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We discuss the scaling properties of free branched polymers. The scaling behavior of the model is classified
by the Hausdorff dimensions for the internal geomedfyanddy, , and for the external on®_ andD,. The
dimensionsgd,, andDy characterize the behavior for long distances, whijleandD, for short distances. We
show that the internal Hausdorff dimensiordis=2 for generic and scale-free trees, contrargia which is
known be equal to 2 for generic trees and to vary between 2-affol scale-free trees. We show that the
external Hausdorff dimensio, is directly related to the internal one By, = ad,, , wherea is the stability
index of the embedding weights for the nearest-vertex interactions. The index 2sfor weights from the
Gaussian domain of attraction anec@ <2 for those from the ey domain of attraction. If the dimensidd
of the target space is larger thBry , one findsD_ =Dy, or otherwiseD, =D. The latter result means that the
fractal structure cannot develop in a target space that has too low dimension.
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INTRODUCTION The term quantum gravity refers to a Euclidean Feynman
integral expressed by a sum over diagrams representing the
In recent years the theory of random geomdtty has  nearest-neighbor relations between points of a discrete set. In
become a powerful method of investigating problems inmore realistic models the sum runs over higher-dimensional
many areas of research ranging from the statistical theory dfimplicial manifolds and can be interpreted as a regularized
membraneqd2,3], branched polymer$4—7], and complex Feynman integral over Riemannian structures on the mani-
networks [8,9] to fundamental questions in string theory fold [11-13. The insight that one can gain from the analytic
[10-17 and quantum gravity13—-15. solution of the branched-polymer model is very helpful for
These problems have in common that they can be desonsiderations of more complicated models. In fact, the
scribed by a dynamically alternating geometry which undermodel has proven already many times to be extreme useful
goes fluctuations of a statistical or quantum nature. The dyto test and develop various ideas concerning random geom-
namics of such fluctuations can be modeled using thetry[16-20.
concepts of the statistical ensemble and the partition function In addition to this general interest, in this model there is a
in a way similar to what is done in particle physics by the specific motivation that is related to the reduced supersym-
methods of lattice field theory. metric Yang-Mills matrix mode]21]. This model was intro-
Contrary to lattice field theory where the partition func- duced as a nonperturbative definition for superstrif2%
tions run over field configurations on a rigid geometry, theand referred to afterwards as the IKKT model. The one-loop
geometry itself is variable here. Since the geometry is dyapproximation of this model leads to a model of graphs that
namical many features occur such as, for instance, geomettitave as a backbone a branched polymer with power-law
cal correlations or the influence of the random geometry onveights for the link lengths. The IKKT model is believed to
the fields living on it. provide a dynamical mechanism for the spontaneous break-
Similarly to the field theory, where the concepts of uni-ing of the Lorentz symmetry from ten to four dimensions
versality, critical exponents, correlations, etc. are indepent23]. If one tries to understand the breaking in terms of the
dent of whether one discusses a field theoretical model afne-loop level approximation, one finds it to be related to the
magnetism or a quantum theoretical model of particles, alséractal properties of the branched polymers, which have the
in the theory of random geometry many questions are indeHausdorff dimension equal to[23,24]. The question of the
pendent of details and may be addressed using general metpontaneous symmetry breaking was investigated also by
ods. General concepts can be best developed on an analytitany other methods with the help of which one was able to
cally treatable model. In field theory, the role of a test bed iggain an insight into the underlying physical mechanisms
played by the Ising model, while in random geometry by the[25—33.
branched-polymer mod¢l6—19. In this paper we extend the classification of free branched
Despite its simplicity the branched-polymer model has gpolymers beyond the generic Gaussian trees from the Zimm-
rich phase structure exhibiting different scaling properties ofStockmayer universality clagg—7] which have the Haus-
the fractal geometry and the correlation functions. dorff dimension Dy=4. We restrict the discussion to
The model has internal and external geometry sectorbranched polymers with nearest-vertex interactions and no
similar to the Polyakov strin§10]. Similar to the Polyakov excluded-volume effect, but extend it to power-law link-
string, it can also be interpreted as a model for quantuntength weights[34,35 as well as to power-law branching
objects embedded into B-dimensional target space or a weights[20].
model of quantum gravity interacting witB-scalar fields. The energetical costs of generating long links on the poly-
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mer that has a power-law link length distribution is then 1 N R
much smaller than for Gaussian ones. In the extremal situa- Zn=17 > WTJ IT d®x [T f(ryo. (1)
tion, when the power-law exponeatof the link-length dis- P Tel =1 (k)

. . . _l_a . . -
t_rlbutlon x lies in the intervala < (0,2), very Ion_g The external weight of a tree is a product of link weights
links are spontaneously generated on the tree and their preﬁ(—ﬁ hat d q lusivel he link -
ence shifts the model to a universality class that can be callet{"j) that depend exclusively on the link vectof=x;
the class of Ley branched po|ymerS, which similar as'\‘ée — Xk - Alternatlvely, the energy cost of the embedd|ng of the
paths exhibit a different scaling behavi@4—39. tree in the target space is a sum of the energy costs of the

The scaling properties and the universality class of thdndependent embedding of links. The second product in Eg.

model depend also on the internal branching weights of thél) runs over the set ofunoriented linked vertex pairs de-

; ted by(jk).
trees[20]. Under a change of the weights, the model may"° . . . ,
undergo a transition from the phase of elongated trees with The most natural choice of the internal weights\

the internal Hausdorff dimensiodiy =2, known as generic =1. we could ent!rely stick to this ch0|ce_of wel_ghts, but
. . since we want to discuss the problem of universality we also
trees, to the phase of collapsed trees wiitf+=, which are

. . . ~ . want to check whether a modification of the weights will
localized around a singular vertex of high connectivity

) 7 change the scaling properties and hence the univer$aliy
[40,41. In between, there is a phase of scale-free trees Whlcﬁ Here we will restrict our considerations to internal

may have any Hausdorff dimension betwekn=2 anddy  \eights, which can be written as a product of weighitsfor
= [9,20]. We show that the internal properties decoupleihe individual vertices:

from the embedding in the target space, but on the other hand

that they strongly affect the embedding: in particular, if the WT:ququ' W 2)
internal geometry is crumpled, the external one also is. More

generally, we show that due to a factorization property the=ach vertex weight only depends on the degree of the vertex,
external Hausdorff dimension is related to the internal oneynat is the number of links emerging from it. The internal
dy, as follows: Dy=ady. Thus, we see that even for properties of the model are determined when the whole set of
Gaussian trees, for whick= 2, there is a whole spectrum of pranching weightdw,} for q=1,2, ... ¢ is specified. We
nongeneric trees with the Hausdorff dimensibp>4 for  demand that

which underlying tree graphs are scale-free vdf>2.

