice has not been possible so far. However, in thisigher dimensions. Indeed, the constraint of finding the mini-
paper, we obtain exact asymptotic solutions for the model omal path and then changing it, puts this model in a class of
the hierarchical diamond lattice. extremal models studied in contexts as different as interface

The hierarchical diamond lattide] is constructed as fol- depinning[13] and flux creep[14]. However, there is an
lows. We first consider a single bond connecting two pointdmportant difference between our model and other extremal
A andB. This constitutes the most elementageneration ®  models. In the latter case, the systénsually one dimen-
lattice. The first generation lattice is obtained by substitutingsiona) reaches a steady state that is “self-organized critical,”
the unique bond by an elementary “diamond” of four bonds,in the sense that there is a power-law distribution for ava-
i.e., two parallel connections each consisting of two bonds ifanches in the steady state. In the case of our model, no
seried Fig. 1(b)]. The next generation is obtained recursively steady state is reached and all quantities depend on time. As
by the substitution of each bond by a diamdidg. 1(c)].  we will see, we can define avalanches that are indeed power-
Repeating the above procedumd times, produces a law distributed, but always with time-dependent prefactors.
Nth-generation hierarchical lattice. This lattice has a dimenThe difference is best illustrated if we look at the simplest of
sion equal to 2, and hence can be compared with its Euclidthese extremal models, the Bak-Sneppen m¢#ig]. This
ian counterpart. model is defined on a one-dimensional periodic array of ran-

All results are based on the exploitation of the recursivitydom numbers where at every update, the least and its neigh-
of the construction of the lattice. If one can compute thebors are refreshed from a given time independent probability
properties of an elementary diamond and transform this intalistribution. Our model is, however, related to a variant of
a single bond endowed with the same, a recursive use of thtkis in which only the least is changed. In one dimension,
procedure clearly allows the reduction of the entire latticechanging only the least does not lead to a very interesting
back to a single bond thus determining the global behaviobehavior. However, in two dimensions, as we will see,
This is a real space renormalization procedure and the struchanging only the minimal path leads to very nontrivial ef-
ture of the lattice makes such renormalization treatments exects. Further, the simple minded variation of the original
act. Hierarchical lattices have been widely used to study sevBak-Sneppen model turns out to be very useful in solving
eral phenomena such as percolati@, spin models[9],  our model on the hierarchical lattice.
sums of directed patH40], etc. However, usually there isa  There are also connections between this model and the
price to pay in that the result may differ from its Euclidean apparently unrelated problem of a random walk in a disor-
lattice counterpart. There is no general formalism by whichdered potential. If we consider a one-dimensional cross sec-
means to estimate the validity of hierarchical lattice resultgion of the model perpendicular to the minimal path, we
for the Euclidean lattice. Therefore, it is necessary to resortould imagine the point through which the interface passes
to numerical results to assess the similarity between the twthrough, as the position of a random walker. The subsequent
cases. It will be shown in the following that indeed the anal-dynamics can then be interpreted as that of a walker moving
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through an initially random potential, modifying it along the with the probability becoming smaller and smaller as time
way. While the actual dynamics of the interface in two di- passes.
mensions is quite complicated to translate in its entirety into To push forward the analogy with a glassy system, we
one dimension, it is possible to do so in the simplest cas#ill see that we observe a breakdown of ergodicity, in the
when only corner flips are allowed for the interface. For thesense that the activity is not spread uniformly throughout the
walker, this simply translates to the condition that the subseSystem. Hence if we partition a system into two subparts
quent position of the walker is on one of the neighboring(€ven for large sizgs the relative “age” of the two sub-
sites of the present one, chosen by an inequality conditiorsystems will tend to a broad distribution, and not to a narrow
The value at the site the walker has just left, is also change@®n€ @S expected for homogeneous systems. This implies that
We have studied such an active walker model in dél the scaling of the compaction in both space and time is ex-
and find that it leads to logarithmically slow dynamics. pected to be nontrivial.

