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Competing tunneling trajectories in a two-dimensional potential with variable topology
as a model for quantum bifurcations
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We present a path-integral approach to treat a two-dimensional model of a quantum bifurcation. The model
potential has two equivalent minima separated by one or two saddle points, depending on the value of a
continuous parameter. Tunneling is, therefore, realized either along one trajectory or along two equivalent
paths. The zero-point fluctuations smear out the sharp transition between these two regimes and lead to a
certain crossover behavior. When the two saddle points are inequivalent one can also have a first order
transition related to the fact that one of the two trajectories becomes unstable. We illustrate these results by
numerical investigations. Even though a specific model is investigated here, the approach is quite general and
has potential applicability for various systems in physics and chemistry exhibiting multistability and tunneling
phenomena.
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I. INTRODUCTION

Molecules possessing more than one stable or metas
configurations~so-called non-rigid molecules@1,2#! are inter-
esting as many of their properties differ considerably fro
those of rigid molecules. In addition, such molecules ha
practical applications as building blocks of present and
ture display and sensor technologies. Theoretical mode
of nonrigid molecules is often hampered by a lack of detai
knowledge concerning their eigenstates and eigenfuncti
As a rule, vibrational spectra of the nonrigid molecules
characterized by local oscillations around the minima a
tunneling splittings due to transitions between these quas
cal states. When only one ‘‘coordinate’’~the reaction path! is
related to a large amplitude motion while all other degrees
freedom can be approximated as small amplitude oscillat
@3,4#, the behavior of the system is determined completely
a single minimum action trajectory. The dynamics becom
more complex when more than one coupled large amplit
motions ~i.e., more than one strongly fluctuating variable!
are present. In this case, several minimum energy paths
nect minima of the potential energy surface~PES!. Phenom-
ena like instabilities or bifurcations can appear in cert
regions of parameters describing the PES, and the analys
such a situation is the main issue of the present paper.

In the general case of a PES withn minima, states of the
system can be described usingn sets of eigenfunctions
quasilocalized near each minimum, while tunneling betwe
different states is related to the overlap between these f
tions. The characteristic energy scale for tunneling, usu
much smaller than the thermal energy, is determined by
chemical nature of the nonrigid molecule, or, in other wor
1063-651X/2003/67~2!/026102~10!/$20.00 67 0261
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by the quantum chemistry of the system. Depending on
parameters describing the PES of a nonrigid molecule,
may expect different types of behavior, which can be trea
in terms of quantum instabilities also called quantum ph
transitions.

Quantum phase transitions~that occur in a quantum me
chanical system at zero temperature as a function of s
nonthermal control parameter! and related phenomena, lik
quantum bifurcations and instabilities have been a subjec
great theoretical interest in recent years~see, e.g., monograp
@5# and references herein!. Unlike ordinary phase transitions
quantum transitions occur between ground states and inv
negligible changes in entropy. Examples include transitio
in quantum Hall systems, localization phenomena, and
superconductor-insulator transition in two-dimensional s
tems @5,6#. Usually these phenomena take place in ma
particle systems driven by competing interactions~a well-
known example is the superconductor—normal metal qu
tum phase transition atT50 arising from electron-electron
correlation competing with electron-phonon interaction@7#!.
As a result of the competition, a quantum bifurcation m
occur at a critical value of the coupling constant, leading
singularities of some properties. The most robust feature
quantum bifurcations are divergences or singularities in c
tain characteristics of the system at the critical value of
coupling constant and drastic changes of the behavior be
and above. Both classical and quantum critical points
governed by a divergent correlation length, although qu
tum systems possess additional properties that do not h
classical counterparts. The fact that the ground state w
function undergoes a qualitative change at a quantum in
bility is one of these and is the subject of this paper.
©2003 The American Physical Society02-1
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Remarkably, similar features may arise in few-body s
tems. A well-known example is the so-called level cross
phenomenon@8# when an excited level becomes the grou
state at a critical value of the interaction parameter. In t
paper, we analyze another type of quantum instability tak
place for a two-dimensional~2D! PES changing its topology
as a function of a continuous parametera and illustrate the
results by numerical investigations. The model PES has
equivalent minima separated by one or two saddle poi
The change from one to two saddle points takes place f
certain critical value ofa5ac . In addition, the PES may b
symmetric or asymmetric with respect to the second coo
nate, perpendicular to that relating the two minima. For
symmetric case~two equivalent saddle points! there are two
regions~I and II! of the phase diagram, where tunneling
realized either along one minimum action trajectory essen
for the semiclassical description of the motion~region I!, or
along two equivalent paths~region II!. The zero-point fluc-
tuations smear out a sharp second order transition betw
the two regions and lead to a certain crossover behavior.
the asymmetric case, one can have also a first order p
transition related to the fact that one of the two trajector
becomes unstable.