Many pieces of this classification have been discussed for w,>0, wg=0, wg>0 ©)]
Gaussian branched polyméis—7] as well as for the internal
geometry of tree graph®,17,20,23 already. Several well- for all g=2, ...~ and at least one>2. If w; were zero,

known results have been summarized within the appendix iV would vanish for all tree graphs, while if alt, for g
which we present a systematical treatment of the internal>2 were zero, then the weight#/r would vanish for all
geometry in terms of generating functions. trees except chain structures. _

The extension of this classification to weights with power-  Note that the model is invariant with respect to transla-
law tails and to the case when the internal geometry is nontions in the external spacg;—x;+ 6. Because of the trans-
generic is presented in the mainstream of the text. We emlational zero mode, the partition functigf) is infinite. One
phasize on calculations of the two-point functions.can make it finite by dividing out the volumé= [dPx of
Throughout the paper we also stress the factorization propghe translational zero mode:
erty of the internal and external geometry, which allows us to
clearly separate the discussion of the internal geometry be- Zy
fore considering the entire model. It also permits us to reveal ZN:V- (4)
many interesting relations between the correlation functions
of the external space to those for the internal geometry.  Thjs can, for example, be realized by fixing the position of

the center of mass of the trees.
Trees that can be obtained from each other by a permuta-
THE MODEL tion of the vertex labels contribute with the same statistical

weight. For a tree withN vertices, there ar®l! such vertex

We consider a canonical ensemble of trees embedded InF@ermutations. In order to avoid overcountings, one intro-

D—d|men.3|onall target space. The partition function of the €M 4uces the standard factom/to the definition of the parti-
semble is defined as a weighted sum over all labeled tre

with N vertices. The set of such labeled trees containinpﬁon function (1). This factor divides out the volume of the
NN-2 elements, will be denoted byy. The statistical gbermutatlon group of the vertex labels. The number of all

weight of a tree is given by a product of an internal wei htIabEIed trees counted with this factif'™2/N! ~N" %" is
gnt o g y a prod 9 exponentially bounded in thid—oc limit. If one defines the

W5, which depends only on the internal geometry of the . S .

" rand-canonical partition function
tree, and an external one that depends on the positions of tHe
(tree vertices in the target space. We shall consider trees o o
with .nearest-ne|ghbor interactions for which the partition z= 2 z,gN= Z ze N, (5)
function reads N=2 N=2
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one can see that it is well defined as long as the fugagisy What we will show now is that the problem of determin-
smaller than the radius of convergence of the series, which img the m-point correlation function can be divided into two
the particular cas#V;=1 is equal togo=e *“0=e" 1. More  subproblems. The first step is to determine the internal two-
generally, as long az, grows only exponentially for largh, point function. This can, in general, be done independently

the grand-canonical partition function has a nonvanishing raof a particular choice of the embedding Weigmtg)_ The

dius of convergence and hence one can safely define second is to use the information encoded in the internal two-
The statistical average of a quantifydefined on the en-  point function to determine the external properties of the
semble(1) is given by trees.

In order to see that the internal geometry of the trees does
11 N o - not depend on the choice of the link weight function, con-
Z NI Z Wr H d”x 11 f(rj)Q. (6) sider a tree graph and calculate the following two integrals

N Tely 1 o for this tree:

(Q)n=

For translationally invariant quantities, the averages are pro- N

portional to the volum&/ of the translational zero mode. For f H dPx; H f(ij)g()za_)ZA)zll (8)

such quantities one should rather speak of an average density i=1 (ik)

per volume element of the target spa¢®),/V, which is a

finite number. In particulag1)y/V=1. N . . . ..
We will frequently distinguish between the internal andf IT d; T f(rj) 8(xa—Xa) 8(Xp— Xg) = Fo( Xg— Xa).

external geometry of the trees. By the former we mean the =t {1 9

connectivity of the corresponding tree graph, by the latter its

(emb(ejdd@;g_i? the et:)xtt(\alcnal stpace. It—'_o_r ex(?_mgle, the rin_ternaﬂhe first integral corresponds to the embedding weight factor
geodesi distance between o verticeand) o a graph IS {_or a tree whosath vertex is fixed at the positiof(A in the

defined as the number of links of the shortest path connec ) . ; . .
P arget space. Since the model is translationally invariant, the

ing them, thIe tt]e external distance is given Py thg I,engthresult of the integration does not depend on the position. This
of the vectorx;—x;. Note that the path betweenand] is

) , . result can be obtained by changing the integration variables
unique for tree graphs. Thus the length of this path, i.e., theqp the position vectors of all verticés:a to link vectors

number of its links, determines the internal geodesic dis- - - . . . .
tance. r'jk=X; — X for which the integration completely factorizes.

The properties of the embedding in the external spacghe Jacobian for such a change of the integration variables is

. . > equal to 1.
depe_nd on the !mk vyelght functlo_h(r) [see Eq.(l}]. We The second integrdP) gives the weight factor for a tree
consider isotropic weights depending only on the link length. . ) o 5
S s whose vertices andb are fixed at the position&, and Xg
That meansf(r)=f(r), wherer=[r[. We further assume i, ihe external space. The result depends only on the differ-
that f(r) is a positive integrable function. Without loss of

ence X=Xg— X, and the number of linksp, of the path

generality, we can then choose the normalization to be(::onnecting the verticea and b. If one now changes the

JdPr f(r)=1. This allows us to interpre{(r) as a probabil-  integration variables from vertex positions to link vectors, as
ity density. before, one can see that all integrations, except those for
links on the path betweemandb, factorize. The sum of the
CORRELATION FUNCTIONS link vectors on the path is restricted ¥=Xg—X,. If we

label the links of the path by consecutive numbers from 1 to
The fundamental quantities that encode the informatior, we can write
about the statistical properties of the system are the correla-

tion functions. For the canonical ensemble with the partition - ! D £, > A
function (1), the m-point correlation functions are defined as F(X)= iﬂl[d rif(r]é azl ra=X
m 1 N de N
GP R K= TI' = 3 8(ia~Xa)) . - Hp)Te X 10
(X, a0 =\ 11 Nak; (Xa,~Xa,) X ool (P] (10)
(7

wheref(p) is the characteristic function of the probability
where the bracketg-)y on the right-hand side denote the gistribution f(r):
average over the ensemhb®. If one multiplies all sums in
the product in Eq(7) one obtains a sum of terms that are o - .
products ofé functions. The prime in Eq7) means that all f(P)EJ d°rf(r)elPT=(e®");. (11)
terms containing two or more identical functions are
skipped from this sum. This exclusion principle applies onlyt is important that the results of the integratici@ and (9)
to the situation when any two arguments Ofdo not depend on the internal geometry of the underlying
G(Nm)(XAl, cen ,XAm) are identical. tree graph. In particular, using Eq®) and(9), we find the
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partition function(4), the one-point, and two-point correla- The three pathab, bc, andac between the vertices, b,

tion functions to reduce to the following forms: and c of the tree can be decomposed into three pieces,
1 namely,am, bm, cm between them and the common middle
Zy=r 2 Wy, (12) pointm. The summation indices,, n,, n. denote the inter-

nal lengths of these pieces, aXdlenotes the position of the
common vertex in the external space. The internal three-

GP(Xp =1, (13)  point function then reads
% X )% 5 (2) (3) _ 11 !

