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We present a path-integral approach to treat a two-dimensional model of a quantum bifurcation. The model
potential has two equivalent minima separated by one or two saddle points, depending on the value of a
continuous parameter. Tunneling is, therefore, realized either along one trajectory or along two equivalent
paths. The zero-point fluctuations smear out the sharp transition between these two regimes and lead to a
certain crossover behavior. When the two saddle points are inequivalent one can also have a first order
transition related to the fact that one of the two trajectories becomes unstable. We illustrate these results by
numerical investigations. Even though a specific model is investigated here, the approach is quite general and
has potential applicability for various systems in physics and chemistry exhibiting multistability and tunneling

phenomena.
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[. INTRODUCTION by the quantum chemistry of the system. Depending on the

parameters describing the PES of a nonrigid molecule, one

Molecules possessing more than one stable or metastabfeay expect different types of behavior, which can be treated
configurationgso-called non-rigid moleculd4,2]) are inter-  in terms of quantum instabilities also called quantum phase
esting as many of their properties differ considerably fromtransitions.
those of rigid molecules. In addition, such molecules have Quantum phase transitiorithat occur in a quantum me-
practical applications as building blocks of present and fuchanical system at zero temperature as a function of some
ture display and sensor technologies. Theoretical modelingonthermal control paramejeand related phenomena, like
of nonrigid molecules is often hampered by a lack of detailecjuantum bifurcations and instabilities have been a subject of
knowledge concerning their eigenstates and eigenfunctiongreat theoretical interest in recent yeésse, e.g., monograph
As a rule, vibrational spectra of the nonrigid molecules arg5] and references hergirlUnlike ordinary phase transitions,
characterized by local oscillations around the minima andjuantum transitions occur between ground states and involve
tunneling splittings due to transitions between these quasilaaegligible changes in entropy. Examples include transitions
cal states. When only one “coordinat&he reaction pathis  in quantum Hall systems, localization phenomena, and the
related to a large amplitude motion while all other degrees osuperconductor-insulator transition in two-dimensional sys-
freedom can be approximated as small amplitude oscillationtems [5,6]. Usually these phenomena take place in many
[3,4], the behavior of the system is determined completely byparticle systems driven by competing interactidaswell-
a single minimum action trajectory. The dynamics become&nown example is the superconductor—normal metal quan-
more complex when more than one coupled large amplitudéum phase transition ai=0 arising from electron-electron
motions (i.e., more than one strongly fluctuating variables correlation competing with electron-phonon interacti@f.
are present. In this case, several minimum energy paths coAs a result of the competition, a quantum bifurcation may
nect minima of the potential energy surfa@ES. Phenom-  occur at a critical value of the coupling constant, leading to
ena like instabilities or bifurcations can appear in certainsingularities of some properties. The most robust features of
regions of parameters describing the PES, and the analysis gfiantum bifurcations are divergences or singularities in cer-
such a situation is the main issue of the present paper.  tain characteristics of the system at the critical value of the

In the general case of a PES withminima, states of the coupling constant and drastic changes of the behavior below
system can be described usimgsets of eigenfunctions, and above. Both classical and quantum critical points are
quasilocalized near each minimum, while tunneling betweergoverned by a divergent correlation length, although quan-
different states is related to the overlap between these funéum systems possess additional properties that do not have
tions. The characteristic energy scale for tunneling, usuallglassical counterparts. The fact that the ground state wave
much smaller than the thermal energy, is determined by thénction undergoes a qualitative change at a quantum insta-
chemical nature of the nonrigid molecule, or, in other words bility is one of these and is the subject of this paper.
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Remarkably, similar features may arise in few-body sys-quantity that changes its scaling behavioraat o, can be
tems. A well-known example is the so-called level crossingused. Thus, it is not necessary to restrict analogies of phase
phenomenoii8] when an excited level becomes the groundtransition to the search for the points where the correlation
state at a critical value of the interaction parameter. In thidength diverges. As shown below, in the present model the
paper, we analyze another type of quantum instability takingvave functions itself manifest a characteristic critical behav-
place for a two-dimension&PD) PES changing its topology 0r- . . _ _
as a function of a continuous parameteand illustrate the The remainder of this paper is organized as follows. In
results by numerical investigations. The model PES has tw®€¢- Il we investigate a model 2D potential having two
equivalent minima separated by one or two saddle pointsequwalent minima, anq two saddle points. The_ shape and the
The change from one to two saddle points takes place for Pology of the potential depend on one continuous param-
certain critical value ofv= . In addition, the PES may be €ter.a, playing the role of a controlling parameter in a phase
symmetric or asymmetric with respect to the second coorditransition terminology. At the critical valuer=ac, two
nate, perpendicular to that relating the two minima. For thesaddle pointsand the maximum of the potential in between
symmetric casétwo equivalent saddle pointshere are two Merge into one saddle point. In this section we aIsol present a
regions(l and 1l) of the phase diagram, where tunneling is qualitative picture of the quar]'gum_blfurcat|on. Septpn Ilis
realized either along one minimum action trajectory essentigfievoted to the numerical verification of the qualitative sce-
for the semiclassical description of the motigrgion ), or ~ nario. Minimum energy and extremal tunneling trajectories
along two equivalent pathgegion Il). The zero-point fluc- of the pote_ntlal are determined. In_the Sec. IV .the regults
tuations smear out a sharp second order transition betwedtiesented in the Sec. Il are generalized to an anisotropically
the two regions and lead to a certain crossover behavior. Féteformed PES, with the aim to relate predictions of the the-
the asymmetric case, one can have also a first order phaQéEtICEﬂ results to possible e>_<per|mental verlf_lc_:atlons such as
transition related to the fact that one of the two trajectoriedhe effect of partial deuteration. Some specific examples of
becomes unstable. nonrigid molecules are also discussed in this section. Finally,