The competition between trajectories in this model pla
the role of competing interactions in many-body syste
with quantum bifurcations. Divergences in thermodynam
quantities are mapped onto a certain singular behavior in
model ~critical fluctuations at finite temperatures have th
equivalent in the zero-point quantum delocalization! and, in
fact, reflect more fundamental phenomena. Loosely spe
ing, any continuous quantum bifurcation is related to spec
conditions~or specific values of parameters! when the lowest
excitations become gapless and a qualitative change in
nature of the frequency spectrum occurs.

In the literature@9,10#, several analogies have been pr
posed to describe the ground state stability of a small sys
~such as an atom or a molecule! in terms of phase transitions
mapping a d-dimensional quantum systems onto
(d11)-dimensional classical system. This formal equiv
lence~first proposed long ago@11,12#! is based on the obser
vation that the quantum action includes not only an integ
tion over the space variables but includes also one imagin
time dimension, which, forT50, is of infinite extent. The
quantum-classical mapping is a very general fact. One
always reinterpret the imaginary time functional integral o
d-dimensional quantum theory as a finite-temperature Gi
distribution function of a (d11)-dimensional classica
theory.

Naively, this seems to imply that quantum bifurcations a
not very interesting. However, as elsewhere in science,
devil is in the details of this mapping. For example it tur
out @5# that there is no guarantee that the Gibbs weigh
found by such a mapping, are positive~they can even be
complex valued!. This implies that one may not use the ma
ping blindly, i.e., for any arbitrary system. Thus a direct a
explicit treatment of the quantum models is required.

Instead of the divergence of the correlation length~which
is the cornerstone of traditional descriptions of criticality
determining the scaling behavior of all other quantities! any
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quantity that changes its scaling behavior ata5ac can be
used. Thus, it is not necessary to restrict analogies of ph
transition to the search for the points where the correlat
length diverges. As shown below, in the present model
wave functions itself manifest a characteristic critical beh
ior.

The remainder of this paper is organized as follows.
Sec. II we investigate a model 2D potential having tw
equivalent minima, and two saddle points. The shape and
topology of the potential depend on one continuous para
eter,a, playing the role of a controlling parameter in a pha
transition terminology. At the critical valuea5ac , two
saddle points~and the maximum of the potential in betwee!
merge into one saddle point. In this section we also prese
qualitative picture of the quantum bifurcation. Section III
devoted to the numerical verification of the qualitative sc
nario. Minimum energy and extremal tunneling trajector
of the potential are determined. In the Sec. IV the resu
presented in the Sec. III are generalized to an anisotropic
deformed PES, with the aim to relate predictions of the t
oretical results to possible experimental verifications such
the effect of partial deuteration. Some specific examples
nonrigid molecules are also discussed in this section. Fina
in Sec. V we conclude.

II. INSTANTON APPROACH TO A MODEL 2D POTENTIAL

In order to investigate the scenario of quantum bifurc
tions described above, one should solve the Schro¨dinger
equation for a 2D PES of variable shape and topology.
standard method of solution is known for a 2D PES of ge
eral shape. In the semiclassical approximation~the concern
of this paper!, the commonly used WKB method@8,13#, is
reduced to matching wave functions between classically
lowed and forbidden regions. This matching is eas
achieved in the 1D case with only one strongly fluctuati
variable. Technically, already for two dimensions with o
strongly and one weakly fluctuating variable the proced
becomes tedious and computationally demanding. Howe
for higher-dimensional PES and for more than one coup
large amplitude motions, fundamental difficulties are e
countered of how to match many-valued semiclassical w
functions at a nontrivial set of boundaries between allow
and forbidden regions in multidimensional phase space.
the best of our knowledge this problem has not been inv
tigated previously in any general form.

However, there is an alternative to the universal WK
semiclassical formalism, the so-called extreme tunneling
jectory or instanton method, which is not only very efficie
for calculating globally uniform wave functions of th
ground state~as initially formulated@14,15#! but which can
also be adapted for the description of low-energy exci
states@16–18# ~and which can even be extended with re
sonable accuracy to highly excited states@19#!. The instanton
method eliminates much of the tedious WKB calculatio
because there are no classically allowed regions in the
malism ~and as a consequence there are no singularitie
semiclassical wave functions!. Within the instanton method
bifurcations or instabilities are simply related to the ex
2-2
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tence of multiple-valued solutions of the equations of m
tion, i.e., appearance of two~or more! solutions with similar
values of their action. Unlike WKB wave functions, whic
have singularities at the boundaries between classically
lowed and forbidden regions, the variations over the spac
instanton wave functions can be followed continuously. T
price to pay for this advantage is related to the nonexiste
of classically allowed regions and the absence of nat
Bohr-Sommerfeld quantization rules. In the instanton
proach, these rules must be established by different meth
In addition, the instanton equations contain second or
turning points whereas the WKB equations have only line
first order, turning points.