Because of the extremal condition used in finding the
minimal path at each time step, the solution of the model on IV. NUMERICAL RESULTS
the hierarchical lattice uses results from extreme-value sta-
tistics[16]. We also find that the “age” distribution, i.e., the
probability distribution of the number of times up to tiriig tices.

that a given site has been a part of the shear tand has The most important quantity of the system is therage
hence been changgchas many similarities with models of gensity We define it as the mean density of all sites not
fragmentation studied in various contekis]. _ belonging to the minimal path and we denote it (@)(t).
There has been recently an upsurge of interest in systemMge importance of not including the minimal path in the
eXhlbltlng an anomalOUS|y slow relaxation. Such a behaVioraverage density is that this definition ensures (@atmono_
is generically reminiscent of a glassy behavior, and this analonically increases with time. Furthermore, as we will see, at
ogy has motivated a number of stud[ds$]. Just to mention |ate times the minimal path mostly remains unchanged. Since
one example related to granular media, the slow compactiowe keep refreshing the same bonds again and again, the den-
of sand under repeated tappifg9,2Q displays analogies sity along the minimal path is simply taken from the known
with glasses obtained at different cooling rates. A number oflistribution p,(¢) and there is no need to incorporate this
different modelings of this compaction process have beeinto (o).
proposed6,18,21-32 Some of these models emphasize the In our case, ap;=p; is a uniform distribution between 0
role of a broad distribution of energy barriers that have to beand 1, it is clear from the rules that the system evolves
overcome through thermal activation. This naturally leads tdowards the limiting state op(x,y)=1 everywhere. It is
the occurrence of a wide distribution of characteristic timeshatural thus to plot +(¢)(t), as done in Fig. 2.
with a slower and slower dynamics as the easiest barriers are In Fig. 2 we present both theXL square(uppe) and
exhausted. Models of this sort have been looked at in a widBierarchical (lower) numerical results foKe)(t). We can
variety of contexts ranging from trap mode|83] and make two immediate observations. Thé (t/ZN) scaling
anomalous diffusion in the presence of quenched disordé¥orks nicely up to about unity after which a system size
[34] to constrained spin systeni85], granular compaction dependent relaxation is observed which is slower for larger
[6], and aging in soft solidg36]. Other approaches put more Systems. The density decay seems to be slower than any
emphasis on the collective nature of the necessary rearrangeower law. The other quantity that we study in detail is the
ment allowing for a relaxatiofi18,21-32. As time passes, Hamming distancei.e., the number of different bonds be-
the relaxation has to become more and more cooperativéveen consecutive minimal paths. We denote this quantity by
and hence the barrier is more entropic than energetic. Models The value ofd may vary from 0 toL (2V).
with entropic barriers have been well studied in other con- As can be seen in Fig. 3, in both lattices, at an early stage
texts too, such as the backgammon md&sl. the mean Hamming distance is close to the system(s&ze
In the model we study in this paper, as we shall see, wéwo consecutive paths do not overlap aj.dlithen decreases
observe a very slow dynamics that can indeed be comparemonotonically to 0. We recall that when the distance is equal
with such glassy behavior. We do not include any temperato 0, then the two successive conformations of the minimal
ture stricto sensuhowever, the randomness of the local den-path are identical, in spite of the total renewal of random
sities can in some way be compared with thermal noise. Théensities along them. This indicates that minimal paths have
crude classification we proposed above between energetiztendency to remain more and more persistent as the system
and entropic emphasis is not quite suited to our model, wheréages.”
both aspects are simultaneously present. The necessary co-
operati\(e_ nature of efficient events is in_cluded _in the search V. ANALYTICAL RESULTS ON THE HIERARCHICAL
for a minimal path where all sites contribute with the same DIAMOND LATTICE
weight. However, docal dense configuration can occur at
any time, and remain quenched thereafter for very long. This In the following we show how some of the above listed
is like an energy barrier since in order for the minimal pathproperties of our model can be understood analytically on the
to go through this region, all minimal paths with smaller hierarchical lattice. The techniques we use are essentially
energies need to be eliminated. This is thus a very rare evetiiose of extreme value statistics.