The competition between trajectories in this model playdn Sec. V we conclude.
the role of competing interactions in many-body systems
with quantum bifurcations. Divergences in thermodynamic, |\ qranNToN APPROACH TO A MODEL 2D POTENTIAL
guantities are mapped onto a certain singular behavior in our
model (critical fluctuations at finite temperatures have their In order to investigate the scenario of quantum bifurca-
equivalent in the zero-point quantum delocalizatiand, in  tions described above, one should solve the Stihger
fact, reflect more fundamental phenomena. Loosely speakequation for a 2D PES of variable shape and topology. No
ing, any continuous quantum bifurcation is related to specifigtandard method of solution is known for a 2D PES of gen-
conditions(or specific values of parametgrshen the lowest  eral shape. In the semiclassical approximatithe concern
excitations become gapless and a qualitative change in thef this papey, the commonly used WKB methd®,13], is
nature of the frequency spectrum occurs. reduced to matching wave functions between classically al-

In the literature[9,10], several analogies have been pro-lowed and forbidden regions. This matching is easily
posed to describe the ground state stability of a small systerchieved in the 1D case with only one strongly fluctuating
(such as an atom or a molechie terms of phase transitions, variable. Technically, already for two dimensions with one
mapping a d-dimensional quantum systems onto astrongly and one weakly fluctuating variable the procedure
(d+1)-dimensional classical system. This formal equiva-becomes tedious and computationally demanding. However,
lence(first proposed long agld1,12) is based on the obser- for higher-dimensional PES and for more than one coupled
vation that the quantum action includes not only an integralarge amplitude motions, fundamental difficulties are en-
tion over the space variables but includes also one imaginaryountered of how to match many-valued semiclassical wave
time dimension, which, foif =0, is of infinite extent. The functions at a nontrivial set of boundaries between allowed
quantum-classical mapping is a very general fact. One caand forbidden regions in multidimensional phase space. To
always reinterpret the imaginary time functional integral of athe best of our knowledge this problem has not been inves-
d-dimensional quantum theory as a finite-temperature Gibbtigated previously in any general form.
distribution function of a ¢+ 1)-dimensional classical However, there is an alternative to the universal WKB
theory. semiclassical formalism, the so-called extreme tunneling tra-

Naively, this seems to imply that quantum bifurcations argjectory or instanton method, which is not only very efficient
not very interesting. However, as elsewhere in science, thfor calculating globally uniform wave functions of the
devil is in the details of this mapping. For example it turnsground statgas initially formulated[14,15) but which can
out [5] that there is no guarantee that the Gibbs weightsalso be adapted for the description of low-energy excited
found by such a mapping, are positiihiey can even be states[16—18 (and which can even be extended with rea-
complex valuegl This implies that one may not use the map- sonable accuracy to highly excited stdt&g]). The instanton
ping blindly, i.e., for any arbitrary system. Thus a direct andmethod eliminates much of the tedious WKB calculations
explicit treatment of the quantum models is required. because there are no classically allowed regions in the for-

Instead of the divergence of the correlation lengthich ~ malism (and as a consequence there are no singularities of
is the cornerstone of traditional descriptions of criticality in semiclassical wave functiopswithin the instanton method,
determining the scaling behavior of all other quantjtiasy  bifurcations or instabilities are simply related to the exis-
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tence of multiple-valued solutions of the equations of mo-
tion, i.e., appearance of tw@r more solutions with similar
values of their action. Unlike WKB wave functions, which
have singularities at the boundaries between classically al-
lowed and forbidden regions, the variations over the space of
instanton wave functions can be followed continuously. The
price to pay for this advantage is related to the nonexistence

RN /
. : W 11
of classically allowed regions and the absence of natural -0, W&@%‘:@ ,,:,/"
Bohr-Sommerfeld quantization rules. In the instanton ap- W, RN \\\\\\\“:s"#’:"mu

proach, these rules must be established by different methods. 3 \\\\w,';',', !
In addition, the instanton equations contain second order
turning points whereas the WKB equations have only linear,

first order, turning points.