The main steps of the instanton method, used to determ
semiclassical solutions to the Schro¨dinger equation in the
potentialV(X,Y), are as follows:

~i! The so-called Wick rotation in phase space, cor
sponding to the transformation to imaginary time (t→
2 i t ), is made.

~ii ! Solutions of the Schro¨dinger equation are represente
in the form

C5A~X,Y!exp@2gW~X,Y!#, ~1!

g@1 is a large semiclassical parameter,g[mV0a0
2/\,

wherem is a mass of a particle,a0 is a ‘‘microscopic’’ char-
acteristic length of the problem, e.g., the tunneling distan
V0 is a characteristic frequency, e.g., the oscillation f
quency around the potential minimum,\ is set equal to 1,
measuring energies in frequency units, andW has a meaning
of action.

~iii ! The terms in the Schro¨dinger equation, first and sec
ond order ing21, become identically zero, if the wave func
tion in the form of Eq.~1! satisfies the time independe
Hamilton-Jacobi equation forW and the so-called transpo
equation forW and A ~see below and also@16–18# for de-
tails!.

Below, the instanton approach is used to determine se
classical solutions of the Schro¨dinger equation in the follow-
ing model 2D PES:

V~X,Y!5
1

2
~12X2!21

v2

12a F1

2
~X22a!Y21

1

4
Y4G .

~2!

The PES given by Eq.~2! is dimensionless: coordinatesX
andY are measured in units of the distancea0 between two
minima alongX, the energy is measured in units of the o
cillation frequencyV0 in one of the wells@thus for the po-
tential ~2! the characteristic frequency for oscillations inX
direction is 4V0, and inY direction it isvV0]. The prefactor
of the second term of Eq.~2! is chosen such that the osci
lation frequency alongY ~at X561) is independent ofa,
and equals the parameterv. The potential, Eq.~2!, is bound
for a,1 and has in this case the following stationary poin
$X561,Y50% are two equivalent minima;$X50,Y50% is
a saddle point fora,0 and becomes a maximum at 0,a
,1; $X50,Y56Aa% are two saddle points at 0,a,2/(2
1v2), becoming minima whena.2/(21v2) with the ap-
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pearance of four additional saddle points. In the followin
the discussion is restricted to the region of 0,a,2/(2
1v2), where additional stationary points, having no ‘‘crit
cal’’ behavior, are absent. We show the 3D shape of the
potential~2! in the Fig. 1 forv51, anda50.55. The bifur-
cation phase diagram in the plane of the dimensionless
rametersa,v2 is shown in Fig. 2. For a classical system, o
would have a continuous bifurcation at the linea50 from a
behavior governed by one minimum energy trajectory~re-
gion I in the Fig. 2! to dynamics with two minimum energy
paths passing through the two saddle points~region II!. Rep-
resentative equipotential maps of PES corresponding to
two regions are shown in Fig. 3. As discussed in the follo
ing Section, quantum zero-point fluctuations shift and d

FIG. 1. 3D plot of the inverted PES~2! with v51, and a
50.55.

FIG. 2. v22a phase diagram. In the region II the PES has tw
minima and two saddle points, only in the region II8 two minimum
action paths coexist with 1D trajectoryY50, in the region I the
PES has two minima and one saddle point and in the region
more than two minima.
2-3
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form the transition line and smear out the bifurcation lin
Finally there is a certain crossover behavior between reg
~I and II!.

A simple physical realization of a PES such as given
Eq. ~2! would be a molecule with two equivalent couple
wide amplitude coordinatesx andy describing, for example
proton tunneling~in monograph@16# many such example
are discussed!. When the coupling between the tunnelin
particles is neglected, the dimensionless PES is represe
as a sum of two strongly fluctuating motions:

V0~x,y!5
1

2
~12x2!21

1

2
~12y2!2. ~3!

Taking into account symmetric coupling, a term,

V1~x,y!5c~x21x0
2!y2, ~4!

must be added to Eq.~3!. After a transformation to coordi
natesX5(x1y)/2 andY5(x2y)/2A3, one obtains the PES
given by Eq.~2!, provided that the parametersv anda are
related as follows:

FIG. 3. Equipotential map for 2D PES Eq.~2!; dashed lines
designate minimum energy trajectories, and the solid lines show
minimum action~tunneling! trajectories.~a! v51,a50.55, ~b! v
51,a520.20.
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v53A2~12a!,

c51, andx0
2512a. To explore the behavior of the syste

with respect to variations of parametersv anda, controlling
the shape and the topology of the model PES, Eq.~2!, the
minimum energy and extreme tunneling trajectories sho
be fully analyzed. Dealing with quantum transitions betwe
different states of the system, one must distinguish betw
adiabatic and nonadiabatic transitions. Adiabatic transiti
take place atv@1 along the minimum~maximum! energy
paths~MEP!, defined by the condition that the PES shou
have an extremum orthogonal to the MEP:

dY

dX
5

]V/]Y

]V/]X
5

~X22a!Y2

22~12X2!~12a!1v2Y2

X

v2Y
. ~5!