In this section we present briefly the most important nu-
merical results on both the hierarchical and Euclidean lat-
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FIG. 2. The difference of the
average density from its
asymptotic value 1 as a function
of time. The system sizes are
L=232,64,128,256,512 for the
square lattice(left) and N=2 to
N=7 for the hierarchical lattice
(right) from bottom to top, respec-
tively. The average was done over
all the inactive sites in the lattice
and for an ensemble of 20 to 1000
(1Y) N N N S S S A 0.01 L—n R o ¥ SV, o samples. System size increases
107 107 10! 103 10° 10° 10" 10} 10° 10° from bottom to top in both cases.

t/L t/2N

A. Summary of the solution The next step is the coupling in parallel of two series

We use the hierarchical nature of the diamond lattice t"OUPI€ts. The density of the shear band is simply the mini-
calculate the average density for levglknowing the results Mum of that of the two subsystems. The average density of
on levelN—1. the bulk contains two contributions: the average densities of

Let us introduce the following notations. The averagethe, subsystems as WeII. as.the average density of one of the
density of the inactive sites in éublattice level N is active pathgthe one which is the larger of the two contend-

oM)(t), the density of the active sites¥€V(t). In (sublat- €S for the global minimal pajh

tices we define the active site to be the minimal path of this

N) (1) = mind xS(N-1) S(N-1)
(sublattice, regardless of whether it is a part of the global XT(1) =min{x, (tu).Xg (ta)},

minimal path or not. We will use the indicésr, u, andd for N AN+1 )
left, right, up, and down, respectively, to indicate the parts of oM ()= (47-2 ){QS(Nfl)(t )+ QS(Nfl)(td)}
a diamond[(sublattice] corresponding to the illustration in 2(4N—2N) Tt ! d
Figs. 1b), 1(c). N

A generationN lattice is constructed by putting together i 2 ma){XS(Nfl)(t ) XS(N—l)(t )
four generatioN—1 sublatticegsee Fig. 1 with two series (4N —2N) u u/»d dari

couplings and one parallel coupling. The series coupling of
the sublattices is easily taken into account, both the densitwhere 4' is the total number of bonds,*2s the number of
of the minimal path as well as the density of the sites in thehe bonds in a path on a generatidrattice, and the multi-

bulk are simply averaged: plicative factors in the above equation are the appropriate
s e (N—1 N—1 fractions of bonds at generatiohs(see Fig. 1
XISNDI) = SIxN D) +x{M D0 ]=xN D), There is a further subtlety here. The timeounts the total

(2)  number of updates at generatidh However, the “time”
relevant for a subsystem at generatidn-1 is simply the
number of times the subsystem itself has been updated. Since
only one of the two systems in parallel is updated at every

where the superscripd refers to two systems coupled in instant, the “age” of a subsystem at levdl-1 is less than

eIt =3[ M) +eM PD]=e™ Vv,

series. and is denoted by, andt, in the above equation. In Appen-
1
1 FIG. 3. The average Hamming
10 distance versus time for the square
lattice (left) and hierarchical lat-
102 . tice (right). The same system sizes
9 Q were scaled together as in Fig. 2.
~ . .3 ~ In both figures, the analytical pre-
310 diction 1/(t+1) is plotted over
the data. Note that scaling with
10% system size is excellent for the hi-
erarchical lattice while it seems to
5 10° M T T display systematic corrections for
10 103 107! 10! 103 10 the Euclidean case.

¢/2Y
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dix A we prove that the relative age of either subsystgt  with py(T;t)=46(t—T) andN=1. In other words, the age of
or ty/t is uniformly distributed between 0 and 1 in the limit the bonds or subsystems can be obtained by a “fragmenta-
of a large timet. Thus we rewrite the second equation of Eq.tion” process. At every level to get the age of the upper and

(3), lower arms in the parallel coupling the age of the diamond is
cut into two pieces with a uniform distribution. Not surpris-
(AN—2N+1y 1 o oN q ingly, equations similar to the above are well known in the
oMN(t)= — N ff oM I(t)dt' + @—2% 1 context of models of fragmentatidi 7].
(47=2%) 0 The solution of the above recursion is

><ftma>{x(""1)(t’),x(N’l)(t—t’)]dt’. (4) _1[n/mINt
. LGP

pN(T;t)_Y (N—1)! (6)