The main steps of the instanton method, used to determine
semiclassical solutions to the ScHiager equation in the
potentialV(X,Y), are as follows: X ~ 10 08

(i) The so-called Wick rotation in phase space, corre-
sponding to the transformation to imaginary timée—(

FIG. 1. 3D plot of the inverted PE®) with w=1, and «

—it), is made. =0.55.
(i) Solutions of the Schitinger equation are represented
in the form pearance of four additional saddle points. In the following,
the discussion is restricted to the region ok@<2/(2
T=A(X,Y)exd — yYW(X,Y)], (1) +w?), where additional stationary points, having no “criti-

cal” behavior, are absent. We show th® 3shape of the

y>1 is a large semiclassical parameter=mQqag/%,  potential(2) in the Fig. 1 foro=1, anda=0.55. The bifur-
wheremis a mass of a particle, is a “microscopic” char-  cation phase diagram in the plane of the dimensionless pa-
acteristic length of the problem, e.g., the tunneling distancesametersy, w? is shown in Fig. 2. For a classical system, one
Qg is a characteristic frequency, e.g., the oscillation fre-would have a continuous bifurcation at the line=0 from a
quency around the potential minimurh,is set equal to 1, behavior governed by one minimum energy trajecttmr
measuring energies in frequency units, akdas a meaning gion | in the Fig. 2 to dynamics with two minimum energy
of action. _ paths passing through the two saddle poirggjion ). Rep-

(iii) The terms in the Schdinger equation, first and sec- resentative equipotential maps of PES corresponding to the
ond order iny~*, become identically zero, if the wave func- two regions are shown in Fig. 3. As discussed in the follow-

tion in the form of Eq.(1) satisfies the time independent ing Section, quantum zero-point fluctuations shift and de-
Hamilton-Jacobi equation foV and the so-called transport

equation forW and A (see below and alspl6-1§ for de-

1 5.0
tails).

Below, the instanton approach is used to determine semi-

classical solutions of the Schtimger equation in the follow- 40

ing model 2D PES: '

VoY) = Sa-x22 2 L ke ayves Lya (0230

(X,Y)= 5( ) 1a E( @) Rt :

) |
2.0

The PES given by Eq(2) is dimensionless: coordinates

andY are measured in units of the distargbetween two

minima alongX, the energy is measured in units of the os- 1.0
cillation frequencyQ in one of the welldthus for the po-

tential (2) the characteristic frequency for oscillations Xh

direction is 4}, and inY direction it isw{)]. The prefactor 0.0

of the second term of Ed2) is chosen such that the oscil- 0.2
lation frequency alongr (at X=*1) is independent of,

and equals the parameter The potential, Eq(2), is bound

for <1 and has in this case the following stationary points: g5 2 ,2— 4 phase diagram. In the region Il the PES has two
{X==1Y=0} are two equivalent minimgX=0,Y=0} IS minima and two saddle points, only in the regioh tivo minimum

a saddle point forr<<O and becomes a maximum at@  action paths coexist with 1D trajectoly=0, in the region | the
<1;{X=0)Y=+ /a} are two saddle points at<0a<2/(2  PES has two minima and one saddle point and in the region Il
+ w?), becoming minima whem>2/(2+ w?) with the ap-  more than two minima.
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0w=32(1— a),

c=1, andx3=1— . To explore the behavior of the system
with respect to variations of parametessand «, controlling

the shape and the topology of the model PES, @y. the
minimum energy and extreme tunneling trajectories should
be fully analyzed. Dealing with quantum transitions between
different states of the system, one must distinguish between
adiabatic and nonadiabatic transitions. Adiabatic transitions
take place atw>1 along the minimummaximum energy
paths(MEP), defined by the condition that the PES should
have an extremum orthogonal to the MEP:

dY ovigY (X2—a)Y? X
dX  OVIIX  —2(1-X?)(1-a)+ w’Y? ?Y

®)

From the symmetry of Ed5) is clear thaty? is a function of
1—X2, anddY/dX=0 on the surfac&=0. In the region ||

of Fig. 2, there exist, therefore, two types of paths satisfying
Eq. (5): (i) two equivalent paths | via the saddle poiris) a
shorter path 1,Y=0 passing through the maximum.

The extreme tunneling.e., instantoinzero energy trajec-
tories are described by the equation of motigtidewton
laws”) in imaginary time and for the inverted PEEe., for
V——V)

NV

YZ(?—Y.

(6)

At «>0, the trajectories satisfying E¢6) lie between the
paths | and Il due to a nonadiabaticity of the transitions
caused by the finite frequency of the transverse oscillations.
The instanton action increases when decreases, since
the absolute value of the potential at the saddle points in-

designate minimum energy trajectories, and the solid lines show th(el:reaSes as

minimum action(tunneling trajectories.(a) w=1,a4=0.55, (b) w
=1,a=-0.20.

form the transition line and smear out the bifurcation line.