From the symmetry of Eq.~5! is clear thatY2 is a function of
12X2, anddY/dX50 on the surfaceX50. In the region II
of Fig. 2, there exist, therefore, two types of paths satisfy
Eq. ~5!: ~i! two equivalent paths I via the saddle points;~ii ! a
shorter path II,Y50 passing through the maximum.

The extreme tunneling~i.e., instanton! zero energy trajec-
tories are described by the equation of motions~‘‘Newton
laws’’! in imaginary time and for the inverted PES~i.e., for
V→2V)

Ẍ5
]V

]X
, Ÿ5

]V

]Y
. ~6!

At a.0, the trajectories satisfying Eq.~6! lie between the
paths I and II due to a nonadiabaticity of the transitio
caused by the finite frequency of the transverse oscillatio
The instanton action increases whena decreases, since
the absolute value of the potential at the saddle points
creases as

V* [V~0,6Aa!5
1

2
2

v2a2

4~12a!
. ~7!

III. QUANTUM BIFURCATION

In this section, the results of the preceding section
used to illustrate numerically the appearance of quantum
furcations ~already qualitatively discussed in the introdu
tion!. Standard applications of the instanton method red
to minimizing the nonlocal action along a one-dimension
trajectory. Such an approach supposes that there is a s
path connecting initial and final states. This is evidently n
the case for our model. As a first step, the equations of m
tion, Eq. ~6!, are solved and the resulting minimum ener
and extreme tunneling~instanton! trajectories are shown in
Fig. 3 for two values of the controlling parametera. As the
instanton trajectories deviate from the minimum ener
paths, the collapse of the two instanton trajectories, whea
decreases, occurs at a certain finite value ofa* .0 which
does not coincide with the pointa50, where the PES
changes its topology. The dashed line in Fig. 2 defines reg
II 8 within region II, where two minimum action trajectorie
exist, in the remainder of region II the minimum action tr

he
2-4
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COMPETING TUNNELING TRAJECTORIES IN A TWO- . . . PHYSICAL REVIEW E 67, 026102 ~2003!
jectory is the 1D trajectoryY50. Thus, the potential Eq.~2!,
admits two types of instantons: a 1D instanton (Y50 and
Ẏ50); and 2D instantons where the transverse displa
ments have a maximum at the planeX50, separating initial
and final states, while the transverse velocities achieve
trema at intermediate points where the trajectories dev
from the 1D instanton. The contribution of any trajectory
the transition rate is a result of the tradeoff between
length of the path and the barrier height along this pa
Naively, exploiting such idea, we come to the bifurcati
criterion, which determines the critical value of the contr
ling parametera as the value at which the actions along t
both competing trajectories become equal. We designate
value bya* . However, by definition of instanton actions, th
point a* corresponds to the harmonic approximation of t
potential, and therefore this criterion is too crude for o
anharmonic model potential, Eq.~2!. In Fig. 4, the minimum
action as a function ofa is plotted forv51. In the same
figure the action along the minimum energy paths is a
represented.

A more rigorous approach is based on the observation
at the bifurcation point a new type of the trajectory~2D!
appears, and the initial 1D trajectory becomes unstable
study the stability of the trajectory it is sufficient to restri
oneself to a Gaussian~harmonic! approximation for the
transverse motion, and the instanton approach is there
adequate. The one-dimensional instanton solution beco
unstable when the lowest eigenvalue of the second functi
derivative of the action over the trajectory variations b
comes zero,

d2W

dX2
50.

This lowest eigenvalue is traditionally called the stabil
parameterl. When the value ofl becomes zero~the corre-

FIG. 4. The actionW* as a function of the parametera at v51
for: ~1! the minimum action tunneling trajectory,~2! the 1D path,
Y50, and~3! the minimum energy trajectory.
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sponding value ofa will be called the critical value and
denotedac) the tunneling channel centred around an e
treme 1D path becomes infinitely wide~and the transverse
fluctuations are no longer Gaussian! and new types of the
trajectories~2D!, possessing a smaller action, appear. We
lieve that this criterium is physical, and it will be show
below that just around the valueac the critical behavior of
the tunneling splitting takes place~more precisely the cross
over due to quantum zero-point fluctuations!.

The next step is to determine the wave functions. T
ground state instanton wave functions can be represente
the form of Eq.~1! as

C0~X,Y!5A0~X,Y!exp@2gW~X,Y!#, ~8!

where the functionsA0(X,Y) andW(X,Y) should satisfy the
Hamilton-Jacobi and transport equations@16–18#

1

2 S ]W

]X D 2

1
1

2 S ]W

]Y D 2

5V~X,Y!, ~9!

and

]W

]X

]A0

]X
1

]W

]Y

]A0

]Y
1

1

2 S ]2W

]X2
1

]2W

]Y2
22E0D A050.