The second term in Eq4) comes from the competition be- for T<t. Introducing the relative agé=T/t, we observe
tween the minimal paths in the two subsystems coupled ifhat the above distribution becomes independent of the time
parallel. Only one of these is the global minimum and thet (the 1t prefactor is absorbed in the measd@=dT/t).
larger has hence to be incorporated into the density of the \We note here that models of fragmentation which are de-
system. At every time step that a subsystem is updated thscribed by similar equations usually look for a steady state
minimal path of that subsystem can switch to either sidesolution, i.e., arN independent solution at late times. How-
Since the two parallel subsystems are entirely disjunct, thever, in our case, as explained below, telependence is
path changes sides if the mean of the random numbers geprucial and has necessarily to be kept. Further, the order in
erated along the minimal path is larger than the minimal patihich N andt are taken to infinity is very important as well.
in the other subsystem. This competition is present at all |t js interesting to note that the above distribution can be
levels of the hierarchy. simply expressed in the framework of multifractality, which
The problem of the minimal path in the parallel coupling was introduced to characterize the scale dependence of sta-
can be thus described by a simple model that we call th@stical distributions. This analysis naturally provides a gen-
two-site model The two-site model is defined as follows. eralized “dimensional analysis” of a local quantity with a
There are two sites, each with a single value generated by @stribution p, (x). We introduce the scaling index and

random number drawn from a given distributip(x) (inour  associated fractal dimensidie) of the support of the set of
case at leveN it is the sum of 2 independent random num- x values defined through
bers, each of which is taken from the uniform distribution

between 0 and 1). We choose the site with the smaller value Xoc L%,
and refresh it with a random number generated from the (7)
same distributior{38]. The dynamics consists of repeating xp(x)ocLf(@)—d

this procedure. Important features of this problem turn out

not to depend on the distributign(x), since the entire evo- where d is the space dimension. Alternativelyx
lution is only based on the ordering of the values. As a result=In(x)/In(L) andf(a)=d+In[xp_ (X)}/In(L). In our case, the
one can map any bounded distribution onto a uniform ondocal quantityx is the relative aged=T/t andd=2, thus
and preserve the same history of the activity. It is thus easy

to deduce that the probability of having an active site in one In( )

subsystem for a given time, knowing the age of the system, a= In(L)"
is independent op. We present in Appendix B an analytical
derivation of relevant properties of this problem.
fla)=2+ a+(m—m>(|n(—(1)+1+|n[|n(2)]
B. Age distribution
) In[In(L/2)]
We have seen that as a result of the parallel coupling, the B ERE (8)

time spent in one subsystem, or the “age” of a subsystgm,

differs from the actual time and thaté/t is uniformly dis- h h - ;
. . . . the Stirling f la, Ag=2
tributed between 0 and 1 in the two-site model. RepeatmgV; 1er|env;/ﬁis ﬁlr\;?t uv\slgdhav‘ea Stirling formula, assumi

the above argument from the entire system down to a single

bond, we can extract the statistical distribution of ages rela- IN(—a) 1+2In(2)+In[In(2)] 1
tive to the total time. fla)=at o+ In(2 (I L )
Let py(T;t) be the statistical distribution that a given n(2) n(2) i )(9)

bond was updatedxactly Ttimes at timet in a lattice of
generatiorN. Using the above argument, we can relate thes

Svhere in the limit of an infinite system size—c, the cor-
distributions of different generations through the relation y T

rection termO[ 1/In(L)] vanishes. Due to this formalism we

Cpy(t':t) arriye at asystem size independent de_sc_ripti_on qf the distri-

DN+1(T;t)=f Nt (5)  bution of relative agealthough the distribution itself de-
L pends orlL. Moreover, the interpretation of the formalism is
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25 T T 1 The recursion relation in Eqé4) is composed of two
terms. Let us study the first term. As the integration opera-
tion is additive we can consider separately all the compo-
nents of a lattice of generatids; from subsystems of gen-
erationN—1 right upto individual bonds.

First we consider the generation 1 lattice, the simple dia-
mond. The two-site model gives the exact time dependence
of the inactive bonds in the asymptotic linfgee Appendix
B) which is 1-B®)(t)c1/\/t. In order to get the contribu-
tion of these bonds we have to complete the integral of Eq.
(4), the expectation value of ~*2, with the correct “age”
distribution of these subsystems. Note that we calculate the
age of a diamondlevel 1 object not a bond. Therefore in a

FIG. 4. Multifractal spectrum of thé&elative) age distribution in  level N system we shall uspy_+(T;t) for the age distribu-
the hierarchical latticex gives the scaling exponent of the age with tion:
the system size, anfithe corresponding fractal dimension of the
support of the set of sites contributing to a given

0
6 5 4 3 2 -1 0
o

1

1—<el>°<t‘1’2f 6%%py_1(T;t)d In( )
0

rather natural. The subset of sites whose age scales as a

power law of the system sizé=L* has a fractal dimension =t‘1/2f101/2[_|n(0)]N2d In(6)
f(a@). 0 (N-2)!