G\ (Xa,Xg) =Gy (X):nzl fa(X)gN’(n). (14 On’(Na,Np . Ne) = 7y NI TEETN Wr NS a’bZCGT Slabl.ng+n,
We have denoted thé&anonical two-point function of the
internal geometry by{?(n): X 8)p—c|,n,+n.Ola—clng+n, | - (18)

11 1 One could extend this construction further.
2)(ny= —_ I . . . . .
ox"(n) zy N! 157, W N2 aéT 56“‘)' (15) Note that the most important piece of information is al-

ready encoded in the two-point function and is inherited by
It is normalized to unityiﬁgolgff)(nhl. The normalized t_he highe_r correlation f_unctions_. In fact, one can dir_ectly de-
internal two-point function gives us the probability that two five the higher correlation functions from the two-point func-
randomly chosen vertices on a random tree of dizare  tion, using a simple composition rule for the tree graphs
separated by links. In the last formula the geodesic internal Which enormously simplifies in the grand-canonical en-
distance between the verticasandb is denoted bya—b|. semble. In the following section we shall thus concentrate on

Equation(12) for zy, Eq. (13) for G{(X), and Eq.(15) the two-point function.
for g{?)(n) are independent of the link weight factégr).
Thus the properties of the internal geometry, as mentioned,
can be considered independently of and prior to the embed- The canonical two-point correlation functiog§’(n) and
ding. ) G (X) contain the information about the fractal structure of

The external two-point functiorG{{(X) can be inter- the internal and external geometry, respectively. The average

preted as the probability density for two random vertices onyistance for the internal geometry, given by the average num-
a tree of sizéN to be embedded in the external space with theper of links between two vertices on the tree, is the first

relative positionX=Xg—X,. The probability normalization moment of the probability distributiofL5):
condition reads:

FRACTAL GEOMETRY

o _ (Mn=2 ngf(n). (19

f d°XG{(Xa , Xg) =G (Xa) = 1. (16) "

One expects the following scaling behavior for laide

The right-hand side of Eq14) can be understood as a con-

ditional probability. First, we choose two random vertices on (n)N~N1’dH. (20

a tree of sizeN and calculate the probabilitgf\,z)(n) that _

there aren links on the path connecting them. For this path, "€ exponent,, relates the systems averageterna) ex-
which is a random path in the embedding space consisting ¢€Nt (M) to its sizeN and is thus called the internal Haus-

. o . v dorff dimension. This exponent controls the behavior for
n links, we can calculate the probabiligiensity fr(X) that large distances growing with the system dizeéOne can also

its end points are located with the relative positrXs  jntroduce a local definition of the fractal dimension for dis-

—Xa. Since the internal geometry decouples from the extertances in the scaling window<dn<NY. The scaling win-

nal one, the probability densitiefs,(X) andg{®?(n) are in- dow contains distances between the scale of the ultraviolet

dependent of each other and can hence be calculated seatoff and below the infrared scale set by the system size.

rately. This is a sort of thermodynamic definition, which becomes
Similarly, higher correlation functions can be obtainedvalid locally for sufficiently largeN. In a large system one

from the corresponding internal correlation functions. Forcan be interested in how the volume of a local bait

example, the three-point correlation function is spher¢ depends on its radius. The volume of the sphere
can be calculated as the number of vertices lymgnks
5 s o apart from a given vertex:
G(Ns)(XAIXB 1XC): E gg\la)(naanbanc)f dDX p g
fla Mo Mo 0@ . (n)~nd-1 for 1<n<NYd, (21)

X fo (Xa—X)fn (Xg—=X)fn (Xo—X).
a(Xa= X, (Xe= X (Xe=X) The definitiond, is more practical for a local observer, for
a7 example, someone who lives in a fractal geometry and wants
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to determine its fractal dimension. The global definitehp  In the first case §<0), the number of points in a spherical
is accessible only for an observer who can survey the wholshelln(X) grows with the power of the canonical dimension
system from outsidg42]. D. Only in the second onest0) the fractal nature leaves
In a similar way we can define the external Hausdorfftraces in the calculation dd, .
dimension. In order to do this, we first have to introduce a
measure of the system’s extent in the external space. Such g;\\ersa| Ty CLASSES AND SINGULARITY TYPES
measure is provided by the gyration radius
In this section we will briefly summarize results concern-
1 .. 2 .. ing the classification of the scaling behavior according to the
R?=— 2> (X —Xj)ZZN > (xi—Xew)? (22 internal geometry of the tre¢8,20]. One defines the critical
N T ' exponenty of the grand-canonical susceptibility via

wherexcy=2x; /N is the target space position of the sys- )

i - . I Z
tem’s center of mass. The statistical average of the gyration Xu=——=~Au"7, (28)
radius is directly related to the two-point function, namely, B ou?

where Au=u—ug controls the behavior of the partition
function at the radius of convergengg=e™*o of the series
(5). Herew is the critical value of the chemical potential. If
Since the gyration radius is a translationally invariant quan-y is positive, the susceptibility,, itself is divergent aj,. If

tity, we have to normalize it with the total volume of the it is negative, the right-hand side of the last equation should
target space and rather refer to its average density. The eke understood as the most singular part of the susceptibility,
ternal Hausdorff dimensioB , can then be read off from the which, after taking higher derivatives, will give the leading

%(R2>N= f dPXX2G(@(X). (23)

large N behavior: divergence. The primary classification of the universality
classes for models of branched geometry is based on the
<R2>N~N1/DH_ (24 value of the susceptibility exponenmnt

The susceptibility exponent gives the subexponential be-
The dependence on the volum¥ is hidden in an havior of the canonical coefficentgy for large N: zy
N-independent constant which is not displayed in the last-N”"3exp(uoN). Indeed, if one inserts this form into the

formula. The symbok refers to the leading behavior. definition of the partition functiort5), one obtains
For trees of sufficiently large sia¢, one can also define a
local fractal dimensioD, [24] of the external geometry by Pz
measuring the average number of vertices within a spherical xﬂ=a—lL2=% N2zNe”‘N~% N?Y"le 8N A 77,

shell of radiusX=|X| from the scaling windowXy,<X
<aNYPH, which is defined above the ultraviolet cutoff scale
and below the infrared scale. As follows from the definition
(7) for the case of a two-point function, the number of ver-
tices within a spherical shell of widtdX is given by the
two-point function[24]

(29

The susceptibilityy, is proportional to the first derivative
of the grand-canonical partition functio® for planted
rooted trees, defined by EdAS5) in the Appendix: x,
~d®/Ju. The reason why this relation is useful is that there

n(X)dX~XP~1GE(X)dX~XPL1dX. (25) exists a closed relation—a so-called self-consistency relation

(A8)—for @:
Here we have used the fact that the the two-point function is
spherically symmetric, i.eG{?(X)=G{@(X). The integral 9=g(d)= — , (30
over theD-dimensional angular part is included in the pro- Woi1 g
portionality constant. In the largd limit, one expects the qzo q! ¢

existence of a windowX,,<X<aN'PH, where the two-

point function exhibits the scaling behavigr] which can be inverted fob = ®(g) and from which one can

extract the singular part ab: ®~Ag'~” and hence also of
X,. - Note that the denominator of EEO) is nothing but the
first derivative of the potential/(®) defined by Eq.Al)
within the Appendix.

One can invert the functiog(®) in the region where it is
strictly monotonic. Genericallyg(®) grows monotonically
from zero ford=0 to some critical valug, at ,, where
XD-1gx for 5<0 g’ (®y)=0. Clearly the inverse functio® has a square root

o ~" (27) singularity atgo: @~ JAg then. It follows thaty=1/2 for
XP~1=%dX for 6>0. the class of generic trees.