1 w’a

2 4l-a)

2

V*=V(0,+Ja)= 7)

Finally there is a certain crossover behavior between regions

(I and 11).

A simple physical realization of a PES such as given by

Eqg. (2) would be a molecule with two equivalent coupled
wide amplitude coordinatesandy describing, for example,
proton tunneling(in monograph[16] many such examples
are discussed When the coupling between the tunneling
particles is neglected, the dimensionless PES is represent
as a sum of two strongly fluctuating motions:

1 1
Vo(x.y) = 5(1=x*)%+ 5(1-y)”. 3
Taking into account symmetric coupling, a term,
Vi(x,y) = +x5)y?, (4)

must be added to Eq3). After a transformation to coordi-
natesX=(x+y)/2 andY= (x—y)/2\/§, one obtains the PES
given by Eq.(2), provided that the parametess and o are
related as follows:

IIl. QUANTUM BIFURCATION

In this section, the results of the preceding section are
used to illustrate numerically the appearance of quantum bi-
furcations (already qualitatively discussed in the introduc-
tion). Standard applications of the instanton method reduce
o minimizing the nonlocal action along a one-dimensional
rajectory. Such an approach supposes that there is a single
path connecting initial and final states. This is evidently not
the case for our model. As a first step, the equations of mo-
tion, Eq. (6), are solved and the resulting minimum energy
and extreme tunnelingnstanton trajectories are shown in
Fig. 3 for two values of the controlling parameter As the
instanton trajectories deviate from the minimum energy
paths, the collapse of the two instanton trajectories, wien
decreases, occurs at a certain finite valuexdf>0 which
does not coincide with the point=0, where the PES
changes its topology. The dashed line in Fig. 2 defines region
II" within region Il, where two minimum action trajectories
exist, in the remainder of region Il the minimum action tra-
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o FIG. 5. Ground state wave functione€0) atX=0 for w=1
FIG. 4. The actioW* as a function of the parametarat o=1  and y=20: (1) a=0.625;(2) a=0.55;(3) «=0.3.
for: (1) the minimum action tunneling trajector?) the 1D path,
Y=0, and(3) the minimum energy trajectory. sponding value ofe will be called the critical value and
denoteda.) the tunneling channel centred around an ex-
jectory is the 1D trajectory =0. Thus, the potential E§2), treme 1D path becomes infinitely widand the transverse
admits two types of instantons: a 1D instanton=0 and fluctuations are no longer Gaussiaand new types of the

Y=0); and 2D instantons where the transverse displacelrajectories2D), possessing a smaller action, appear. We be-

ments have a maximum at the p|aNe:0, Separating initial lieve that this criterium is phySical, and it will be shown

and final states, while the transverse velocities achieve eX2elow that just around the value; the critical behavior of

trema at intermediate points where the trajectories deviatthe tunneling splitting takes placenore precisely the cross-

from the 1D instanton. The contribution of any trajectory to OVer due to quantum zero-point fluctuatipns

the transition rate is a result of the tradeoff between the The next step is to determine the wave functions. The

length of the path and the barrier height along this pathground state instanton wave functions can be represented in

Naively, exploiting such idea, we come to the bifurcationthe form of Eq.(1) as

criterion, which determines the critical value of the control-

ling parametew as the value at which the actions along the Wo(X,Y)=Ao(X,Y)exd — yW(X,Y)], ®

o competng efecioies become squl. We Ses9na hers e fnctonsy(X.Y) angWx,Y) s sty
A ' . Lo Hamilton-Jacobi and transport equatidi$—18

point a* corresponds to the harmonic approximation of the

potential, and therefore this criterion is too crude for our 11aW\2 1/ aW\2

anharmonic model potential, E(R). In Fig. 4, the minimum —( ) (—) =V(X,Y), (9)

ax

2 2\ 9Y

action as a function ofr is plotted foro=1. In the same
figure the action along the minimum energy paths is alsoand
represented.

A more rigorous approach is based on the observation that 2 2
at the bifurcation point a new type of the trajectdi@D) ﬂ\/&_AO ﬂV&_AO_’_E M+M_2EO Ay=0.
appears, and the initial 1D trajectory becomes unstable. To X X ~dY dY 2| 9x2 = 5y?

study the stability of the trajectory it is sufficient to restrict (10
oneself to a Gaussiatharmoni¢ approximation for the .