Figure 4 shows the asymptotic form of the multifractal
spectrum. The range af values corresponding to a positive 12 one1 7 xN 2 expl —x)dx
fractal dimension isayi,~—5.33 anda .~ —0.15. The o (N=2)!

scaling exponent characterizing the maximum number of

sites g is the one for which is maximum, i.e.f=2, and =t Y2 /2, (14)

henceay= —1/In(2)~—1.44. Let us emphasize that this de-

scription is only valid for very large times. Otherwise, the where(p;) is the contribution of sublattices of generation

finite cutoff in the time distribution will affect the multifrac- to the average density.

tal spectrum. Moreover, we have discarded correction terms The above result has two important implications. First, the

that will disappear as 1/, i.e., very slowly. This may time dependence of the sublattice,/fl/is preserved on the

render this spectrum difficult to observe numerically. global scale. Second, the statistical distribution of ages gives

This analySiS shows that the relative @does not scale rise to a System size dependence’ i_e.’ a power-|aw’0f

with L in a unique fashion. When computing a moment of\hich in the above example displays a trivial exponent 1.

orderm, only one scaling set dominates. The precise value ofjqre generally, this exponent i€ — 1/2), as derived above.

this dominanta depends om. It corresponds to the condi-  The above expression accounts for about half of the

tion df(a)/da=—m or bonds. The next term that enters in the coupling is the inac-
tive minimal paths in the level 2 subsystepfég. 1(c)]. The

(10) length of these paths is?24 bonds. The two-site model
predicts an asymptotict ¥4 time dependence for 1

—B®(t). Thus here we have to use the moment of order
unless the corresponding valuefdé negative. The moment —1/4 and the age at generatidh-2,
then varies as

-1

(M= 3 Dine2)’

1
(oM=L, (1) 1—(@a)ot™ ¥ fo 6"y o(T;t)d In(6)
where % yN-3
—+—1/4 N—2 —
_ B =t (413) fo (N=3)1 exp—x)dx
7(m)=f(a(m))—d+ma(m). (12
In our example =t~ 14(3/4)2L IN43)/In(2), (15)
In(m+1) We see in this example a nontrivial scaling with the system
T(m)=— In(—2) (13 size and a slower time dependence.

We can carry out this same procedure for higher genera-
tion of subsystems. The length of the path in a lavelb-

C. Average density lattice isn=2', thus their contribution is
Now we can use the above results to get the final form of '
the time evolution of the average density. 1— (o)t~ ¥N(1—1/n)lL (A~ /In(2) (16)

026108-6



SLOW RELAXATION DUE TO OPTIMIZATION AND . . . PHYSICAL REVIEW E67, 026108 (2003

Thus we observe that the scaling of the mean density can be 1 =
cast into the form of a sum of power laws with a vanishing [
exponent 1/=2"N and thus a slower and slower decay to
zero. Each of these terms has a prefactor that exhibits a dif-
ferent scaling withL, and hence, the aging of different sys-

tem sizes cannot be accounted for by a simple reduced time Y
such ag/L. The latter only holds for the first subsgialf of T 0l
the system sizeand not the successive hierarchy of minimal — '