GR(X)~X?. (26)
If & is negative, therG{?(X) behaves as a slow varying
function of X, which can in a narrow range and with some

corrections be viewed as a consta®if)(X)~1. Thus de-
pending on the value of, we have

n(X)dX~XPr=1dXx~
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The region of the monotonic growth of the function on thedivergent, which means that it behaves as a constai.as
right-hand side of Eq(30) may be limited by®,, being the goes to zero. In this case, if one compares the result of the
radius of convergence of the series in the denominator oiihtegration(32) to the leading behavior of E¢29), one shall
g(P). effectively see that=0. This is what happens in the col-

The inverse function®(g) is then singular atg, lapsed phase.
=g(d,), with a singularity inherited from the singular be-  Now, inserting the most singular part of the grand-
havior of g(®) at ®,. It can be shown that in this case the canonical two-point functior{31) into the inverse Laplace
susceptibility exponent is negative and the correspondingransform(A20) we can deduce the lardé behavior of the

trees are collapsed. canonical two-point function
In the marginal situation, the two conditions that limit the X N
region of the monotonic growth @f(®) work collectively at GP(n)~et#NL (cn,N), (34)

a point®,, being at the same time the radius of convergence
of the series in the denominator gf®) and the zero of the Where
derivativeg’ (®,)=0. In this case the exponent can as-
sume any value within the intervgd,1/2). Trees that belong L,(cn, N)__j
to this class are called scale-fred.

The three classes correspond to different scaling behav-
iors of the two-point function, as will be discussed in theis the Levy distribution with the index’, the maximal asym-
following section. metry, and the rang€ =cn cos@@/2) [35,44].

The largeN asymptotic behavior ot ,(cn,N) with »

INTERNAL TWO-POINT FUNCTION <1 is given by the following serief4]:

I'(1+kwv)
for the internal geometry. This function will enable us to L ,(cn, N)—— 2 (—)k*+L ) ———sin(mvk).
determine the scaling and the fractal properties of the inter- 7N N*/ T(1+k)
nal geometry of tree graphs. As we will show, they are dif- (36)
fertlannttggra%epr;rgi:),(,cv?lléagzsgés r;c:] sec)(?ﬁcl;ﬁg;;ms) for For IargeN ar.1d fixedn, the first term dominates the behavior
the grand-canonical two-point functiog ®(u,n). This of the series:
function is singular forA u=u—ue—07", and its singular-
ity is related to the largé\ behavior of the canonical two- L.(cn. N)N:’)VF(V)SIH( mv) Ccn a7
point functiong {?)(n). The singularity ofg®)(«,n) can be v ™ N1+
determined directly from the identit§A15) by inserting the
most singular part oAd into V' (d) andV”(P). Here we  We see from the formula&34) and (35) that the two-point
will show an alternative way, using a standard scaling argueorrelation function in the largl limit is effectively a func-
ment from statistical mechani¢d3]. We denote the singu- tion of the argumentn/N”. Indeed, if one changes the inte-

& tio
—cn§”+§N (35)

*IOC

In this section we shall calculate the two-point function *

larity exponent of the two-point funtion by: gration variable¢ in Eq. (35 to &' =¢N, one obtains
@ , L,(cn,N)=N"1L, (cn/N*,1)=N"1 (u), wherel,(u) is a
G (u,n)~exgd —c(n+1)Au], (1) function of a single argument=rcn/N”. For later conve-

nience, we also includedinto the definition of the universal
argument. Using the saddle point approximation to the inte-
gral (35), one can find that for large= vcn/N” the function

I, (u) leads to

where ¢ is a constant that only depends on the particular,
choice of the weightsv,. The exponent is usually called
the mass exponent. Summing over distantege obtain the
susceptibility(29):

1 Va
- (2) ~ _ WY A Y G@(n)~ —etroN| (u)= ——e*#Ny@2expg —bu?),
Xu En: G@(u,n) fdnexp( CnAu”)~Ap ", NN~ (u) 2N o )
(32 (39
According to the definitior(29), the susceptibility exponent wherea=1/(1—v) andb=(1-v)/v. The average internal
is y. Thus we have distance between two vertices can then be calculated:
=1. 33 *
Y 33 f dul,(u)u
This relation is the Fisher scaling relation for this case. Since (Nn=>, ngP(n ] (39)
we have already determingd we do not have to calculate n f dul.(u)
additionally. The scaling argument given above holds only

for positive y, since in this case the susceptibility is diver-
gent and the divergent part dominates the small behav- Comparing theN dependence on the right-hand side of this
ior. For negativey, the left-hand side of Eq(29) is not  equation to theN dependence on the right-hand side of Eq.
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(20), which defines the internal Hausdorff dimenstp, we ) X2 1\P [ x
see thady is the inverse ofv: fo(X)=(2mno?) PPexp — = _) fl =1,
2no? \/ﬁ \/ﬁ
1 1 (44)
dy=—=—. (40
vy

This follows from the stability of the Gaussian distribution

Thus, the Hausdorff dimensiondg, =2 for generic trees. with respect to the convolution. Inserting the functib,r@)?)

For scale-free treesl,; changes continuously from 2 to, to the formulag(14), (17), etc., we can determine the multi-
sincey belongs to the intervdl0,1/2) then[9,17,20. point correlation functions for Gaussian trees. In particular, if
On the other hand, we see from H§7) that for largeN  we insert Eq.(44) into Eg. (14), we obtain in the largeN
and smalln, the normalized two-point function grows lin- limit,

early withn, i.e.,

& 41 ()% ¢ i 1-DI2 X2 cn’
ON= (). 4D G (0= N(27a?)P? i=1 : X 2no? 2N
The normalization coefficient behaves@#l in the largeN (45
limit. Since the sum over this function is proportional to the
number of vertices in the distanoefrom a given vertex, the Here we used the same approximation for the internal two-
last formula tells us that the local Hausdorff dimension ispoint function as in the discussion of E¢422) in the Ap-
d,=2. We see that locally for sufficiently larde, it is dif- ~ Pendix. This is a good approximation for lartle Addition-
ficult to distinguish the scale-free trees from the generic onedlly, we substituted the upper limi—1 of the summation
by measuring short internal distances, since both classé¥ern by c. This introduces small corrections that disappear
have the same internal Hausdorff dimensibr=2. One has  €xponentially in the larg& limit.
to go to large distances to see different scaling properties, In order to measure the external Hausdorff dimen&egn
depending on the type of the ensemk®®). For collapsed We have to determine the dependence of the expectation
trees, the Hausdorff dimension is infinite. In this case, thevalue(R?)y of the gyration radius on the system sieThe
universal scaling argument of the two-point function is €Xpectation value can be calculated by integrating the two-
proportional ton but does not depend dw This is related to  point function overX as in Eq.(23). If one first integrates
the fact discussed before that the effective value of the exgyer X before summing oven, one obtains
ponentv is equal to zero.
The saddle point approximatiof88) actually gives the 1 cDo? = cn?
exact result forv=1/2 for the whole range af. The reason —(R%)\= > nzex;{ - —) : (46)
for this is that in this case the integrand of the approximated v N =1

expression(35) is Gaussian. For some specific valuesvof ) ] ) ]
one can express the Laplace transfdB8) in terms of spe- One can approximate the right-hand side by replacing the

cial functions. For example, for=1/3, summation from 1 toe through an integration over the
whole positive real axis:
1.3
Lis(enN)= \/——U3/2K1/3(2U3/2), (42) 1 cDo? (= cy? N
m (R = f dyyzex;{——>~D02 —.
\Y, N Jo 2N c
whereu=vcn/N”. For largeu, the saddle point formuleg8) (47)
coincides with this one, while for small the two functions
deviate a little from each other. We see that the typical extent of the systefiR?)y, grows
as N¥ and hence the Hausdorff dimension for generic
GAUSSIAN TREES Gaussian trees B =4.