transverse motion, and the instanton approach is therefofeo IS the ground state energy. _

adequate. The one-dimensional instanton solution becomes " Fi9- 5, the ground state wave function at the surface
unstable when the lowest eigenvalue of the second functionat — 0 iS shown for different values of the parameter Far
derivative of the action over the trajectory variations be-aWay from the critical region, the wave functions are local-

ized at the saddle points while the probability distribution is

comes zero, i ;
smeared out over the whole region between the potential
S2W minima in the critical region. The tunneling splitting is given
—=0 by the expression
oX?
. . . " . +oe ow
This lowest eigenvalue is traditionally called the stability Aozf T(0)Y) N dy. (12)

parametei. When the value ol becomes zerghe corre- X=0

026102-5



BENDERSKII et al. PHYSICAL REVIEW E 67, 026102 (2003

Equation(12) is fulfilled for a.=0.56 (at w=1) as found in
A our numerical computations shown in Fig. 6.
L The square root divergence of the localization length at
corresponds to the critical behavior of the correlation length
in standard classical second order phase transitions. The tun-
neling splittingA,, calculated above, is our main resulty
is the product of an exponential and preexponential factor,
and only the prefactor demonstrates the critical behavior
(more precisely—the crossover behayishown in the Fig.
6. It may, of course, not be eaéf possible at all to measure
directly the contribution of a small prefactor with a singular
behavior as a function ot when A, is dominated by the
large exponential factor with a regular behavior. Given that a
measurement of a nonlinear susceptibility of the system is
equivalent to the measurement of the corresponding deriva-
04 tive of Ay over the controlling parameter offers one pos-
sibility. For example, when a local dipole moment is associ-
ated with the tunneling particles in a system with inversion
symmetry, an applied external electric field will make the
two 2D paths inequivalent, while the single 1D path would
) o ) N ~ be unaffected. Let us emphasize that the symmetry breaking
The value of this splitting given by the probability flow in- shenomenon takes place due to tunneling processes only and
tegrated over the dividing plané=0 depends on the expo- s thus by its nature a dynamic phenomenon. We will discuss
nential factor, expt yW*), where W* is Euclidean action ihis issue in the following section.
between the minima. Apart from this leading term,de-  The second possibility to observe this kind of critical
pends on prefactors characterizing both type of trajectorie§crossover behavior is based on the general Herring-Lifshits
In_ order to g_hmmate th_e leading term contrlbutlon and VisU-formula(see Eq(11) and[8]), which shows that the splitting
alize the critical behavior oA, Ao exp(\W") is plotted as a A is determined by the integral over tiecoordinate at the
function of & in Fig. 6. The width of the maximum around (ijviding surfaceX=0, and is thus proportional to the total
the critical value,a=a, is determined by quanturzero-  width of the tunneling channels. Therefore, the effect we got,
point) fluctuations. might be considerably enhanced in 3D systems due to in-
Tunneling leads to an energy splittidynneling splitting,  crease of the phase volume of tunneling channels. A 3D
Ap) between two otherwise degenerate states and the eigeprodel PES, of which our 2D model PES, Eq. 2, is a plane
states are symmetric and antisymmetric combination of thesgection, is given by/(X,p), wherep=(Y2+ 222
states. This tunneling splitting between the two lowest eigen-
states of the Hamiltonian is therefore the quantity of interest.

160.0
A ™
140.0

120.0

100.0

EREEREN] INREEEREN] FENNRRRER ARRRRR NN RRRNE]

80.0 LANLINL I L L B |
0.40 0.50 0.60 0.70

FIG. 6. Tunneling splitting as a function ef for =1, and
v=20 in the critical regior(the dashed line is a continuation to the
stability region).

Alternatively, the rate of oscillation between the two classi- IV. ANISOTROPY
cally degenerate states can be measured after the system hasrpe PES, investigated in the previous sections, is sym-
been prepared in one of these states. metric with respect to the reflection— — Y. Both tunneling

At small values ofa some new phenomenon could occur particles are therefore identical as are the two tunneling
due to these quantum fluctuations. In this region, at the sulaihs,
face X=0, the depth of the wells becomes so small that As mentioned above, breaking this symmetry may be use-
wave functions are effectively delocalized due to quantunyy| in order to expose more clearly the singular behavior of
fluctuations. The naturdthough qualitativecriterion of the  he prefactor. Indeed, the response should expose a qualita-
delocalization should compare amplitude of zero-point oscil~ti\,(__,|y different behavior with respect to any factor breaking
lations alongY in one well with the distance between wells. {he symmetry near the critical regidie., close to the bifur-
The same criterion as given above, could be formulated agation poing or far from it. This idea, the so-called
the condition that there are no discrete energy levels in §yctuation-dissipation theorem relating correlation and re-
shallow well. Both criteria compare the energy differencesponse functions, is well known for conventional thermody-
between the maximum and the saddle point of the PES, EGyamic phase transitions. Two mechanisms of breaking this
(2), V(0,0)-V(0,\/a), with the energy of zero-point oscil- mirror symmetry, which are easily realized, will be analyzed
lations in one wellw/y, wherew is the frequency of oscil-  pelow. First, partial deuteration will make the tunneling par-
lations around= /« in the potentialV(0,Y), renormalized ticles different. Second, as mentioned above, an external
by anharmonic corrections. Taking into account all numericaklectric field may render inequivalent the tunneling channels