paths. This argument explains why the time evolution of the
mean density seemed to follow a unique curve when plotted
as a function oft/L for early times. However, as time in-
creases, we note a breakdown of this simple scaling, and
larger systems shows a slower and slower increase in the
average density. It is interesting to note, however, that for
(extremely large times(i.e., vanishing exponent i) the
moment will depend only on the combinatioh. "), This
exponent that appears linis the« value of the largest fractal FIG. 5_. The test of the analytical rf_asult. The_nume_rical data are
dimension,f=2, a= ay in the multifractal spectrum. plotted with ;ymbol§; the correspondlng analytical with data solid
The above analysis is, however, valid only for very late!ines. T_he hierarchical level i8l=1,2,3,4 from bottom to top,
times, after a long transient. The sum rafidentically dis- ~ 'eSPectively.
tributed random variablegvhen each individual variable is
taken from the uniform distributiorcan be approximated by
a power-law distribution, only at late times. Before that, itis For a minimal path of lengtli =2", we are interested in
well approximated by a Gaussian, by the central limit theothe maximum value of the sum éfrandom numbers over a
rem. It is only when we are pushed to the tails of the distri-number of realizations equal to the ageror large¢, the
bution that the power-law regime occurs. However, the exdistribution of the average element in the sum converges
tremizing rule makes this inevitable, though after a longtowards a Gaussian of average 1/2 and standard deviation
transient. For instance, for a generation 3 minimal path, coni/\/12¢. The expectation value of the largest such element
sisting of eight bonds in series, this transient aging periodver a timet is thus such that
lasts for aboutt~8!~40000 time stepst thus has to be
much larger than this so that the lower limit of the integral in o 2@
Eqg. (14) can be taken to 0. We see that our computation L \/2—
. . . T
becomes strictly applicable only for extremely late times.
Finally, we put together all the information we have on . iq imnortant to note that this expression is valid for lafge
the increase of the density of the inactive bonds of the hierg,q moderate, whereas we previously considered the limit
archical Iattlce.. . . . of larget and moderatd.. The order of the limits plays a
1) Th_e lattice is a co“IIec_tloT of two S'te systems fr(_)m crucial role. The mean value of the densities along the mini-
level 1<i<N where the “aging” of a bond in any level is o) hath thus departs only very slowly from 1/2. This slow
given by Eq.(B7). . . hange of the density of the sites along the minimal path in
(2) The number of bonds in each level gives a prefactor ok, piays a crucial role in the very slow decay of the mean

N—i N
2 I/(Zh_ 1). distribut h level Its i qdi density in spite of the vanishing fraction of bonds involved.
(3) The age distribution at each level results in an addi-ry, departure from 1/2 varies roughly @ (t). Taking such

tlor\1;\':/1I ff"?‘Ct?lr as t”’t]thf(jl-IG). , it for th densit _a form into account, we see that the average density does not
€ finally get the Tollowing resuft for the average densi y'converge to 1 any longer, just as if some bonds were

0.01

D. Intermediate time behavior of the average density

exp[—6€(x—1/2)2]dx~%. (19

N N—i - quenched close to their average value 1/2, up to a very
2 a(i)L= : . ;
oM(t)=1— E R hi A (17) slowly evolving correction. Thus numerically, one can
=1\ 2N—1/ (t)P® achieve a reasonable fit of the evolution@fto values dif-
_ , N _ ferent from 1. However, as the time window is enlarged, the
where(usingn=2' andL =2" for a lattice of levelN) effective asymptoti@ increases. Reciprocally, extending the

system size, this asymptote decreases. Thus, in spite of the
quality of the fits that can be produced this way, we underline
the fact that such an approach is only applicable to a fixed

a(i)=T(1n)(nH¥n=2(1—1/n)',

b(i)=1/n, time or system size window.
I n) (19
. n(1—1/n ) )
z(i)=— In(—2) E. Hamming distance

Let us now consider the overlap function shown in Fig. 3.
Figure 5 visualizes this result compared with the numericaFor the hierarchical lattice, the overlap has a simple interpre-
data. tation. We have seen that, at least for large times, most of the
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activity essentially takes place along the same path. Howshow in Appendix A that this probability is equal to tL/(
ever, from time to time, the minimal path jumps from one +1), and thus for large times,

conformation to another, whose distance to the previous one

is quantified by the Hamming distance. The scarcity of the PL(d=2Nt)~1k. (20
jumps allows us to neglect the occurrence of simultaneous

multiple jumps. Let us define the probabiliB; (d,t) as the L€t us now consider a smaller jump size, iresN—1. This
probability that a jump equal td=2" takes place, i.e., the means that one half of the actual minimal path should move

probability that the current path differs from the previous one!© & different configuration. Thus we focus on a subsystem of

by d sites in a system of size=2N. This quantity, apart size L/g,_ whose age i9. In Appendix A, we show that the
from containing information about how the average value ofProbability Zfor such an age ig|(T,t)=2(T+1)/(t+1)(t
d changes with time, is also the natural analog of an “ava-T2)~2T/t* [see Eq.(A4)]. Moreover, we have two such
lanche distribution” in this model. As will be seen further Subsystems in series and thus the probability that the Ham-
down, this quantity does indeed decay for large times as J1ng distance id./2 in a system of sizé is approximately
power law of the distance like in many other self-organized twice the probability that in one subsystem the Hamming
critical models. However, the distribution has a time-distance is equal to the system sigg,,(L/2}t). Integrating
dependent prefactor unlike other models with a true stead@Ver all imesT with the above probability we have
State.