Now we can determine the oroperties of the external ge- More generally, in order to determine the dependence of
prop e expectation value of the gyration radius on the system

ometry of Gaussian trees. In this case, the wefgk} in the  sjze for any type of trees, one can first calculate the second
partition function(1) for embedding a link is given by @&  moment of the functioﬁn()z):
Gaussian function. The function has a vanishing mean,

. X2 X2 sf dPXX2f (X), 48
f(x)=(27rcrz)‘D’Zexp< - X—) . (43) X o) 49
2072
which corresponds to the average extent of the path built out
In other words, for Gaussian trees, the link vectors are indesf n links of the tree. The insertion of this result into E93)
pendent identically distributed Gaussian random variables. yields

As a consequence, the probability dendityX) Eq. (10),
for the end points of the path of lengtion a tree to have the

1
9 (RHN=2, (X3),g@(n). 49
relative coordinate is given by v (RO ; Xnar(m 49
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Since for Gaussian weights the second mori&s},, is pro- T
portional ton, i.e., (X?),~n, the following relation holds
[45]:
01
S
(RO ng@m=(my=N", 50 T
Q
from which we conclude that the external and internal Haus-g 108
dorff dimensions are related by ‘g
DHZZdH (51) 104 L

for Gaussian trees. This relation holds for generic, scale-free o5 . . . N
and collapsed trees. This, for example, means that the Haus 0.01 0.1 1 10 100
dorff dimensionD of collapsed trees is infinite, or in other Xio
words, that the target space extent of the system does not FiG. 1. The normalized two-point function f@=2 and for
change with the number of vertices on the tree. The generig=103, 10, 1¢°, and 16, from left to right, respectively. The
trees for whichdy=2 and Dy=4 belong to the Zimm- functions are constant in the region of sméllThis region extends
Stockmayer universality clagg,5]. to some cutoff whose position grows with the powe”.

Let us come back to generic Gaussian trees. We will cal-
culate the local Hausdorff dimensi@) and compare it with
Dy=4. The starting point of this calculation is EQ7), n(X)~[
which relates the number of points within the shell of radius
betweenX andX+dX to the behavior of the two-point func-
tion in the scaling windowX;,<X<X,r, whereXyy~ o,

XP~1 for D=4

X3 for D>4. (53

This leads to the following result for the Hausdorff dimen-
sion:

X|R~aNll4.

The two-point function(45) is a decreasing function. It D for D<4
has a cutoff aiX~aN'* as follows from the scaling argu- DL:( (54)
ments. The large part of the sun{45) overn (n>1) can be 4 for D>4.

approximated by an integral ovar This part of the sum has ) )
a significant contribution if = X?/a>>1. Thus forXx>o the N other words, the fractal dimensidd, measured by the

dominant dependence of the sum Xrcan be approximated local observer is equal to the global one, i@, =D, , if the
by dimension of the target space is large enough. If the target

space dimensionality is too small, the fractal structure cannot

cp N develop. One can understand this in the following way. For
G(NZ)(X)NI dnnt P2 n— ;2D (52 trees embedded in@<4 dimensional target space, vertices
“ of the tree lie in a ball with a radius proportional k",
with some constants,,c,. The upper limit of the integral | — .
comes from the term exp{cr?/2N). The exact shape of the \\\\
integrand at large~ /N is unimportant forD >4, because 0.01| \\\
the dominating behavio®{?)(X)~ 2~ P2~ x*P is due to N\
the lower limit of the integration. This scaling form of & 1% \»‘:‘\\
G{(X) breaks down for short distancéwf ordero and for & N
large X of the order of the infrared cutoNY% WhenX is 5 107 "
of the ordero, the integrand is a sum of Gaussians of widths g 1081
larger thanX and hences(?(X) is a slow varying function. &
For D=4 the regime changes. The divergence at small 5 1010
disappears and the terms for lamyen~ /N, dominate in the
sum. The sum45), viewed as a function oX, looks like a 1072}
sum of Gaussians whose argumeKtare maximally of the LY
order of the widths. This is a slow varying function Xffor 10 - ; m T
X?/o?\N. Hence we expect that as long Xs<N it is X/o

2

almost ConStanGF\l ),(X)Nl' As an example, we performed FIG. 2. The normalized two-point function f@ =10 and for
the sum(45)_ numerically forN up to 16. Th(_a _results pre-  N=10% 1¢f, 16°, and 16, from left to right, respectively. The
sented in Figs. 1 and 2 corroborate the anticipated behavig{inctions are constant in the region of smélThen they develop a

of G(NZ)(X) by the arguments given aboy46]. scaling part(linear in the figurg in which they behave as X ®.
As a consequence we see that the number of points withiRor a comparison of the slopes, we also displaigedid line) a pure
the spherical shell27) depends on the radius as power law,o<X .
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There areN vertices within the ball while the volume of the whereA*=Af+AJ. If one repeats this for the convolution
ball is proportional ta\NP". This means that for largh, the  of n identical terms to calculatg,(X), Eq.(11), one can see
vertices deep inside the ball are densely and uniformlyhat the functionf,(X) is given by a rescaled version of the
packed. A local observer who surveys only a small region fafunction for a single linkf(X):

from the ball boundary will see uniformly distributed verti-

ces in aD-dimensional space. As a consequence he or she

will measureD, =D. The situation changes fd >4, be- fr(X)=
cause then the volume of the ball is proportionalfd* and

hence grows much faster than the number of the vertices. Ip bi hi i ith th i f th
the largeN limit, the volume of the ball will therefore be Now we can combine this scaling with the scaling of the

large enough to let the system develop a loose fractal struér-“_elmaI two-paint funcuon, which, asvwe know, is a function
ture. N~ (v) of a scaling variable =n/N”, to deduce the scal-
dn X
f [

Similarly, we expect that for the scale-free trees, the localn9 ©f the external two-point functiofl4):
Hausdorff dimension is
n
nl/a nl/a v W) :
(55) (59)

X
1/a

perrkd Irrd B (58)

1

(2) - @) (n)~_—
5 D for D$DH C-:'N (X) ; fn(x)gN (n) Nj
" |Dy for D>Dy.