factors we obtain for the two particles. Both mechanisms can be described in a
phenomenological way by adding the following anisotropic
2 2 perturbation to the bare symmetric PES, E)):
(14 ) I (12
4(1-ac) y Vi-a Vo(X,Y)=B(1-X?)Y. (13
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FIG. 7. The phase diagram for the anisotropic PES,(E§, in ?'25°‘353~1°
the (a—B)-plane withw=1. In the region Il the the PES has one 0.35 %5

maximum and two saddle points and in the region | only one saddle
point. In the region Il one of the saddle points from regiofntiore
distant from the maximuins transformed into the minimum. In the
region II' there are two minimum action trajectories.

The parametelB describes the strength of the anisotropy.

In the potential(13) higher order anisotropic term&,3(1

—X?), and so on, were neglected for the sake of simplicity.
Even though, strictly speaking, this assumption is not justi-
fied, sinceY is a strongly fluctuating degree of freedom, this (b)
approximation correctly identifies the characteristic scales in
the problem and all qualitative features of its behavior. For 10

hydrogen-deuterium substitution of one of the two tunneling //_\
1 0.55 o

atoms, for example, the resulting anisotropy parameter is //0_3‘\°\4\\\1
/0.25/_0.20

easily evaluated as

_1 ml_ Y
o3 Vs "

wherem, andm, are masses of the H and D isotopes. In an
applied electric field, the anisotropy paramegewill be pro-
portional to the field strength. The precise choice of the an-
isotropic PES, Eq(13), is delicate, and depends on the de-
tailed structure of the system under consideration. Aiming at
a qualitative description, we have chosen the simplest form - o 95 o 6 1
of breaking theY— —Y symmetry while the symmetrx ©
— — X is preserved, so that the two potential well are still
equivalent. FIG. 8. Equipotential map for the anisotropic PES. Instanton
The analysis of this modified PES is analogous with thafsolid lineg and minimum energydashed linestrajectoriesw=1,
presented in the Sec. Il for the symmetric PES. In &h@ 5=0.05:(a) =0.58;(b) @=0.45;(c) a=0.20.
parameter phase plane, we should first find all minimum en-
ergy and extreme tunneling trajectories. There are four diflines we depicted also the subregioh Nvhere there are two
ferent regions on this plane as shown in Fig. 7. In the regiorextreme tunneling trajectories. In the remaining part of the
[l one maximum and two saddle points exist, in region Iregion Il, corresponding to relatively small values @fthe
there is only one saddle point. The behavior is more subtle iextreme tunneling trajectory close to the maximum becomes
region lll, where the saddle point that is more distant fromunstable.
the maximum is transformed into the minimutne., the In Fig. 8 we show the minimum energy and extreme tun-
X-“oscillation” frequency changes its signBy the dashed neling(instanton trajectories for a small value of the anisot-
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dimensional trajectory in region I, and the longitudirél
and transvers¥ coordinates are symmetric and antisymmet-
ric combinations of proton displacements, d,:

1 1
Xzz(dl"'dz)iY:m(dl_dz)- (15

The coefficients are chosen such that B).is the sum of
Egs.(3) and(4), and the results of Secs. Il and Il can there-
fore be used. For the 1D path=0, with one saddle point
{X=0,Y=0}, the displacements of the both tunneling pro-
tons are alwaysi.e., at any point of the trajectorequal to
each otherd,=d,). In the pure classical limit, the width of
the tunneling channel is determined by the corresponding
potential curvature:

1.1 IllllIIIIIIIIIIIIIIIIlllllllllllllllllll]

0.5 0.5 0.6 0.6 0.7
o A=
FIG. 9. The actiorlW* as a function ofe along the instanton o . . . . .
(solid lines and minimum energydashed linespaths.»=1, and Within the harmonic approximation, there is a mean field

— / . _ .
8=0.05. The curves 1 and’ Torrespond to the trajectories more (@ 12) divergency. In the planX=0, the anharmoni*

distant from the maximum, whereas lines 2 and@respond to the ~ contribution provides a cutting-off of this divergency.
trajectories close to the maximum. Quantum, zero-point transverse fluctuations spread out

this singularity, and the width of the tunneling channel de-
ropy parametef3=0.05 and for different values ofv. It ~ Pends ona even in region Il of Fig. 2. The characteristic

illustrates that even a small anisotropy lifts the degeneracy dgfotential barrier height/* for the synchronic _twc: proton
two instanton trajectories. In addition, the straight line pathtransfer in the carbonic acid dimers i8/*=(10

1/2
IV

av?