~10!

E0 is the ground state energy.
In Fig. 5, the ground state wave function at the surfa

X50 is shown for different values of the parametera. Far
away from the critical region, the wave functions are loc
ized at the saddle points while the probability distribution
smeared out over the whole region between the poten
minima in the critical region. The tunneling splitting is give
by the expression

D05E
2`

1`

C~0,Y!S ]C

]Y D
X50

dY. ~11!

FIG. 5. Ground state wave functions (n50) at X50 for v51
andg520: ~1! a50.625;~2! a50.55; ~3! a50.3.
2-5
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The value of this splitting given by the probability flow in
tegrated over the dividing planeX50 depends on the expo
nential factor, exp(2gW* ), where W* is Euclidean action
between the minima. Apart from this leading term,D de-
pends on prefactors characterizing both type of trajector
In order to eliminate the leading term contribution and vis
alize the critical behavior ofD, D0 exp(gW* ) is plotted as a
function of a in Fig. 6. The width of the maximum aroun
the critical value,a5ac , is determined by quantum~zero-
point! fluctuations.

Tunneling leads to an energy splitting~tunneling splitting,
D0) between two otherwise degenerate states and the e
states are symmetric and antisymmetric combination of th
states. This tunneling splitting between the two lowest eig
states of the Hamiltonian is therefore the quantity of intere
Alternatively, the rate of oscillation between the two clas
cally degenerate states can be measured after the system
been prepared in one of these states.

At small values ofa some new phenomenon could occ
due to these quantum fluctuations. In this region, at the
face X50, the depth of the wells becomes so small th
wave functions are effectively delocalized due to quant
fluctuations. The natural~though qualitative! criterion of the
delocalization should compare amplitude of zero-point os
lations alongY in one well with the distance between well
The same criterion as given above, could be formulated
the condition that there are no discrete energy levels i
shallow well. Both criteria compare the energy differen
between the maximum and the saddle point of the PES,
~2!, V(0,0)2V(0,Aa), with the energy of zero-point oscil
lations in one well,ṽ/g, whereṽ is the frequency of oscil-
lations around6Aa in the potentialV(0,Y), renormalized
by anharmonic corrections. Taking into account all numeri
factors we obtain

ac
2v2

4~12ac!
.~11A2!

v

g
A 2ac

12ac
. ~12!

FIG. 6. Tunneling splitting as a function ofa for v51, and
g520 in the critical region~the dashed line is a continuation to th
stability region!.
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Equation~12! is fulfilled for ac50.56~at v51) as found in
our numerical computations shown in Fig. 6.

The square root divergence of the localization length atac
corresponds to the critical behavior of the correlation len
in standard classical second order phase transitions. The
neling splittingD0, calculated above, is our main result.D0
is the product of an exponential and preexponential fac
and only the prefactor demonstrates the critical behav
~more precisely—the crossover behavior! shown in the Fig.
6. It may, of course, not be easy~if possible at all! to measure
directly the contribution of a small prefactor with a singul
behavior as a function ofa when D0 is dominated by the
large exponential factor with a regular behavior. Given tha
measurement of a nonlinear susceptibility of the system
equivalent to the measurement of the corresponding der
tive of D0 over the controlling parametera offers one pos-
sibility. For example, when a local dipole moment is asso
ated with the tunneling particles in a system with inversi
symmetry, an applied external electric field will make t
two 2D paths inequivalent, while the single 1D path wou
be unaffected. Let us emphasize that the symmetry brea
phenomenon takes place due to tunneling processes only
is thus by its nature a dynamic phenomenon. We will disc
this issue in the following section.

The second possibility to observe this kind of critic
~crossover! behavior is based on the general Herring-Lifsh
formula ~see Eq.~11! and@8#!, which shows that the splitting
D0 is determined by the integral over theY coordinate at the
dividing surfaceX50, and is thus proportional to the tota
width of the tunneling channels. Therefore, the effect we g
might be considerably enhanced in 3D systems due to
crease of the phase volume of tunneling channels. A
model PES, of which our 2D model PES, Eq. 2, is a pla
section, is given byV(X,r), wherer5(Y21Z2)1/2.

IV. ANISOTROPY

The PES, investigated in the previous sections, is sy
metric with respect to the reflectionY→2Y. Both tunneling
particles are therefore identical as are the two tunne
paths.