F.ornz.N, we have to con_sider a jump at.the largest scale PL(L/Z,t)~2f2—I EdT=4/t. 2
available in the system. At this level, the lattice can be coarse =T
grained as a generation 1 lattice. The probability for such a
jump to occur is equal to the probability that in a two-site For smaller jumps, we can repeat the same argument recur-
model, the activity moves from one site to the other one. Wesively, to obtain

t(m Tn-n+12T4 2T, 2Tn-n 22N 2
SR x dT;---dTy_p= =—05. (22)
0 L

n 4y ~o2N-n
P L(2"t)=2 fo . T =p

"2
TN-n+1

As one can see, this result agrees well with the numericalith the system size and is described at all times by the
results shown in Fig. 6. Moreover, this expression is to bgeduced time distributiot/L, as evidenced in Fig. 3. Thus
compared with the Hamming distribution obtained with athe behavior of the Hamming distance is much simpler than
logarithmic measure foil on the Euclidean latticgs], which ~ the slow density increase in the system.
has the same functional form. Hence this distribution is the
same for the two lattices despite their connectivities being
very different. Note also that this quantity scales perfectly \We have presented simulation results and an asymptotic

analysis of the behavior of the optimization and restructuring
1 ————rrr — - model on the hierarchical lattice. The two lattices are very

VI. DISCUSSION AND CONCLUSION

different in structure, yet they also exhibit remarkably simi-
lar features.

107 b The hierarchical lattice is easier to analyze due to its re-
S ; cursive structure. For example, the very specific connectivity
Sy of sites on this lattice ensures that large jumps are always
N 102 L possible, though rare at late times. In the Euclidean lattice,
= these are strongly suppressed by a further feedback effect:
';6: the localization of the path limits the density increasing ef-
A 107 b fect of the dynamics to a small region around the path, which

in turn intensifies the localization. This feature also results in
the density map being very different in the two cases. In the

10 . . Euclidean casg5] the inhomogeneities in a late-time snap-

10 100 200 shot of the system are much more enhanced. Another differ-
ence is that changes in conformation in the hierarchical lat-
tice are organized in a strictly hierarchical way. This is

FIG. 6. P(d,t)t scaled by the system size for the hierarchical clearly not so on the square lattice, where randomness and
lattice of generatioM=6 at timest/L =100, 200, 300, and 1000 self-organization play an important role. Nevertheless, the
and for generatioN=7 for timest/L =100 and 500. Time is mea- overall behavior of the two type of lattices is remarkably
sured in terms of the system size and the straight line has a slopsimilar.

-2. These similarities are most apparent in the time and size

—
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dependence of the average densktig. 2). In both cases we Now, the number of updates of the other site is simgply
have a data collapse for short times, while for longer times-T,t), thus we can formulate the probability distribution
the dynamics becomes slower and slower as the size of thbat a site has been updatédimes:

system increases. For the hierarchical lattice, we have ob-

tained an analytic expression for the scaling of the Hamming 1 (T+D)+(t—-T+1)
distance, for the local age distribution, and its multifractal (T.U=z[a(T.O+q(t=T.0]= —7===r=7
spectrum, and the asymptotic average density evolution with

time. In particular, the mechanism behind the breakdown of 1

ergodicity, and the unusual size dependence of the density - (t+1)" (AS)
evolution can be traced back to the multifractal distribution

of age. The latter provides a scenario for “glassy” aging.  which is independent of. Thusr(T,t) is uniform.
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Robin Stinchcombe for useful discussions. two-site systems, we need to consider the distribution of the

maximum in a two-site model in the case when each of the
APPENDIX A: TIME PARTITIONING IN THE TWO-SITE sites is taken from a distributiop,(x). Here the subscript
PROBLEM denotes that this is the distribution for a sumroindepen-