0,0

Il, passing through the maximufiX=0,Y =0}, for the sym-  —15) Kcalmol* (5000~7000 K, while the energyEs; cor-
metric PES, Eq(2), becomes curvilinear and deviates from 'esponding to a step wise transfghat is pathsd;=0d,
Y=0. Hence for the anisotropic PE®+0) all regions in =1 or d;=1d,=0) is two or even three times larger

the phase diagram with different types of the trajectoried21,22. On the other hand, within the frame of our model
have the same symmetry, and therefore only first order bifurPES, the ratids,/V* depends on the controlling parameter
cations between the regions are allowed. Finally, in Fig. 9« as follows:
the actions along the instanton and the minimum energy
paths are plotted. The figure shows again that the anisotropy, Est 1— 3 -0 16
Eqg. (13), removes the degeneracy, and that two instanton V_*_ pHasy (16
trajectories appear whenexceeds a certain threshold value.
This disappearance of one instanton trajectory is a specifiyserting the numerical values of the characteristic energies
feature of discontinuous first order bifurcations. Concludinggiven above into Eq(16), one can see that even in the sys-
this section, we emphasize that it is this sensitivity to anisottems where the strongly fluctuating motions are believed to
ropy, which can lead to a drastic change of behavior. be strongly correlated, the controlling parametes close to
—0.5, and quantum fluctuations must be taken into account
to describe correctly the tunneling dynamics.
Many examples of intermediatbetween synchronic and
Bifurcations of minimum energy pathglue to the pres- step wis¢ dynamics exist also, one example being the so-
ence of more than one saddle point separating stable configaalled free base porphyrin compouri@4,23. In these com-
rations of the PEBare rather common in molecules with pounds with molecular symmetiy,,,, four nitrogen atoms
several strongly fluctuating coordinates. In nonrigid mol-(numbered clockwisé, B, C, D) form a square and two
ecules, dynamically strongly fluctuating coordinates of thismobile protonsa andb occupy positions such that configu-
sort are typically different combinations of hydrogen trans-rations @A,bC) and @B,bD) are equivalent minima, while
fer, hindered rotation of- XH, groups, or inversions. Mo- configurations §A,bD) and @B,bC) are equivalent saddle
lecular systems with two hydrogen transfésgnchronous or  points (taking into account clockwise motions ohlyOur
stepwisg attract special attention, as these processes amodel PES, Eq2), can be adapted to this case. According to
thought to be relevant for many biological processes, includexperimental data and quantum chemistry calculations
ing so-called tautomeric reactiops—3,186. [21,23 the energy of the saddle points is of the order of
Two proton exchange in pairs ofHD. . . O fragments of 0.3—0.5 of the energy at the maximunX&0,Y=0). Thus
various carbonic acid dimers is an example of synchronoufrom Eq. (7) we come to the estimatior=0.3—0.4. For
tunneling. In our model, this transfer corresponds to a onethese intermediate values af the quantum(minimum ac-

V. EXPERIMENTAL CONSEQUENCES
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tion) and the classicalminimum potentigl trajectories are that understanding this mechanism will be essential to pre-
quiet different. Indeed, the classical and tunneling trajectodict and to describe the behavior. A more specific study of
ries pass through the saddle points, and the maximum, r&D systems undergoing this kind of the quantum bifurca-
spectively. The existence of saddle points lead to a considetions, might become appropriate as suitable experimental re-
able broadening of the tunneling channel as it is illustrated irpults become available. _ _
the Fig. 4. Similar considerations are easily applied to the A completely different system might also be a physical
hydrazine molecule with two coupled inversion motidsse realization of.our model. The t.unnelmg of magnet|_c spins has
Ref.[22] and references thergin re(?ently repewed much attenti¢see, eg, Ref25]) in view

For the partially deuterated molecule, we can also evalu®f its promise as one of t_he few reahspc Candldates for quan-
ate the anisotropy parametgrentering the PES, Eq12).  tum computing. Co_nventlonal magnetic materials u_sed_ln the
According to Eq.(13) 8=0.1, and the H-D isotopomer re- €Xperiments contain many domains, each possessing its own
mains, therefore, in the same region | of the phase diagrarr%et qf parameters.. Besides the spins mteract vylth the crystal
as protonated porphyrin. The main conclusion of this shorfhatrix and complicates the physical picture with respect to
analysis is that our simple model gives a fairly realistic rep-0ur model. However, quantum tunneling of spin is also pos-
resentation of nonrigid molecules. sible in a spinor condensate trapped in doubl_e-_well potential

