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Network-induced nonequilibrium phase transition in the “game of Life”
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A cellular automation model of the “game of Life” on a two-dimensional small-world network is presented
in order to count in long-range interactions among living individuals in social or biological systems. The
density of the life and its fluctuation are calculated, respectively. The present model exhibits a nonequilibrium
phase transition from an “inactive-sparse” state to an “active-dense” one at a certain intermediate value of the
network disorder. Employing finite-size scaling analysis, we estimate the location of the critical point with
pc(°)=0.3685. The transition is of the “second-order” type with power-law diverging length. We obtain the
critical exponents /=1.70, 8=0.50, andB/v=0.85. The calculated results indicate that the present model
may belong to the universality class of directed percolation.

DOI: 10.1103/PhysRevE.67.026107 PACS nun)er05.70.Ln, 64.60.Ht, 87.23.Ge

I. INTRODUCTION tribution of wealth, biological evolution, et¢12—-22.
The SWN model consists of a regular lattice, typically a
For many years, the cellular automation has been extersne-dimensional lattice with periodic boundary conditions,
sively studied because of its relevant application in manyalthough lattices of two or more dimensions have been stud-
social, biological, and physical procesdds-4]. Conway’s ied as well, with each bond in the original lattice rewired at
“game of Life” (GL) is probably the best known cellular random with probabilityp. The model exhibits unusual con-
automation, which has been suggested to mimic aspects @ction properties. On one hand it shows high network clus-
complexity in natur¢5-10]. The original GL is a society of  tering, like regular graph. On the other hand it shows a very
cells(on a two-dimension lattigein which the staté“dead”  small average shortest path through the network between any
or “alive” ) of each cell depends on deterministic local rulesyyg sites. It has been shown that geometrical properties, as
[5]. The evolution is determined by the number of living el as certain statistical mechanics properties, show a first-
ceI_Is among its eight nearest and next-nearest_nelgh_bﬂ)rs: order transition ap=0 in the limit of large systemsN
Alive cell that has four or more live neighbors will die in the _, [23,24). That is, any finite value of the disorder induces
”‘?Iftd.“”?e tsr;[ep(dei:;gase tby c_)fv.(tarhcrowdmgAlso a Ill_ve ceI_I h the small-world behaviof14,23. In this paper we study the
will i€ In the next time Step 1t it has one or Zero five NEIGN- 151 automation of the game of Life on the small-world
bor (decrease by isolatignHowever, if the live cell has two . . . .
) ; e T . network in order to investigate the effect of the population
or three live neighbors it will remain alivéii) At a dead site, . . .
structure on the evolution of Life. It shows that there exists a

a new cell will only be born in the next time step if it has iibri h i ition in the behavi £l ife”
exactly three live neighbors. Starting from random initial "ON€auiiibrium phase transition in the benhavior of “Lite
dynamics at a finite value of the network disorder.

conditions, “Life” will evolve through complex patterns

eventually settling down in a stationary state. In spite of its
simple algorithm, the GL simulates the dynamic evolution of
a society of living individuals, including processes such as Il. MODEL AND METHOD

growth, death, survival, self-propagation, and competition. We investigate the effect of the topology of populations

All the work about Life(deterministic or stochastitakes . : . LR
into account only local interactions, i.e., the state of each cef" the game O_f Life. The Interactions betwe_en the_ individuals
depends on its 8 neighbof§—10]. However, real popula- of the population are de_scrlbed by atwo-(_jlmensmnal small-
tions rarely fall into this simple category. For example, eachWorld neftworl.<, and the link between twp s.|tcjzs represe_nts that
individual is not only dependent on its neighbors, but alsgthere exists |nteract|on.between twg |nd|V|duaI§ which are
may depend on a distant individual because of the developd@cated at these two sites, respectively. To build a small-
highways or convenient information communications in realworld network, we start with a regular square lattice of size
society. Recently introduced by Watts and Strogatz, thd-XL with periodic boundary conditions. Each site in the
small-world network(SWN) [11] attempts to translate the lattice is linked to its 8 nearest and next-nearest neighbors in
complex topology of social interactions into an abstractorder to incorporate the local rule of the original GL. Then
model. Small worlds have been found to play an importantach link in the original lattice is rewired at random, with
role in the study of the influence of the network structureprobability p, to another site of the system. With probability
upon the dynamics of many complex processes in natur€l—p) the original link is preserved. Self-connections and
such as disease spreading, formation of public opinion, dismultiple connections are prohibited. With this procedure, we
have a regular lattice ap=0 and progressively random
graph forp>0, with the average coordination number 8.
* Author to whom any correspondence should be addressed. Email Based the built small-world network, we describe how the
address: xwzou@whu.edu.cn Life evolves. Each site in the lattice may be in two states,
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FIG. 1. The stationary density distribution of li(p) at the 00 o0z = o4 o6  os
network disorderp=0.37a) and p=0.44b) for the lattice sizeL p
=50. Inset: the density of lif@(t) as a function of time at two
corresponding values. FIG. 2. The stationary density of lifps (solid squarg and its