As mentioned above, breaking this symmetry may be u
ful, in order to expose more clearly the singular behavior
the prefactor. Indeed, the response should expose a qu
tively different behavior with respect to any factor breaki
the symmetry near the critical region~i.e., close to the bifur-
cation point! or far from it. This idea, the so-called
fluctuation-dissipation theorem relating correlation and
sponse functions, is well known for conventional thermod
namic phase transitions. Two mechanisms of breaking
mirror symmetry, which are easily realized, will be analyz
below. First, partial deuteration will make the tunneling pa
ticles different. Second, as mentioned above, an exte
electric field may render inequivalent the tunneling chann
for the two particles. Both mechanisms can be described
phenomenological way by adding the following anisotrop
perturbation to the bare symmetric PES, Eq.~2!:

Va~X,Y!5b~12X2!Y. ~13!
2-6
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The parameterb describes the strength of the anisotrop
In the potential~13! higher order anisotropic terms,Y3(1
2X2), and so on, were neglected for the sake of simplic
Even though, strictly speaking, this assumption is not ju
fied, sinceY is a strongly fluctuating degree of freedom, th
approximation correctly identifies the characteristic scale
the problem and all qualitative features of its behavior. F
hydrogen-deuterium substitution of one of the two tunnel
atoms, for example, the resulting anisotropy paramete
easily evaluated as

b5
1

4 SAm1

m0
21D , ~14!

wherem0 andm1 are masses of the H and D isotopes. In
applied electric field, the anisotropy parameterb will be pro-
portional to the field strength. The precise choice of the
isotropic PES, Eq.~13!, is delicate, and depends on the d
tailed structure of the system under consideration. Aiming
a qualitative description, we have chosen the simplest fo
of breaking theY→2Y symmetry while the symmetryX
→2X is preserved, so that the two potential well are s
equivalent.

The analysis of this modified PES is analogous with t
presented in the Sec. II for the symmetric PES. In thea,b
parameter phase plane, we should first find all minimum
ergy and extreme tunneling trajectories. There are four
ferent regions on this plane as shown in Fig. 7. In the reg
II one maximum and two saddle points exist, in region
there is only one saddle point. The behavior is more subtl
region III, where the saddle point that is more distant fro
the maximum is transformed into the minimum~i.e., the
X-‘‘oscillation’’ frequency changes its sign!. By the dashed

FIG. 7. The phase diagram for the anisotropic PES, Eq.~13!, in
the ~a2b!-plane withv51. In the region II the the PES has on
maximum and two saddle points and in the region I only one sad
point. In the region III one of the saddle points from region II~more
distant from the maximum! is transformed into the minimum. In th
region II8 there are two minimum action trajectories.
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lines we depicted also the subregion II8, where there are two
extreme tunneling trajectories. In the remaining part of
region II, corresponding to relatively small values ofa, the
extreme tunneling trajectory close to the maximum becom
unstable.

In Fig. 8 we show the minimum energy and extreme tu
neling ~instanton! trajectories for a small value of the aniso

le

FIG. 8. Equipotential map for the anisotropic PES. Instan
~solid lines! and minimum energy~dashed lines! trajectories.v51,
b50.05: ~a! a50.58; ~b! a50.45; ~c! a50.20.
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BENDERSKII et al. PHYSICAL REVIEW E 67, 026102 ~2003!
ropy parameter~b50.05! and for different values ofa. It
illustrates that even a small anisotropy lifts the degenerac
two instanton trajectories. In addition, the straight line p
II, passing through the maximum$X50,Y50%, for the sym-
metric PES, Eq.~2!, becomes curvilinear and deviates fro
Y50. Hence for the anisotropic PES~bÞ0! all regions in
the phase diagram with different types of the trajector
have the same symmetry, and therefore only first order bi
cations between the regions are allowed. Finally, in Fig
the actions along the instanton and the minimum ene
paths are plotted. The figure shows again that the anisotr
Eq. ~13!, removes the degeneracy, and that two instan
trajectories appear whena exceeds a certain threshold valu
This disappearance of one instanton trajectory is a spe
feature of discontinuous first order bifurcations. Conclud
this section, we emphasize that it is this sensitivity to anis
ropy, which can lead to a drastic change of behavior.

V. EXPERIMENTAL CONSEQUENCES

Bifurcations of minimum energy paths~due to the pres-
ence of more than one saddle point separating stable con
rations of the PES! are rather common in molecules wit
several strongly fluctuating coordinates. In nonrigid m
ecules, dynamically strongly fluctuating coordinates of t
sort are typically different combinations of hydrogen tran
fer, hindered rotation of2XHn groups, or inversions. Mo
lecular systems with two hydrogen transfers~synchronous or
stepwise! attract special attention, as these processes
thought to be relevant for many biological processes, incl
ing so-called tautomeric reactions@1–3,16#.

Two proton exchange in pairs of OH . . . O fragments of
various carbonic acid dimers is an example of synchron
tunneling. In our model, this transfer corresponds to a o

FIG. 9. The actionW* as a function ofa along the instanton
~solid lines! and minimum energy~dashed lines! paths.v51, and
b50.05. The curves 1 and 18 correspond to the trajectories mo
distant from the maximum, whereas lines 2 and 28 correspond to the
trajectories close to the maximum.
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dimensional trajectory in region II, and the longitudinalX
and transverseY coordinates are symmetric and antisymm
ric combinations of proton displacementsd1 , d2:

X5
1

2
~d11d2!;Y5

1

2A3
~d12d2!. ~15!