Since the Hausdorff dimensiob,, is infinite for col- The result of the integration can be written as a function of

vla \p i H
lapsed trees, one cannot define a local Hausdorff dimensigi 2"gumenk/N"* with some prefactor depending dh As

D, in the same manner as above, because the infrared cutd consebquence, one expects the external Hausdorff dimen-
is a constant in this case. sion to be

. Dy=alv=ady. (60)
LEVY TREES
he casea=2 was discussed before. Despite similarities,
e casew<?2 is different from the Gaussian one, since in
this case the distributiof(x) has a fat tail for largex:

So far we have only considered Gaussian embeddin

weightsf(x), Eq.(43). In this case, links typically have the
lengtho and one can hardly find a link on a tree longer than
30. In other words the energy costs for the embedding of dx A@

long links are so high that these links do not appear. One can, dxf(x)~ — —, (61)
however, consider models with weights which allow long X x*

links. Such models are natural generalizations of theylLe

random walk[34,35. In the following section we will dis- which according to the scaling8) is equally important in
cuss this issue in a more general context, while in this secf,(X) for any n. The second momerX?),, of the distribu-
tion, as toy models, we will consider models of trees embedtion f,(X) is infinite. As a consequence, also the gyration
ded inD =1 dimensional target space with the weigths givenradius is infinite. One has to find an alternative measure of
by a symmetric Ley distribution[35,44]. Despite their sim- the linear system extent in order to define the Hausdorff di-
plicity, the models with those weights already basically cap-mensionDy, . A natural candidate for such a quantity is

ture all interesting features of more complicated models. The

weights read 1
Rq:m .EJ |%;— x| (62)

+ oo
100=L,(Ax=2m | dpexp—Alpl“—ipx), o
- for g<ea. The Hausdorff dimension can now be calculated
(56)  from the largeN behavior of this quantity:

with « from the interval (0,2. In the limiting casea=2, (RIy\~N9OH, (63)
this is a Gaussian distribution with the widéh=\2A, and
for =1, it is a Cauchy distribution. Using the same arguments as for the Gaussian case, one can

The weights are symmetric stable distributions with thecheck that the following relations hold:
stability index«. Here we are interested only in symmetric
functions f(x)=f(—x), because the links are unoriented. 1 o 4~ (2) o )
This implies that any function defined on them has the prop- /(R >N=f dX|X|9Gx (X)=; (X[ ngn’(n),

erty f(rij) =f(—ri)) =f(=r;)="1(r;). (64)
The distribution(56) is stable with respect to the convo-
lution where
+ oo
La(A,x)=J7°c dx L (A1, X)L o(Ay x—X%y),  (57) <|x|q>n:f dX|X|9f 5(X) ~n¥e, (65)
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It follows, that(RY)~N%2% and henceD = ady,, as al-
ready mentioned. <RQ>NZJ dXXQG&z)(XF; (IX|9ngP(n)=c0.

(69)
OTHER TREES
) ] ) ] ) ) For N—o the sum is dominated by terms of large
We will continue the discussion of the one-dimensional _NYDh Forn—s oo the distributionf ,(X) becomes normal
case, i.e.D=1. The extension to higher dimensiodsshall i the whole region from- to +. Indeed, the ends of the
afterwards be straightforward. The embedding weights fotenira| regionx, move to infinity faster than the variance
links may, In gene_ral, be given by any normalizable non-, ~./n, and the contribution coming from the outside of the
?zg??v)e symmetric functionf(x)=f(—x)=0 such that central region{X|>|X, | disappears as
xf(x)=1.
We are interested in the emergence of the scaling proper-
ties for largeN. From the considerations of the internal ge- J dXf(X)~ — T (70
ometry, we know that the internal distance between two ran- IX|>X, n In““n
; Ny ;
?rgrgsvaerzlccisu ?SF? Stehde tred~ N, grows withN unless the Thus the non-Gaussian part including the tails becomes mar-
We also know thét between these two random vertices w nal apd Cg‘.nt bs ?egleq;ahd. \l/:/hat IS Ie{t o(\j/e][. mq;w Ii:S a
can draw a unique path on the tree. This path can be treatea mulses‘lagveés ?ntlé 'er‘ :nvgm:n@rzozrﬂenafe &';,l‘; _ ( ZOIE ex-
as a random path af links. So, in a sense, we are interested” 1§'I&n02)’< Thugsl after taking this limit, the trenes behave
in the probability distribution that the remote ends of the“ke éaussiari ones’This limit is subtle bécause as lorg as
random path witm links have the the relative positiodin an is | b : finite. hiah ' £ th
the embedding space. In particular, we are interested in th igtritr)]t)nilosn aarrgeeinf:Jr;{itémte’ igher moment§>a, of the
limit n—co. This probability distribution is given by,(X). Now we shall brieflil discuss the model B>1 dimen-
For largen the functionf,(X) can be determined from the . _ : N
central limit theorem. Roughly speaking, if the second mo_sllons. Af before we cgn3|delr spherically symmetric distribu-
ment of f(x) exists, f,(X) approaches a Gaussian distribu- tions f(x)=f(x), x=|x|, which have a power—lflgv_gepen—
tion with the variances,=no, otherwise f,(X) ap- dence for large lengths of the link vectdiéx) ~x :
proaches the ey distribution (56) with the scale parameter Do e o D1 e
A,=nYA. Thus, if a distribution has a power tafl(x) dPxf(x)=dQpdxx 1 (x)~dQpdxx 7%, (71
~x~17@ for largex, the limiting distributionf,(X) for large
n will approach the Gaussian distribution éf>2, or the
Levy distribution (56) if a<2 [35,44. The limiting case
.f(x)wxfa belpngs to the Gaussian dom_ain of attr_acti.on b.u he angular measusé 1. Otherwise, the dependence of the
it has a logarithmic anomaly of the vanance, which in th'sscaling ona goes in parallel to the one-dimensional case,
case does not grow agn but faster, i.e., with some addi- - is, the distribution belongs to the Gaussian domain of
tional logarithmical factor of. . . attraction ifa=2 and to the Ley one if «<2. The charac-
For a>2 the approach of,(X) to the Gaussian distribu- ayistic function(11) of the corresponding limiting distribu-

tion for largen is nonuniform and takes place in the central tion i hericall tric: A h - »|
region of the distributionf(X) for [X|<X, , whereX,  Uon is spherically symmetric: exp(A’p®), where p=|p

where d() is the angular part of the measure. The main
difference from the one-dimensional case is that the effective
ower of the link-length distribution changes By-1 due to

scales withn as and a=min{2,¢}. For example, a distribution that has a

power-law tailf (x)~x 17D belongs to the domain of attrac-
X, ~byninn. (66)  tion of the Cauchy distribution:

Here b is some constanf47] representing a scale of the - 1 D - AV idx

distribution. Outside this regiorf,(X) deviates severely f(x)_(zw)g d“qe

from the normal law, and in particular it preserves the power-

law tail for X>X, : D+1

dX nA® _ 2 A (72)
de“(x)NY Nl (67) (D+1)/2 (A2+)22)(D+1)/2'

An effect that arises in higher dimensions is a possibility of a
spontaneous breaking of the rotational symmetry. The limit-
ing distributions for N—«~ and the two-point function

with a tail amplitude proportional to. In other words, for
any finite n the power-law tail is present in the distribution
fo(X). Therefore all absolute moments of ordgr « of this