normalized fluctuationys (open squaneas a function of the net-
representing the presence or absence of a live individual. Th\@ork disorderp for the lattice sizd.=100. Insets: the patterns of
fate of each state depends on its neighbors. In the preselifing individuals at the network disorderp=0.35 (&) and p
model, we define that two sites are neighboring if there exists 045 (b).
a link between them. So the rule of the evolution for the Life
is as follows. A dead individual will only come to life if it values(see Fig. L The drastic change of the densjiyt)
has exactly three living neighbors. A living individual will and distributionD(p) within such a small range gf indi-
stay alive if it has two or three living neighbors, otherwise it cates that there may exist a phase transition of Life at a
will die. We start at time=0 with a random distribution of certain intermediate value gf From Fig. 1, we also find that
living sites with densitypy. As in standard cellular automa- the stationary state of Life has been reached after about 2000
tion procedure, at each time step all sites are updated simutime steps. Therefore, all the results are sampled over the
taneously according to the rule described above, until the Gtime interval ranging from 2000 to 2100 time steps for each
reaches a stationary state. It should be noted that the statiomdependent run in the simulations.
ary state of the original GL model depends on the initial In addition to the density of lifep(t), we also calculate
conditions[25,2€]. The average stationary density of living the fluctuation of the density(t) in order to characterize the
individuals pg approximates to a constant for initial densities activity of life. The parameteg(t) is defined as the square
in the range 0.15 p<0.75[25,26. We focus on the effect value of the difference between the densities corresponding
of the network structure on the evolution of living individu- to two sequential time steps, i.e.,
als. Without loss of generality, the initial density is chosen to
be po=0.35, around which the mean-field theory predicts a - 5
maximum stationary density of living individual&6)]. X(O=[p()=p(t=1)J". @)

Figure 2 shows the average stationary density of the life
ps=(p(t—>)) and its normalized fluctuatiorys=L{ x(t

We have performed extensive numerical simulations of—)) as a function of the network disordgfor the system
the described model on the small-world network with sizeswith size L=100, respectively. It can be seen from Fig. 2
ranging fromL =20 to L =500 and different rewiring prob- that there exists a sharp jump for bop and x in the
abilities pe[0,1]. For every system with sizk, the calcu-  vicinity of a critical value ofp,=0.375. Wherp<0.375, the
lated results are averaged over bottiifferent realizations of  present model is similar to the GL in a regular latti28,26|
the network and 10 independent runs for each network realand the density of lifep, have a very small value of about
ization, in such a way thatx L?~2.5x 10°. 0.02. Whenp>0.375, the present model presents the results

Figure 1 shows the density of life(t) as a function of of the GL in a random graph, and the density=0.347,
time t at the network disordgp=0.37 and 0.44 for the sys- which is consistent with the mean-field thedBb,26. Cor-
tem with sizeL=50, respectively. As we can see, pt respondingly, the pattern consisting of living individuals
=0.37 the density of lifep(t) rapidly drops toward a very transits from a sparse state to a dense one at the critical value
small value. However, gi=0.44 the density(t) decreases 0.375(see the insets of Fig.)2The results in Fig. 2 confirm
a little and then approaches a large fluctuating value. In Figthat the present model exhibits a nonequilibrium phase tran-
1, we also plot the stationary density distributibrfp) for  sition from an inactive-sparse phase to an “active-dense”
p=0.37 and 0.44, respectively. From the density distributionone at a intermediate value. The fluctuation of the density
D(p) a peak is easily identified. The positions of the peaksys, which transits fromy;=0 to ys>0 at the critical value
show a very large difference corresponding to two diffegent p., serves as the order parameter in the present model.

IIl. RESULTS AND DISCUSSION
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FIG. 3. (a) The stationary density of lifps and (b) its normal- FIG. 4. (a) The critical network disordep.(L) for finite-size

ized fluctuationy as a function of the network disordprfor sev-  systems as a function of the system sizen a log-log plot. The

eral systems with different sizes. From left to right the size  sympols are the simulation results and the line is guided to (&ye.