The coefficients are chosen such that Eq.~2! is the sum of
Eqs.~3! and~4!, and the results of Secs. II and III can ther
fore be used. For the 1D pathY50, with one saddle point
$X50,Y50%, the displacements of the both tunneling pr
tons are always~i.e., at any point of the trajectory! equal to
each other (d15d2). In the pure classical limit, the width o
the tunneling channel is determined by the correspond
potential curvature:

D'5S ]2V

]Y2D
0,0

1/2

.

Within the harmonic approximation, there is a mean fie
(}a21/2) divergency. In the planeX50, the anharmonicY4

contribution provides a cutting-off of this divergency.
Quantum, zero-point transverse fluctuations spread

this singularity, and the width of the tunneling channel d
pends ona even in region II of Fig. 2. The characterist
potential barrier heightV* for the synchronic two proton
transfer in the carbonic acid dimers isV* .(10
215) Kcal mol21 ~5000–7000 K!, while the energyEst cor-
responding to a step wise transfer~that is pathsd150,d2
51 or d151,d250) is two or even three times large
@21,22#. On the other hand, within the frame of our mod
PES, the ratioEst /V* depends on the controlling paramet
a as follows:

Est

V*
512

3

2
a,a,0. ~16!

Inserting the numerical values of the characteristic energ
given above into Eq.~16!, one can see that even in the sy
tems where the strongly fluctuating motions are believed
be strongly correlated, the controlling parametera is close to
20.5, and quantum fluctuations must be taken into acco
to describe correctly the tunneling dynamics.

Many examples of intermediate~between synchronic and
step wise! dynamics exist also, one example being the
called free base porphyrin compounds@21,23#. In these com-
pounds with molecular symmetryD4h , four nitrogen atoms
~numbered clockwiseA, B, C, D) form a square and two
mobile protonsa andb occupy positions such that configu
rations (aA,bC) and (aB,bD) are equivalent minima, while
configurations (aA,bD) and (aB,bC) are equivalent saddle
points ~taking into account clockwise motions only!. Our
model PES, Eq.~2!, can be adapted to this case. According
experimental data and quantum chemistry calculati
@21,23# the energy of the saddle points is of the order
0.320.5 of the energy at the maximum (X50,Y50). Thus
from Eq. ~7! we come to the estimationa.0.320.4. For
these intermediate values ofa, the quantum~minimum ac-
2-8
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COMPETING TUNNELING TRAJECTORIES IN A TWO- . . . PHYSICAL REVIEW E 67, 026102 ~2003!
tion! and the classical~minimum potential! trajectories are
quiet different. Indeed, the classical and tunneling trajec
ries pass through the saddle points, and the maximum
spectively. The existence of saddle points lead to a consi
able broadening of the tunneling channel as it is illustrated
the Fig. 4. Similar considerations are easily applied to
hydrazine molecule with two coupled inversion motions~see
Ref. @22# and references therein!.

For the partially deuterated molecule, we can also eva
ate the anisotropy parameterb entering the PES, Eq.~12!.
According to Eq.~13! b.0.1, and the H—D isotopomer re-
mains, therefore, in the same region I of the phase diagr
as protonated porphyrin. The main conclusion of this sh
analysis is that our simple model gives a fairly realistic re
resentation of nonrigid molecules.

We have shown that effects due to competition of traj
tories and quantum fluctuations are relevant in a broad ra
of the parameters entering our model. The examples
cussed above lead to the conclusion that the widely acce
classification of synchronic and stepwise motions must
used with care, since in typical cases both types of moti
are involved. This implies also that the traditional@15#
Gaussian approximation~small fluctuations around one ex
treme tunneling trajectory! is not valid in the case of stron
coupling between both tunneling particles, and one must t
into account both competing tunneling channels. Sim
phenomena might play a role in pairing of isolated nucle
acid bases in the absence of the DNA backbone. In Ref.@24#
spectroscopic characteristics of the hydrogen bonding in
lated guanine-cytosine (GuC) and guanine-guanine
(GuG) base pairs have been investigated. The results s
that the gas phaseGuC base pair adopts a single config
ration, whereasGuG exists in two different configurations
We already mentioned in Sec. II that the effect, obtain
here, may be considerably enhanced in 3D systems du
the increase of the phase volume of the tunneling chan
~our 2D model PES can be considered as a section of
corresponding 3D space!. Among systems, where a 3D ge
eralization of our model could be applicable, are cubic alk
halide crystals doped with a light atomic or molecular ions
substitutional impurity. Due to mismatch in size, these imp
rities frequently occupy off-center positions in the lattic
There is a small number of equivalent off-center positions
that the impurity ground state is degenerate, and tunne
transitions between these positions are observed. Howe
the vibrational frequencies of off-center impurities are u
ally much smaller than characteristic host lattice phonon
quencies, and therefore the coupling to the lattice vibrati
is relatively small. As a first approximation, one can visu
ize the system as one particle in a potential where the
neling transitions between the initial and the final state
proceed in several alternative ways. In the trajectory l
guage it signifies the possibility of competition~and bifurca-
tion! between extremal paths of different types. Since tran
tions between different off-center positions are associate
a charge displacement, the corresponding PES changes
application of external electric field or mechanical stress.
anticipate that the bifurcations described above by our mo
could be observable for off-center impurities as well, a
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that understanding this mechanism will be essential to p
dict and to describe the behavior. A more specific study
3D systems undergoing this kind of the quantum bifurc
tions, might become appropriate as suitable experimenta
sults become available.