We have shown that effects due to competition of trajec{25] and this system possesses several decisive advantages
tories and quantum fluctuations are relevant in a broad range®mpared with more conventional solid state materials and is
of the parameters entering our model. The examples dignore suitable for a description in the frame work of our
cussed above lead to the conclusion that the widely acceptéfodel (the system is characterized by a few simple param-
classification of synchronic and stepwise motions must b&ters amenable to experimental control
used with care, since in typical cases both types of motions
are involved. This implies also that the traditionfdl5]
Gaussian approximatiosmall fluctuations around one ex-
treme tunneling trajectojyis not valid in the case of strong We have presented here a path-integral approach to treat a
coupling between both tunneling particles, and one must takeD model of quantum bifurcations. A PES, the shape of
into account both competing tunneling channels. Similawhich is determined by a continuous parameter, offers a
phenomena might play a role in pairing of isolated nucleic-natural way to examine quantum instability phenomena.
acid bases in the absence of the DNA backbone. In[Rdf.  Candidates that realize our model for quantum bifurcations
spectroscopic characteristics of the hydrogen bonding in iscare nonrigid molecules, spin condensates, and some other
lated guanine-cytosine G—C) and guanine-guanine systems. In any system exhibiting some kind of quantum
(G—G) base pairs have been investigated. The results shophase transitions it is important to understand how its genu-
that the gas phase—C base pair adopts a single configu- ine quantum aspects evolve throughout the transition. We
ration, wherea&—G exists in two different configurations. investigated the behavior of the ground state wave function
We already mentioned in Sec. Il that the effect, obtainedindergoing qualitative changes at a quantum instability, but
here, may be considerably enhanced in 3D systems due t@her indicators of the phase transition could be examined in
the increase of the phase volume of the tunneling channekhe same wayin a very recent publication, for example, the
(our 2D model PES can be considered as a section of thauthors studied wave function entanglement phenomena
corresponding 3D spageAmong systems, where a 3D gen- [26)).
eralization of our model could be applicable, are cubic alkali A second order bifurcation takes place for a 2D model
halide crystals doped with a light atomic or molecular ions asPES with mirror symmetry, which changes its topology at a
substitutional impurity. Due to mismatch in size, these impu-certain critical valuea, of the continuous parameter. At
rities frequently occupy off-center positions in the lattice.|a— a|> a. only one minimum action trajectory is essential
There is a small number of equivalent off-center positions, sdor semiclassical description of the particle motion, while in
that the impurity ground state is degenerate, and tunnelinthe “critical” region at |a— a¢/ <« the behavior is gov-
transitions between these positions are observed. Howeveasrned by two different trajectories almost degenerate with
the vibrational frequencies of off-center impurities are usu+espect to the magnitude of the action. In our model, the
ally much smaller than characteristic host lattice phonon freeompetition between trajectories plays the role of competing
guencies, and therefore the coupling to the lattice vibrationinteractions in many-body systems experiencing quantum
is relatively small. As a first approximation, one can visual-phase transitions. The divergence in correlation length is
ize the system as one particle in a potential where the turmapped onto a singular behavior of the localization length.
neling transitions between the initial and the final state carbue to zero-point quantum fluctuations, the system manifests
proceed in several alternative ways. In the trajectory lana smoothed crossover behavior only instead of a sharp bifur-
guage it signifies the possibility of competitiéand bifurca-  cation. When the PES becomes asymmetric, a first order
tion) between extremal paths of different types. Since transiphase transition is associated with the disappearéinca
tions between different off-center positions are associated toertain region of the potential paramebeo$ one minimum
a charge displacement, the corresponding PES changes upaction trajectory. We illustrate the results by numerically in-
application of external electric field or mechanical stress. Wevestigating this behavior. The approach is general and has
anticipate that the bifurcations described above by our modedotential applicability for largémany particle systems. Fur-
could be observable for off-center impurities as well, andthermore, it is possible to fabricate structures which are small

VI. CONCLUSION
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enough (mesoscopic for the electronic transport to be It is important to notice that the investigation of our paper
largely coherent, so that the wayguantum properties of refers to a singular behavior in the ground state of the sys-
electrons dominate. Note also that the usefulness of our réem, as, strictly speaking, quantum phase transitions occur
sults can be substantially enhanced by the advent of seménly at T=0. Because all experiments are necessarily done
conductor heterostructures in which the potential for theat some nonzero temperature, care must be taken when com-
electrons can be tuned and varied in space with great pregparing our theoretical results to experiment, and we have to
sion. keep in mind the consequences of e 0, anda= «,, Sin-

One more interesting line of thought for future work gularity on physical properties &>0. Technically, finite
would be to analyze, in analogy with the approach presentettmperature effects also can be incorporated into the instan-
here, a phase stability with respect to small fluctuationgon method. To do this, one should take into account the
for conventional phase transitions. It is known for Landau-finite period (1T) of instanton trajectoriesan analogous
Ginzburg type model$20] that the corresponding Landau- approach was developed for the WKB methfgiL,32).
Khalatnikov equations have a form analogous to the Schrowhen these contributions become comparable to zero-point
dinger equation(where a coordinate plays the role of an quantum oscillations, the quantum phase transition is
imaginary time [27]. smeared out.

Our results can in principle be tested also by investiga-
tions _of low temperature properties of disordered r_naterials, ACKNOWLEDGMENTS
containing certain point defects that undergo atomic tunnel-
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