=500, 200, 140, 100, 70, 50, 35, and 25. The deviationp,(L) — pc() from the true critical value as a func-
tion of sizeL on a log-log plot, wher@(«) is chosen to be 0.3685.

In the simulations, the systems with finite sizes are usedlhe symbols are the simulation results, and the line is the least-

The determined critical probability. depends the size of the square fit to the data.

system. To obtain the true critical poipg(ec), which corre-

sponds the critical value for very large systems, we study th@ging the results over more independent runs to obtain

stationary behavior of Life for several systems with differentsmoother curves. The resultsf(L) are shown in Fig. &)

sizes. Figures @) and 3b) plot the density of lifeps and its ~ on a log-log plot. It can be seen from Figa#that with the

fluctuationys as a function of the network disordprfor the  increase of the system sidethe critical valuep(L) de-

systems with sizes fromL=25 to L=500, respectively. creases toward a constant value, which corresponds to the

From Fig. 3 we can see that there exists a transition at gue critical valuep(=) for the infinite-size system. Accord-

certain finitep value for each system. In the present model,ing to the finite-size effects of the systems, the apparent criti-

the fluctuation of the system is very strofgge Fig. 1L The  cal pointp,(L) and true critical poinp.(>) are expected to

smaller the system size, the stronger is the fluctuation of thecale with sizel as[27]

density. For a system with small size, a large fluctuation in

p(t) may cause the system to go extinct, i.e., to enter the Pe(L) = pe(oe)~L 7, 2

completely “inactive-sparse” state within the simulation

time. Therefore, the transition is smoother for the smallewherev is the critical shift exponent. To obtain the values of

system. The location of the critical poipt(L) in a finite-  the true critical pointp.(e) and critical exponenv, Fig.

size lattice also shows a deviation from the true critical valued(b) shows the critical deviatiop.(L) — p.() as a function

p.(). From Fig. 3, we can estimate the critical valuesof the system siz& on a log-log plot. When the true critical

pc(L) for the systems with different sizes corresponding tovalue is chosen to b@.(<)=0.3685, we obtain the best

the inflexions of the curves. The errors in determinmngL) power-law relation of the datisee Fig. 4b)]. The excellent

is due to locating the inflexions of the transition curves.linear dependence in Fig(ld) indicates that within the un-

Thus, one can reduce the errorsmfL) by means of aver- certainties, the finite-size scaling relation Ef) is reason-
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FIG. 5. The log-log plot of the fluctuatiogs as a function of
[p—pc(L)] for several system sizes. The slope of the line fitted to 10™
the data is associated with the critical expongnt
102

able for describing the present simulation results. From Fig.
4(b) we obtain the critical exponentd# 1.70(5) by means
of the least-square fit to the data.

Going a step further, we investigate the behavior of the
systems in the vicinity of the critical poini,. By analogy 10°
with Ref.[8], we assume that the present phase transition is
a second-order continuous one. Thus, the order parameter is

expected to have a power-law behavior near the critical point 10-70

103

Pk

104

10

25

+ o _ B 3
Xs(P=Pc ) (P~ Pc)”, @ FIG. 6. (3) The normalized clustering coefficief (solid line)

and average shortest-path lendtbdashed lingas a function of the

whereg is the critical exponent of the order parameter. Notedisorderp for the small-world network with siz& =100, and the
that Eq.(3) only holds true in the system size—c«. How-  arrow indicates the critical point,=0.37. (b) The degree distribu-
ever, the lattice model of SWN essentially determines that ition P(k) for the small-world network with the disordep
is impossible to built a very large network, and also it is=0.01), 0.1(O), 0.251¢\), 0.398(V), 0.631(¢ ), and 1.0(*).
difficult to obtain accurate simulation results near the criticalThe data are sampled from 1000 independent network realizations.
point because of the topology fluctuation in the network andnset: the peak valuBp,,4 0f the degree distribution as a function of
also the life fluctuation in the evolution. Thus, we will focus p, and the arrow indicates the critical pojpg=0.37.
on the systems with size<200 to save the computation
time. For finite-size systems, we can determjfiecorre- =0.82[29,30. Thus, it can be concluded that the present
sponding to the vanishing rate of the order parameter fronmnodel may belong to the universality class of directed per-
the log-log plot ofys as a function of p—p¢(L)] [28]. In colation.
the simulations, we have used more network realizations, As for the reason that the present critical transition takes
i.e., nXL2~5X 10", to obtain a accuratg value. These place at a intermediatevalue but not ap=0, it is not still
results are plotted in Fig. 5. From Fig. 5 we can see that thgery clear up to date. It is difficult to obtain a analytical
data show a good power-law dependence in a certain regiogxpression to describe this phenomenon because of the
of disorder values for different system sizes. The slope of thatrongly nonlinear effects in the systems. As mentioned be-
line fitted to the data can be associated with the critical exfore, a mean-field theory can be shown to predict the high
ponent for which we obtai8=0.5018). Theerror in deter-  density of Life, but this can be expected to describe only the
mining B is due to the uncertainties in thg and thep.(L) small-world network ap=1, and it cannot explain the na-
values. Since the scaling plots in Fig. 5 depend sensitively oture of the transition at the lower values of disorder. Here, we
the choice of the critical disordey (L) and our method of will present some conjectural explanations for the transition
determining their values is indirect, we give rather conservafrom our observation of the dynamical behavior of the sys-
tive estimate for the error g8. tem. As we know, there exists a typical length (p)