distribution are infinite: G@(X) are spherically symmetric, but the configurations
that contribute to them are not. The effect is strong when
(IX|Q) =00 (68) =<1 and is known from the considerations of wepaths
[35]. If we have such an ensemble Nflinks, one can find a
for finite n, and as a consequence also link whose length isNY* larger than the sum of the lengths
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of the remaining links. This link makes the system look like the embedding of scale-free and crumpled tree graphs, and
a one-dimensional system, since the extent of the system ihe phase with elongated \x¢ branches that have the Haus-
the direction of this link is significantly larger than in the dorff dimensionD<4.
other directions. The effect becomes weaker whes larger Due to the simplicity, and the full control of the free case,
than 1. Actually it is then seen for configurations that comethe model of branched polymers that we discussed here pro-
from the largeX tail of the two-point functionG{?)(X). This  vides a good starting point for modeling effects of nontrivial
configurations become marginal fer>2 in the largeN  embedding, such as those related to excluded-volume effects
limit. However, as long abl is finite, the probability of large [48—50 or external curvatur¢51,52. Such effects violate
Xin Gijz)(x) is finite and it strongly influences the measure-the factorization introducing correlations between the inter-
ments of higher momentéR?), of the system extent. In Nnal and external geometry. A sort _of back coupling occurs.
other words, the highe® is, the stronger is the contribution The external geometry affects the internal one, which modi-
from the largeX part of the two-point function, and the more fies and influences back the external one. For example, self-
the systems that are elongated contribute to this quantity. Igvoidance disfavors crumpled trees and hence changes the
the limiting caseQ— «a, the main contribution to the mo- internal Hausdorff dimension, which in turn will change the
ments(R®), comes from one-dimensional configurations. €xternal one as was extensively discussed for the generic
As mentioned, the branched_po'ymer model with power_Ga.USS|a.n tree@S—Sq. The effect of self-avoidance should
law weight arises as the one-loop approximation of the reinfluence the fractal dimension ,d;;,D ,Dy also for ex-
duced supersymmetric Yang-Mills modé3]. In particular, ~ Otic branched polymers, nongeneric ovkerees, similar to
for D=4 dimensions, the embedding weigh(x) behave as the way does for self-avoiding kg random walkg35-39.
f(x)~x"P~*~x"6 for large link lengthsx. This is the mar-
ginal casea=2 which belongs to the Gaussian domain of ACKNOWLEDGMENTS
attraction. This means, in particular, that if one first takes the . . . .
limit N—o, then the Gaussian branched polymers emerge‘[]aleesLhancL(rtEd Bt')alaé (;or|:ésc(l;?:notnEoTh:pgﬁl(cv%ﬁsggg_
for which all correlation functions are well defined. On the 0003'161 F;Fr)1d b P?lo'ect No. 2 PO3B 09'6 22 of the Polish
other hand, if one determines higher correlation funCtionﬁ?esearch Fouri/datic(]KBN)fc;r 2002-2004. M.W. thanks the
before one takell e, one shall see that they are divergent. University of Bielefeld for financial support. Z.B. thanks the

In numerical simulations of the full matrix model, one Alexander von Humboldt Foundation for financial support
also observes power-law tails in the distribution of the sys- pport.

tem extent and one-dimensional configuratip?s—29. It is
possible[27], but not yet answered, that there also exists a APPENDIX

Gaussian limit at largé! in this model. This Appendix summarizes important relations of the in-

ternal geometry of branched-polymer modgss7,20,53. It

DISCUSSION is intended to make this paper more self-contained. As we
. . . already mentioned, the part of the model related to the inter-

we mvgstlgated the model of trees .e_mbedded frgely N Yal geometry decouples from the problem of the embedding
D-dimensional target space. We classified the scaling P'OB3nd can hence be solved independently. It is convenient to
erties of the model by determining the fractal dimensions forintroduce several generating functions t;) ease the calcula-
internal and external geometry for the ensembles of generi
[4,5] and exotic trees, including those that have fat tails i
the distributions of branching ordef20] and of link lengths
in the embedding space, the latter of which are extension

random linear polymerg34,35. We showed that, for freely

fions. Although many of the considerations made here are

Mwell known, we deduce several relations for the generating

OEmctions which play important roles in the description of
ranched-polymer models. Graphical representations of the

embedded trees. internal aeometry is independent of the e enerating functions turn out to be effective tools for the just
’ 9 y P entioned deductions. Finally we will be able to calculate

bedding as a result of the factorizati¢h4). On the other tFe partition functionzy, Eq. (12), and the two-point func-

hand, external geometry strongly depends on the intern ) .
one: in particular, the Hausdorff dimension for external gef%Ion g '(n), Eq.(15), of the internal geometry. Note that we

ometry s proportional to that for the internal o, EIRY TR T R e e eing sections.
= ady . The proportionality coefficient is given by the sta- 9 P 9 :

R : , . . Recall that the internal properties of a branched-polymer
bility index of the embedding weights. For Gaussian trees, in X . .
particular, it is equal 2. We pointed out that the finite effectsmOdel(l) only depend on the internal weight functioi .

related to the presence of fat tails lead to singularities mg r?trir:aqte(;g&tlérx?;geztivr?érmﬁef\?vwgi)a'star]teosfebfarrc\)gﬁirr;{leivgrehts
higher order correlation functions before the inifinite laMje y g weig

limit is taken. This is a similar effect to that observed in the{Wq}’ obeylng. the condition£3), |s.g|ven._The information
IKKT matrix model[22]. about the entire seiw,} of branching weights can alterna-

The branched-polymer model captures many features 0t}vely be encoded in a single function of one real variable,

the more complicated models of random geometry. Despit@amely'

its simplicity, the model has a rich phase structure: a generic o
phase of Gaussian trees that have the Hausdorff dimensions V(D)= E %q)q (A1)
D=4, the phase of short trees with;>4 coming from =19
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As we shall show below, the scaling properties of the internal
geometry are directly related to the analytic properties of this
function. We will often refer toV as a potential, since the
(a) (b) (c)

most important generating functions can be written as deri-

vates ofV.
In the first section we defined the generating function for FIG. 3. Graphic representations of the generating functiahs
the canonical partition functionz, to be Z, (b) 2W, and(c) ®.

o0

_ due to certain symmetries of the represented object will al-
2= szz ZNgN:NEZZ zne N, (A2)  \vays be displayed explicitly. Links between vertices will be
represented by solid lines. As can be seen in Fig. 3, the
which is nothing else but the grand-canonical partition func-generating functionZ will be represented by a bubble, its
tion for the ensemble of trees with unrestricted size. OnelerivativeZ®) by a bubble with a filled circle inside, and its
reason why it is convenient to introduce the generating funceerivative® by a bubble with a tail having an empty circle
tion Z is that one can write a closed self-consistency equaat the end. The tail corresponds to the external line of the
tion for a first derivative of it, as we shall discuss below. Thetree.
grand canonical partition function can be written as The marked vertex of the ensemble is often called the
. root. Trees generated B! are called rooted, those gener-
1 ated by® are called planted rooted or simply planted.
2= sz Nt TEETN (gwy)"(gwa) 2 - (gwy—p) N1, In a similar way one can also define higher derivatives of
(A3) Z. Each derivativegd/dg introduces a new marked vertex
and hence another filled circle in the bubble of the graphical
whereN, denotes the number of vertices of ordeand the  representation. Each derivative §14/dw, introduces a new
sum begins wittN=2 being the number of vertices on the external line with an empty circle at the end. One could also
smallest tree. Note that each vertex introduces a faptey define derivatives (8y) d/ ow, that introduce an external un-
to the (interna) weight of the tree in the grand-canonical counted vertex connected to the bubble kiénks.
ensemble. There are two derivatives of the generating func- The most fundamental object among all these generating
tion Z which will be useful: functions is the generating functieh for planted trees. With
its help, one can construct all the others. For example, the
(1)_ d - N combinationgw,®9/q! is a generating function for trees
z =9£:NZZ Nzyg™, (A4)  with one marked vertex of the order If one sums oven,
- one obtains a generating function for trees that have just one
marked vertex of any order. This is nothing else ki)

19z .
b=- "= N A5 itself. Thus we have
g ow, =4 #Ng (A5)
W
where zZMW=g> q—fq>Q=gV(<1>). (A7)
a=1 O
JZn+1 1 N1 Wy
PNT W, =(N+1)l T Wy (AB) " |f one adds a line with an empty end to this marked vertex,
S

one obtains the generating function for planted trees. The
C|ear|y, Z(l) is a generating function for the canonical par- order Of'the marked Vert.ex to which the line is added conse-
tition functionsz{-'=Nz, of trees withN vertices that have guently increases by 1, i.eq—q+1. Thus the correspond-
one marked vertex. Intuitively, the factrin the sum can be Ing contribution to the sum ovey is gwy 1P q!:
viewed as a factor that counts the possible choices of mark- .
ing one vertex on a tree witN vertices. The derivative is
a generating function for the partition functionsy of o= 2
branched polymers of siZ¢ having one(not counted addi-

tional marked vertex of order one. We will refer to those,, i is a self-consistency equation fbrfrom which® can

uncounted vertices as external lines. Because we do n@fy c5icylated. Having calculate, one can insert it into Eq.
count the empty lines in EqA5) the sum starts withN (A7) and determinez™ and so on

=1.