We consider here the two-site model and prove that aftef€nt random numbers each of which is taken from the uni-
the elapse of a time the probability that a given site has fo”ﬂ distribution. We need only consider the case when
been visitedT times is uniformly distributed between 0 and — 2 as the length of the hierarchical lattice can only be of
The following proof is valid forany distributionp(x). Letus  this form. o .
computeq(T,t), the probability thathe active sitehas been Unfortunately,p'n(?() is dlfflcu_lt to formulate in a general
refreshedT times up to timet. Let the value of the recently W& For largen this is a Gaussian for moderate ye}lueyof
refreshed site be denoted kand the inactive site atbeb,. ~ [HOWever, very close to the extremes 0 and 1, it is a power

At time t two things may happeri) eitherx<b,_; and thus law as we will see below. It is this regime that is asymptoti-
T,=T, ;+1 with probability ¢+1)/(t+2) (i) or x cally reached and hence relevant for our purposes. We hence

>b,_,, and thusT,=t—T,_; with probability 1/¢+2). only consider the regimes<1/n or x>1—1/n (cases when

Note that for any distributiomp(x) the activity change can only one number out orh may reach its extreme value 1 in
only be due to the fact that the largest generated randorif'€x<1/n case and 0 in th&>1—1/n case.
number up to time is at instantt. This happens with prob- Let us recall the formula for t.he average value OT the
ability 1/(t+2) because in an independent time series ofargeSt generated _number up to “"“_‘”’h.e” _each of the in-
random numbers the largest number is equally likely to béllvidual numbers<is taken from a distributiom,(x):
anywhere. At time=0 we have to initialize the system by L
generating two ra.nd.om.numbers for the two sites. This is the B(”)(t)z(t+l)f XPr(X) Pg(x)dx, (B1)
reason for the shift in time frorhto t+2. 0
Now we can write a simple evolution equation §{T,t),
where P, (x) is the cumulative distribution op,(x). Thus
+q(t—T—1t—1)i PL(x) accounts for the probability that theother numbers
' t+2° are less tham. Thet+1 factor is needed to take into account
(A1)  the fact that the position of the largest number can be any-
where in time. The index indicates that the distributions
describe the average ofindependent, uniformly distributed
(T+1) random numbers.
Q(T’t):Am+ B. (A2) Fort>1 we haveP}(x)<1 for most values ok, except
for a 1h neighborhood of 1.

So in the integration the most important contribution
comes from the part that is close to 1. This permits us to
restrict the integral to the part that we can calculate without
loss of consistency,

t+1

ATH=a(T-1t-1) =

The general solution of the recursion can be written as

It is simple to computg(t,t) from the above recurrence, and
get

2
q(t,t)= t+2) (A3)

1
B(”)tzf t+1)xp,(X)PL(x)dx (t>1). (B2
and thusB=0 andA=2. Thus finally ® H/n( JXPa(x)Pr(x)dx (t=1). (B2)

2(T+1) The probability distribution close to the limits takes the fol-

q(T,t)= m (A4) lowing forms:
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nn
pn(X)x<1/n:mX“_1. (B3)
nn
pn(x)|x>1—1/n:m(1_x)n_l- (B4)

The cumulative distribution is the integral of the above,

n—-1

Pn(x)|x>1fl/n:1_m(l_x)n- (B5)

Let us now turn back to EqB2). Using anx=1—y variable

replacement and doing integration in parts we arrive at the.
following formula after neglecting the exponentially decay-

ing parts:

n

BM(t)=(t+ 1)(n_—1)!

nn—1

1/n t
XJ (1—y)y"l(1—myn> dy

0

1/n nnfl t+1
—1_ _ n
-1, (1 (n—l)!y) a.

We rewrite the integrand in a -(-)""l=exp(t
+2)In(---)} form and make a Taylor expansionyA around

(B6)

PHYSICAL REVIEW E 67, 026108 (2003
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FIG. 7. The test of the results in E¢B7) against numerical
Simulations on the same model. The solid lines are the analytical
solutions; the symbols indicate numerical simulation results. The
system sizes are=2(<), 4(+), 8(0), 16(X).

y=0 to the second order. The result can be written in the
following form that we use in our calculations:

3n+1) "

_|_
t 2n

B (t)=1—-T(1/n)(n!)¥"n=2

1 1
O 1] Et

In Fig. 7 we can see that the above approximation is excel-
lent for smalln and larget.

—1/n. (B?)
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