With the critical exponents 1~1.70(5) and B ~p~ Y in the small-world network such that for the system
=0.50(8), we canobtain another critical exponens/v size above which the network is indeed a small world and
=0.85(13). For (2-1)-dimensional directed percolation, below which it behaves as a regular lattice4]. For the
the values of critical exponents ag=0.60 and B/v, present model, the critical transition occurs at the network
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disorder ofp,=0.37. Obviously, the present system sizes  coefficient C(p) crosses over from the higher value to a
far larger tharp, Y2 \which indicates that the present transi- smaller one, it is expected that the transition occurs. From

tion cannot result from the finite-size effects. An explanationt19- 6@ we obtain the crossover poipt,=0.35, which is

. . — . consistent with the present critical valpg=0.37. From Fig.
involving the average shortest-path lendtfp) is also not 6(b) we can also find that as approaches,, the range of

reasonable, sincé is known to behave critically with the the degree distribution begins to include the low degree of
d_|sorder ofp=0 [23,24, and we observe the critical transi- k~3, and the peak valuB,,,, of P(k) also shows a corre-
tion atp.>0. sponding transition.

In addition to ¢, the small-world network can be de-
scribed by the clustering coefficie®(p), which character- IV. CONCLUSION
izes the closest environment of a site. At I@pwalues, the
networks are rather regular and highly clustered.pAap-
proaches 1C decreases. The crossover from high to low
clusterization occurs at a highervalue, compared to that

In summary, we have investigated the cellular automation
“game of Life” on a two-dimensional small-world network
by extensive numerical simulations. The results show that
) ; with the increase of the network disordpr the present
observed in the decay df [see Fig. 6a)]. Moreover, the  oqel exhibits a second-order phase transition at a interme-
change in the clustering coefficieB(p) is accompanied by  gjate disorder valup,. Whenp<p,, the stationary behav-

a corresponding one in the degree distributi(k), where jors of systems are close to those of Life on a regular lattice
P (k) d_enotes the probab|.I|ty of the number _of sites With  \yith a very small static density of life. Whep>p,, the
edges in the networfsee Fig. €b)]. Therefore, it is expected gtationary behaviors of systems are consistent with those of
that the present transition maybe result from the change ofife on a random graph with a fluctuating high density of
the clustering coefficienC and degree distributiof(k) in jiying individuals, and the present model presents the mean-
the SWN. Wherp is small (<p), the network is high clus- fie|q results of game of Life. The location of the critical point
tered as the regular lattice, and the degree distribl8) s precisely estimated witlp,~0.3685 by means of the

is very narrow, centered on the average coordination numbgfnite-size scaling analysis. The critical exponents are also
of (k) =8 (see Fig. 6. In this case, most of living individuals  gptained, which are found to be consistent with those of
will die because of overcrowding or isolation, and only agjrected percolation. The present method can also be applied
small number of individuals survi.ve as the form of gliders, tg study the other cellular automation models. From a prac-
blinks, ponder, etd.25,26. Whenp is large (>p,), the clus-  tical point of view, the present critical transition is a useful
tering coefficient is small and the network have a wide dE'guide for bu||d|ng a network. Since the |ong_range connec-
gree distributionP(k) with k ranging fromk~1 to k~20  tjon usually costs more than the local one, it is advantageous
(see Fig. 6. In this situation, there exists a certain number oftg obtain the value op, in advance, above which the indi-
sites with long-range links, through which each site can bgjiquals in the system have a fluctuating high density, so that

easily connected to each other in the network. On the ongne can establish a high-quality network with least consump-
hand, the birth probability of new individuals will greatly tion of resources.

increase because of the wide degree distribution, which can

be comparable to the dead one of the living individuals. On ACKNOWLEDGMENTS
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