A completely different system might also be a physic
realization of our model. The tunneling of magnetic spins h
recently received much attention~see, e.g., Ref.@25#! in view
of its promise as one of the few realistic candidates for qu
tum computing. Conventional magnetic materials used in
experiments contain many domains, each possessing its
set of parameters. Besides the spins interact with the cry
matrix and complicates the physical picture with respect
our model. However, quantum tunneling of spin is also p
sible in a spinor condensate trapped in double-well poten
@25# and this system possesses several decisive advan
compared with more conventional solid state materials an
more suitable for a description in the frame work of o
model ~the system is characterized by a few simple para
eters amenable to experimental control!.

VI. CONCLUSION

We have presented here a path-integral approach to tre
2D model of quantum bifurcations. A PES, the shape
which is determined by a continuous parameter, offer
natural way to examine quantum instability phenome
Candidates that realize our model for quantum bifurcatio
are nonrigid molecules, spin condensates, and some o
systems. In any system exhibiting some kind of quant
phase transitions it is important to understand how its ge
ine quantum aspects evolve throughout the transition.
investigated the behavior of the ground state wave func
undergoing qualitative changes at a quantum instability,
other indicators of the phase transition could be examine
the same way~in a very recent publication, for example, th
authors studied wave function entanglement phenom
@26#!.

A second order bifurcation takes place for a 2D mod
PES with mirror symmetry, which changes its topology a
certain critical valueac of the continuous parametera. At
ua2acu@ac only one minimum action trajectory is essenti
for semiclassical description of the particle motion, while
the ‘‘critical’’ region at ua2acu!ac the behavior is gov-
erned by two different trajectories almost degenerate w
respect to the magnitude of the action. In our model,
competition between trajectories plays the role of compet
interactions in many-body systems experiencing quan
phase transitions. The divergence in correlation length
mapped onto a singular behavior of the localization leng
Due to zero-point quantum fluctuations, the system manife
a smoothed crossover behavior only instead of a sharp b
cation. When the PES becomes asymmetric, a first o
phase transition is associated with the disappearance~in a
certain region of the potential parameters! of one minimum
action trajectory. We illustrate the results by numerically
vestigating this behavior. The approach is general and
potential applicability for large~many particle! systems. Fur-
thermore, it is possible to fabricate structures which are sm
2-9
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BENDERSKII et al. PHYSICAL REVIEW E 67, 026102 ~2003!
enough ~mesoscopic! for the electronic transport to b
largely coherent, so that the wave~quantum! properties of
electrons dominate. Note also that the usefulness of ou
sults can be substantially enhanced by the advent of s
conductor heterostructures in which the potential for
electrons can be tuned and varied in space with great p
sion.

One more interesting line of thought for future wo
would be to analyze, in analogy with the approach presen
here, a phase stability with respect to small fluctuatio
for conventional phase transitions. It is known for Landa
Ginzburg type models@20# that the corresponding Landau
Khalatnikov equations have a form analogous to the Sch¨-
dinger equation~where a coordinate plays the role of a
imaginary time! @27#.

Our results can in principle be tested also by investi
tions of low temperature properties of disordered materi
containing certain point defects that undergo atomic tunn
ing @28#. Recently @29,30# the low temperature dielectri
properties of certain multicomponent glasses were te
tively assigned to the existence of coupled two-level tunn
ing systems. This means that several tunneling paths betw
potential minima exist, as in the model presented here.
s.

V.

od

s
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It is important to notice that the investigation of our pap
refers to a singular behavior in the ground state of the s
tem, as, strictly speaking, quantum phase transitions oc
only at T50. Because all experiments are necessarily d
at some nonzero temperature, care must be taken when
paring our theoretical results to experiment, and we have
keep in mind the consequences of theT50, anda5ac sin-
gularity on physical properties atT.0. Technically, finite
temperature effects also can be incorporated into the ins
ton method. To do this, one should take into account
finite period (1/T) of instanton trajectories~an analogous
approach was developed for the WKB method@31,32#!.
When these contributions become comparable to zero-p
quantum oscillations, the quantum phase transition
smeared out.
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