We now introduce a graphical notation for the generatingm
_funct|ons with the following conventions: Whenever a_vertextex, which is connected to an external line. One can easily
is represented by an empty circle, this means that this VerteX o -k that thekth derivate ofV(®):
neither introduces a weight,, corresponding to its order nor
a fugacityg. Consequently, those vertices are not counted. %

Solid circles correspond to counted vertices and therefore gV(k)(q)): z Wq+kq)q (A9)
introduce factorsv, and g. Combinatorial factors that are g=o ¢!

W
—EPi=gV'(®), (A8)
g=0 Q'

As we have seen abovgV(®) generates trees with one
arked vertexgV’ (®) generates trees with one marked ver-
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FIG. 4. Graphic representation a§V(®), gV'(®), and (ZI):IG. 6. Decomposition of the internal two-point function
gV"((D) g (/‘Lin)'

generates an ensemble of trees with one marked vertex Coﬂpes not char)ge for a wide CI‘."lSS of f[he weights. In the sec-
nected tok external lines. The graphical representations oftion Up|versal|ty classes and singularity types two .other uni-
gV (®) for k=0,1,2 are depicted in Fig. 4 versality classes of branched-polymer models wjth 1/2

The self-consistency equatigA8) is illustrated in Fig. 5. have bee_zn d|scuss§>d. N .
The content of Eq.A7) emerges automatically from the . we will CIOS? this ap_pend|>_< V.V'th the calculation Of .the
comparison of Figs. ®) and 4a) internal two-point function. Similarly as for the partition

Let us now illustrate how the generating function maChin_functlon, it is easier to work with the generating function.

ery works solving the classical problem of the tree diagramEonSider tree graphs that are weighted with the fugagity

enumeration[53]. We shall calculatezy, for the caseWs —e *, and that have two marked vertices separatechby

=1. This is called the Cayley problem. The number of all =+ links. The generating functiog ®)(u,n) defined as a
labeled trees wittN vertices is given byzyN!. The self- sum over all such trees corresponds to the two-point function

consistency equation reduces to for the grand—canc()Zn)maI engemble. Figure 6 |I_Iustrates _the de-
composition of G'“/(u,n) into the generating functions

d=ge®. (A10) gV'(®) andgV"(P) depicted in Fig. 4. The decomposition
is unique, since the path connecting the marked vertices is
This equation can be solved fdr: unique. The two bubbles at the ends of the chain correspond
. to diagrams of the generating functigVV’'(®), while the
NNL n—1 ones in between correspond d&”(®). The decom-
(I’:NE:l N9 (A11) position leads to the following relation:

(2) —a(nt+1) ’ 2r\ (n—1)
For the weightsw,=1 Eq. (A7) leads to a simple relation G (wn)=e VIR TVI(@)] ’

betweenz®) and ®: (A15)

We can also define the internal grand-canonical two-point
% function forn=0. In this case the two marked vertices lie on
gN=> Nzg". (A12) top of each other. Thus the two-point function reduces to the
N=2 one-point functiong ®(u,n=0)= 20 =e"#V(P).
Relation(A15) allows us to find an explicit dependence of
The grand-canonical two-point function eonand u, if we

N—-1

N!

From this relation, one can calculate the canonical partitio

function first solve the self-consistency equati@0) for ®(u). We
NN-2 will be rather interested in the scaling behavior of the two-
INENT for N=2 (A13) point function near the critical point.
N! Let us first illustrate the calculation of the two-point func-

tion for the ensemble of trees having the natural weight
=1. In this caseV'(®)=V"(d)=e®, whered(u) is a
solution of Eq.(30):

and the number of labeled tree diagrams toNd& 2. For
large N one can approximatey by

NN*Z

N ~(27) " V2NN ~52— groNNT=3,  (A14) u=>—In(P). (Al6)

ZN:

In this case the two-point function simplifies to
where the last step is due to the comparison with 2§). @) i1
The critical values of the chemical potential and the suscep- 9 (s.n)=exp{—(N+1)[u—D(u)]}="" "
tibility exponent take the valuegy,=1 andy=1/2, respec- (AL7)

tively. It turns out that the valug=1/2 is a generic one. It The inversion of Eq(A16) for & gives ®=1—2\Az,
when Apu=pu—uo=p—1—0". Thus the two-point func-

tion can be approximated in this limit by
= & + 1 + 1 +
GO(p,m~exd —V2(n+1)VAul.  (AL8)

We have neglected a term linear iy in the exponent,
because we are interested in the limix—0" for which
Aup<+Au. What matters in this limit is the leading term in
FIG. 5. Graphic representation of the self-consistency equatiod ©, which is related to the largh behavior of the underly-
(A8). ing canonical ensemble:
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- - - - - (n+1)2
g(2>(u,n)=% G&(nye MN:% e NG @ (n)e 44N, G@(n)=(2m) V%N 3’2(n+1)exp(— N
(A19) (A21)

We insertedug=1 in the last formula. The normalized two-
where gf\f)(n) is the two-point function for the canonical point function can be approximated by
ensemble for trees of siZ¢. In the last formula, we split

(2)
into ug andA u, wherepu is the critical value ofu at which g@(n)= gy - ﬂe—cnz/zm (A22)
the partition function is singular. The leading termxAip. of N 2 @)/ 1 '
G@(u,n) are responsible for the scaling behavior while the - gr(n’)

. . .. . n
next-to-leading ones are responsible for finite-size correc-

tions. The constant in the last formula is equal 1. We displayed
Formula(A19) is a discrete Laplace transform. Since we this constant, because the same formula holds for generic
are interested in the largd behavior ofg(NZ)(n)’ we can trees, in general, but with a constant that depends on the

substitute the discrete Laplace transform by a continuou

one. The inverse transform then yields

1 fA
A

g(z)(n):e+ﬂ0N__ pypHioe
N 27T| ,ur—ioc

dA G @ (w,n)etHN,
(A20)

In particular, for the case discussed hisee Eq(A18)],
the exact result reads

ghoice of the weights.

We used two approximations in the last formula. We sub-
stitutedn+ 1 by n. The difference between the function with
n andn+1 disappears in the larde limit. Second, the nu-
merator and the denominator in the normalized two-point
function (A22) have a common part @) YeNN"%?
which does not depend am It cancels out. The remaining
part ¢/N is a normalization constant ensurirE;ng(Nz)(n)
=1. For finiteN, there will be some corrections to the nor-
malization constant/N, but these disappear exponentially
in the largeN limit.
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